JP2000239096A - Production of silicon single crystal - Google Patents

Production of silicon single crystal

Info

Publication number
JP2000239096A
JP2000239096A JP11041584A JP4158499A JP2000239096A JP 2000239096 A JP2000239096 A JP 2000239096A JP 11041584 A JP11041584 A JP 11041584A JP 4158499 A JP4158499 A JP 4158499A JP 2000239096 A JP2000239096 A JP 2000239096A
Authority
JP
Japan
Prior art keywords
magnetic field
crystal
crucible
oxygen concentration
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11041584A
Other languages
Japanese (ja)
Other versions
JP4151148B2 (en
Inventor
Shunji Kuragaki
俊二 倉垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP04158499A priority Critical patent/JP4151148B2/en
Publication of JP2000239096A publication Critical patent/JP2000239096A/en
Application granted granted Critical
Publication of JP4151148B2 publication Critical patent/JP4151148B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a silicon single crystal of which oxygen concentration distribution in both the direction of crystal growth and the crystal plane can be uniformly controlled and in which the occurrence of a dislocation can be prevented. SOLUTION: When a silicon single crystal is produced by pulling a crystal according to the Czochralski method while applying an equiaxially symmetrical cusp magnetic field about a pulling axis to a melt 4 housed in a crucible 1a, the atmospheric pressure is controlled so as to have a specific defined value in the process for pulling the singled crystal. The specific defined value is preferably 50 Torr (more preferably 80 Torr). The intensity of the cusp magnetic field is preferably 300-600 G.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、坩堝内の溶融液に
カスプ磁場を印加してチョクラルスキー法(以下、「C
Z法」という)によってシリコン単結晶の製造する方法
に関し、さらに詳しくは、カスプ磁場を引上げ軸に対し
て等軸対称に印加して、結晶成長方向の酸素濃度分布を
均一に制御するとともに、結晶面内の酸素濃度分布(以
下、「ROG:Radial Oxygen Gradient」という)のバ
ラツキを抑制したシリコン単結晶の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION The present invention relates to a Czochralski method (hereinafter referred to as "C") by applying a cusp magnetic field to a melt in a crucible.
More specifically, a cusp magnetic field is applied equiaxially symmetrically with respect to the pull-up axis to uniformly control the oxygen concentration distribution in the crystal growth direction, The present invention relates to a method for producing a silicon single crystal in which a variation in an in-plane oxygen concentration distribution (hereinafter referred to as “ROG: Radial Oxygen Gradient”) is suppressed.

【0002】[0002]

【従来の技術】超々高集積回路に用いるシリコン単結晶
では、シリコン結晶中の酸素を酸化物として析出させ、
ウェーハ表面近傍において素子歩留を低下させる要因と
なる重金属不純物をゲッタする、いわゆるゲッタリング
技術が用いられている。このゲッタリング機能を十分に
発揮させるには、結晶中に酸素を均一に取り込むことが
重要である。
2. Description of the Related Art In a silicon single crystal used for an ultra-highly integrated circuit, oxygen in the silicon crystal is precipitated as an oxide,
A so-called gettering technique for gettering heavy metal impurities which cause a reduction in element yield near the wafer surface is used. In order to sufficiently exhibit this gettering function, it is important to uniformly incorporate oxygen into the crystal.

【0003】近年のように、半導体用デバイスの高機能
化に対応して、基板に要求される酸素濃度値が厳しく規
定されるようになると、従来のCZ法では対応が困難に
なる。しかも、最近導入される大型の単結晶(8イン
チ、12インチ)製造装置においては、単結晶の引上げ過
程で有転位化する現象が増加する傾向にある。そのた
め、この有転位化の問題にも対応する観点からも、単結
晶の引上げに際して、坩堝内の溶融液に引上げ軸を対称
中心として半径方向のカスプ磁場を印加する方法が注目
されている。
In recent years, if the oxygen concentration value required for a substrate is strictly defined in response to the enhancement of the function of a semiconductor device, it is difficult to cope with the conventional CZ method. Moreover, in a large-sized single crystal (8-inch, 12-inch) manufacturing apparatus recently introduced, the phenomenon of dislocations in the process of pulling a single crystal tends to increase. Therefore, also from the viewpoint of coping with the problem of dislocation, a method of applying a cusp magnetic field in the radial direction with respect to the pulling axis as the center of symmetry is applied to the melt in the crucible when pulling the single crystal.

【0004】このカスプ磁場を印加する方法では、反対
方向に環状電流を流す一対の磁石(コイル)を坩堝の上
方および下方に配置する。この磁石の配置によって、コ
イルの中心軸上で水平磁場成分が0(ゼロ)になる。さ
らに、この中心軸上の上下磁石の中間付近で垂直磁場成
分も0(ゼロ)になる点が生じる。以下、このような点
を磁場中心位置と表現する。この磁場中心位置から半径
方向、垂直方向に離れるに従って、磁場の水平成分、垂
直成分が発生する。カスプ磁場は、このような磁場成分
によって坩堝内の溶融液の流動を拘束して、溶融液の安
定化を図ることができる。すなわち、溶融液にカスプ磁
場を印加することによって対流を抑制し、坩堝表面から
の石英の溶け込みを抑えて、結果として結晶成長中の有
転位化を防止することができる。
[0004] In this method of applying a cusp magnetic field, a pair of magnets (coils) for flowing an annular current in opposite directions are arranged above and below a crucible. Due to the arrangement of the magnets, the horizontal magnetic field component becomes 0 (zero) on the center axis of the coil. Further, a point occurs where the vertical magnetic field component also becomes 0 (zero) near the center of the upper and lower magnets on this central axis. Hereinafter, such a point is referred to as a magnetic field center position. The horizontal and vertical components of the magnetic field are generated as the distance from the magnetic field center position increases in the radial and vertical directions. The cusp magnetic field can stabilize the melt by restricting the flow of the melt in the crucible by such a magnetic field component. That is, by applying a cusp magnetic field to the melt, convection can be suppressed, and the penetration of quartz from the crucible surface can be suppressed, and as a result, dislocations can be prevented during crystal growth.

【0005】さらに、カスプ磁場の印加によって、坩堝
表面からの石英の溶け込みを抑制することができるの
で、同時に結晶中の酸素濃度も低下させることが可能に
なる。通常、このような効果は、磁場強度の増大によっ
て促進される(平田ら:J.Crystal Growth, 98, 777 (1
989)参照)。したがって、このような効果を、引上げ開
始直後に酸素濃度が高くなる結晶のトップ側で適用すれ
ば、その部分では低酸素化が図れて、製品歩留まりを向
上させることができる。しかし、結晶トップ側以降の引
上げでは、単結晶の引上げの進捗に伴って酸素濃度が低
減するので、カスプ磁場印加の条件の下では、この領域
での低酸素化を回避するために、酸素濃度を高める制御
方法の開発が必要になる。
[0005] Furthermore, since the melting of quartz from the crucible surface can be suppressed by applying a cusp magnetic field, the oxygen concentration in the crystal can be reduced at the same time. Usually, such effects are promoted by increasing the magnetic field strength (Hirata et al .: J. Crystal Growth, 98, 777 (1
989)). Therefore, if such an effect is applied to the top side of the crystal where the oxygen concentration becomes high immediately after the start of the pulling, oxygen reduction can be achieved in that portion, and the product yield can be improved. However, in the pulling after the top of the crystal, the oxygen concentration decreases with the progress of the pulling of the single crystal. Therefore, under the conditions of the application of the cusp magnetic field, the oxygen concentration is reduced in order to avoid oxygen reduction in this region. It is necessary to develop a control method that increases

【0006】結晶トップ側以降における低酸素化を回避
するための手段として、いわゆる坩堝回転制御法(特開
昭57-135796号公報参照)が知られている。この方法は
坩堝の回転数を変化させることによって、酸素の供給源
である石英坩堝の溶解速度が変わることを利用したもの
である。具体的には、坩堝の回転数を大きくすると石英
の溶け込みが増え、結晶中に取り込まれる酸素量も増加
するが、坩堝の回転数を小さくすると石英の溶け込みが
減り、結晶中に取り込まれる酸素量が減少することにし
ている。しかし、この方法を用いる場合に、結晶中の酸
素濃度を上昇させる範囲が大きくなるため、この上昇範
囲を確保するため、大きな坩堝回転数の増加が必要とな
る。
A so-called crucible rotation control method (see Japanese Patent Application Laid-Open No. 57-135796) is known as a means for avoiding oxygen reduction from the top of the crystal. This method utilizes the fact that the dissolution rate of a quartz crucible, which is an oxygen supply source, is changed by changing the rotation speed of the crucible. Specifically, when the rotation speed of the crucible is increased, the penetration of quartz increases, and the amount of oxygen taken into the crystal also increases.However, when the rotation speed of the crucible is reduced, the penetration of quartz decreases, and the amount of oxygen taken into the crystal decreases. Is going to decrease. However, when this method is used, the range in which the oxygen concentration in the crystal is increased becomes large, so that a large increase in the number of rotations of the crucible is required to secure this increase range.

【0007】ところで、前述したゲッタリング機能を十
分に発揮させるには、引上げられた単結晶の結晶成長方
向の酸素濃度分布に併せて、結晶面内の酸素濃度分布を
表す「ROG」を均一に制御する必要がある。通常、R
OGは結晶とそれと逆方向に回転する坩堝回転数の比率
に依存することが知られており、具体的には「結晶回転
数/坩堝回転数」の比が小さくなる程ROGのバラツキ
が大きくなる。
By the way, in order to sufficiently exert the above-mentioned gettering function, “ROG” representing the oxygen concentration distribution in the crystal plane must be uniformly formed along with the oxygen concentration distribution in the crystal growth direction of the pulled single crystal. You need to control. Usually R
It is known that OG depends on the ratio of the crystal and the crucible rotation speed rotating in the opposite direction. Specifically, the smaller the ratio of “crystal rotation speed / crucible rotation speed”, the greater the variation in ROG. .

【0008】上記の「結晶回転数/坩堝回転数」の比を
大きくするためには、坩堝回転数を小さくするか、また
は結晶回転数を大きくすることが有効である。しかし、
実際に用いられている坩堝回転数は、4〜5rpmを下限
としている。図9は坩堝回転数と有転位化位置との関係
を示す図であるが、同図から3乃至5rpm程度の低回転
で引上げを行うと、ボディ前半で有転位化が多発するこ
とが分かる。この要因は、図10に示す坩堝回転数と融液
温度変動との関係から明らかなように、5rpm未満の坩
堝回転数になると、融液温度の変動が大きくなり、有転
位化が多発すると考えられる。
In order to increase the ratio of the "crystal rotation speed / crucible rotation speed", it is effective to reduce the crucible rotation speed or increase the crystal rotation speed. But,
The lower limit of the number of rotations of the crucible actually used is 4 to 5 rpm. FIG. 9 is a diagram showing the relationship between the number of rotations of the crucible and the dislocation position. It can be seen from FIG. 9 that if the pulling is performed at a low rotation of about 3 to 5 rpm, dislocations frequently occur in the first half of the body. This factor is evident from the relationship between the crucible rotation speed and the melt temperature fluctuation shown in FIG. 10, when the crucible rotation speed is less than 5 rpm, the melt temperature fluctuation becomes large, and dislocations are likely to occur frequently. Can be

【0009】他に、カスプ磁場印加を前提として、例え
ば、持開平5−194077号公報では、シリコンロッド中の
酸素濃度および分布を調整するため、所定の単結晶ロッ
ド直径が定まった後に、シリコン溶融物の固形化部分が
増加するのに合わせて、坩堝の回転数を増加し、磁界の
強度を減少させるシリコン単結晶の製造方法が提案され
ている。この製造方法では、引上げられる単結晶および
坩堝の回転は反対方向であり、単結晶が成長するとき、
単結晶の回転速度は坩堝の回転速度より大きい。単結晶
が引上げられるのに伴って、坩堝の回転速度が増加され
る。単結晶の成長につれて、磁界の強度を減少させ、坩
堝の底および側壁を垂直に横切る磁界成分を減少させ
る。そして、仕込み溶融液の約50〜80%が固化した後
に、磁界を消すことになる。その後は、単結晶の回転速
度に対して、坩堝回転数を増加することによって酸素含
有量を調整することにしている。
On the other hand, assuming that a cusp magnetic field is applied, for example, in Japanese Unexamined Patent Publication No. Hei. 5-194077, in order to adjust the oxygen concentration and distribution in the silicon rod, after a predetermined single crystal rod diameter is determined, the silicon melting point is determined. There has been proposed a method of manufacturing a silicon single crystal in which the number of rotations of a crucible is increased and the strength of a magnetic field is reduced in accordance with an increase in a solidified portion of an object. In this manufacturing method, the rotation of the single crystal to be pulled and the crucible are in opposite directions, and when the single crystal grows,
The rotation speed of the single crystal is higher than the rotation speed of the crucible. As the single crystal is pulled, the rotation speed of the crucible is increased. As the single crystal grows, the strength of the magnetic field is reduced and the component of the magnetic field perpendicular to the bottom and side walls of the crucible is reduced. Then, the magnetic field is extinguished after about 50 to 80% of the charged melt is solidified. Thereafter, the oxygen content is adjusted by increasing the number of rotations of the crucible with respect to the rotation speed of the single crystal.

【0010】しかしながら、この提案の製造方法では、
単結晶の成長にともなって磁界の強度を減少させ、さら
には消去させることから、磁場印加による有転位化の抑
制効果が不十分となり、有転位化の発生に伴う製品歩留
まりの低下という問題と、坩堝回転数を上昇させること
によってROGが悪化するという問題もある。
However, according to the proposed manufacturing method,
With the growth of the single crystal, the intensity of the magnetic field is reduced and further erased, so that the effect of suppressing the dislocations caused by the application of the magnetic field becomes insufficient, and the problem of lowering the product yield due to the occurrence of dislocations, There is also a problem that ROG is deteriorated by increasing the number of rotations of the crucible.

【0011】[0011]

【発明が解決しようとする課題】本発明は、上述したよ
うな結晶中の酸素濃度、特に結晶トップ側以降の酸素濃
度を調整するために、カスプ磁場を印加するCZ法での
問題に鑑みて開発されたものであり、単結晶を引上げる
際に引上炉内の雰囲気圧力を制御して、結晶成長方向の
酸素分布と同時にROGを均一に制御し、さらに結晶成
長中の有転位化を防止して、優れた品質のシリコン単結
晶を製造する方法を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the CZ method in which a cusp magnetic field is applied in order to adjust the oxygen concentration in a crystal, particularly, the oxygen concentration after the top of the crystal. It has been developed to control the atmospheric pressure in the pulling furnace when pulling a single crystal, to uniformly control ROG simultaneously with the oxygen distribution in the crystal growth direction, and to reduce dislocations during crystal growth. It is an object of the present invention to provide a method for preventing and manufacturing a silicon single crystal of excellent quality.

【0012】[0012]

【課題を解決するための手段】本発明者は、上記の課題
を解決するため、CZ法による単結晶製造における雰囲
気圧力に着目して、種々の検討を行った。従来から、磁
場印加をしない条件で、炉内の雰囲気圧力を調整して酸
素濃度を制御する方法が提案されている(例えば、特開
平3−159986号公報参照)。ここで提案された制御方法
に関して検討した結果、次のような見解が得られた。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made various studies focusing on the atmospheric pressure in the production of a single crystal by the CZ method. Hitherto, there has been proposed a method of controlling the oxygen concentration by adjusting the atmospheric pressure in a furnace under the condition that no magnetic field is applied (for example, see Japanese Patent Application Laid-Open No. 3-159986). As a result of examining the control method proposed here, the following views were obtained.

【0013】すなわち、雰囲気圧力を調整して酸素濃度
を制御する効果は、極めて小さいものに留まり、具体的
には、1×1017atoms/cm3の酸素濃度を変化させるのに6
0Torr(20Torr→80Torr)の雰囲気圧力を変化させなけ
ればならない。また、酸素濃度を制御する効果は、上記
圧力以上で雰囲気圧力が大きくなるほど飽和して、圧力
の変化量に対する酸素濃度を制御する効果が小さくな
る。また、雰囲気圧力を100Torr以上の高圧条件にする
と、チヤンバー内に導入されている不活性ガスの滞留の
ため、溶融液面から発生するSiOガスの排出が効率的に
行われず、チヤンバー内に析出し、その析出したSiOガ
スがチヤンバーから液面に落下して有転位化を起こす恐
れがある。このような見解が存在することから、磁場印
加するCZ法において、雰囲気圧力を調整して酸素濃度
を制御する方法を適用することは考慮されていなかっ
た。
[0013] That is, the effect of controlling the oxygen concentration by adjusting the ambient pressure remains in extremely small, specifically, for changing the oxygen concentration of 1 × 10 17 atoms / cm 3 6
Atmospheric pressure of 0 Torr (20 Torr → 80 Torr) must be changed. Further, the effect of controlling the oxygen concentration becomes more saturated as the atmospheric pressure increases above the above pressure, and the effect of controlling the oxygen concentration with respect to the amount of change in the pressure decreases. Further, when the atmospheric pressure is set to a high pressure condition of 100 Torr or more, the inert gas introduced into the chamber remains, so that the SiO gas generated from the melt surface is not efficiently discharged, and the gas is deposited in the chamber. The deposited SiO gas may fall from the chamber to the liquid surface and cause dislocation. Given such a view, in the CZ method in which a magnetic field is applied, application of a method of controlling the oxygen concentration by adjusting the atmospheric pressure has not been considered.

【0014】ところが、本発明者によるCZ法での雰囲
気圧力に着目した多くの検討結果によれば、カスプ磁場
を印加する場合には、磁場印加をしない場合に比べて、
雰囲気圧力を調整することによって、結晶成長方向およ
び結晶面内の酸素濃度の制御性が著しく向上することが
明らかになった。また、磁場印加することにより石英坩
堝の溶け込みが抑制されるため、結果的にSiOガスの蒸
発が小さくなり、従来のCZ法で用いることができなか
った高炉内圧(100〜150Torr)でも有転位化の弊害を発
生させず結晶育成できることも分かった。本願発明は、
このような知見に基づいて完成されたものであり、下記
(1)、(2)のシリコン単結晶の製造方法を要旨としてい
る。
However, according to the results of many studies focusing on the atmospheric pressure in the CZ method by the present inventor, when a cusp magnetic field is applied, compared to when no magnetic field is applied,
It has been clarified that the controllability of the crystal growth direction and the oxygen concentration in the crystal plane is significantly improved by adjusting the atmospheric pressure. In addition, the application of a magnetic field suppresses the melting of the quartz crucible, resulting in reduced evaporation of the SiO gas and dislocation even at a high furnace pressure (100 to 150 Torr) that could not be used in the conventional CZ method. It was also found that crystals could be grown without causing the adverse effects of the above. The present invention is
It was completed based on such knowledge, and
The gist is the method for producing a silicon single crystal of (1) or (2).

【0015】(1) 坩堝内に収容される溶融液に引上げ軸
に対して等軸対称のカスプ磁場を印加しつつ結晶を引上
げるチョクラルスキー法によるシリコン単結晶の製造方
法であって、単結晶の引上げ過程では雰囲気圧力を特定
値以上の値で変化させ制御することを特徴とするシリコ
ン単結晶の製造方法である。
(1) A method for producing a silicon single crystal by the Czochralski method, in which a crystal is pulled while applying a cusp magnetic field which is equiaxially symmetric with respect to a pulling axis to a melt contained in a crucible, This is a method for producing a silicon single crystal, characterized in that in the process of pulling a crystal, the atmospheric pressure is changed and controlled at a value equal to or higher than a specific value.

【0016】(2) 上記雰囲気圧力を50Torrにするのが望
ましく、さらに80Torrにするのが一層望ましい。また、
上記カスプ磁場の強度は300G〜600Gの範囲で適用する
のが望ましい。
(2) The atmospheric pressure is desirably 50 Torr, and more desirably 80 Torr. Also,
It is desirable to apply the strength of the cusp magnetic field in the range of 300G to 600G.

【0017】本発明において、雰囲気圧力の制御は少な
くとも、単結晶の製品直径を形成する直胴部の引上げ過
程であればよく、ネック部およびショルダー部の形成の
際に雰囲気圧力の制御を行わなくても良い。
In the present invention, the control of the atmospheric pressure may be at least in the process of pulling up the straight body for forming the product diameter of the single crystal, and the control of the atmospheric pressure is not performed when forming the neck and the shoulder. May be.

【0018】本発明で規定する磁場強度は、互いに磁界
が打ち消し合って垂直方向、水平方向の磁場強度が0
(ゼロ)となる、磁場中心位置の高さにおける坩堝側壁
での半径方向の水平磁場の強度で示している。
The magnetic field strength defined in the present invention is such that the magnetic fields cancel each other and the magnetic field strength in the vertical and horizontal directions is zero.
It is indicated by the strength of the horizontal magnetic field in the radial direction on the side wall of the crucible at the height of the magnetic field center position, which is (zero).

【0019】[0019]

【発明の実施の形態】本発明者は、下記の図1に示すカ
スプ磁場の印加装置を備えた製造装置を用いて、雰囲気
の圧力条件、カスプ磁場の印加条件等を変動させながら
実験を重ねた結果、単結晶の引上げ過程おける雰囲気圧
力が特定値以上にすることによって、酸素濃度の制御性
が改善されることを明らかにした。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventor repeated experiments using a manufacturing apparatus equipped with a cusp magnetic field applying device shown in FIG. 1 while varying the atmospheric pressure conditions, the cusp magnetic field applying conditions, and the like. As a result, it has been clarified that the controllability of the oxygen concentration is improved by setting the atmospheric pressure in the single crystal pulling process to a specific value or more.

【0020】図1は、本発明のシリコン単結晶の製造方
法が適用される製造装置の構造を模式的に説明する図で
ある。ここで、結晶原料となるシリコンは溶融状態で坩
堝1内に保持され、種結晶3を溶融液4の表面に接した
状態にして回転させ、種結晶3に凝固成長する速度に合
わせて上方に引上げ、成長させて所定直径の単結晶5を
得る。溶融液を入れる石英坩堝1aは、外側支持用の黒鉛
坩堝1bの内側に嵌合されており、この坩堝1はその中心
軸を引上げ軸と一致させて、回転軸11によって全体をそ
の周りに回転させることができるとともに、また上下に
移動させることができる。
FIG. 1 is a diagram schematically illustrating the structure of a manufacturing apparatus to which the method for manufacturing a silicon single crystal of the present invention is applied. Here, silicon as a crystal raw material is held in the crucible 1 in a molten state, and the seed crystal 3 is rotated in a state of being in contact with the surface of the melt 4, and is rotated upward in accordance with the speed of solidification and growth of the seed crystal 3. The single crystal 5 having a predetermined diameter is obtained by pulling and growing. A quartz crucible 1a for holding the melt is fitted inside a graphite crucible 1b for supporting outside, and the crucible 1 is rotated around its entirety by a rotating shaft 11 with its central axis coincident with a pulling axis. And can be moved up and down again.

【0021】坩堝1の中心軸の上方には、引上げ可能な
ワイヤからなる引上げ装置7が配置されている。坩堝1
の外側には、加熱用のヒーター2、およびさらに外側に
は保温材10が同心円状に配置され、これら全体が外気を
遮断できるチャンバー8およびプルチャンバー9内に収
容されている。坩堝1を介して、上方および下方に相対
向するように磁場印加用のコイル6を一対設けている。
一対の上部コイル6aおよび下部コイル6bには互いに逆向
きに回る電流を流すことによって、坩堝内の溶融液4の
部分にカスプ磁場を形成することができる。なお、図中
のCcは磁場中心位置を示している。
Above the central axis of the crucible 1, a pulling device 7 composed of a pullable wire is arranged. Crucible 1
A heater 2 for heating and a heat insulating material 10 are arranged concentrically on the outside, and all of them are housed in a chamber 8 and a pull chamber 9 which can block outside air. A pair of coils 6 for applying a magnetic field is provided so as to face upward and downward via the crucible 1.
A cusp magnetic field can be formed in the portion of the melt 4 in the crucible by passing currents flowing in opposite directions to the pair of upper coil 6a and lower coil 6b. Note that Cc in the figure indicates the magnetic field center position.

【0022】前記図1に示す製造装置を用いて、100Kg
の多結晶シリコンを有効内径560mmの石英坩堝に投入し
て、充分に溶解した後、直径8インチのシリコン単結晶
を製造した。引上げに際しては、主な条件は結晶回転数
を12rpm、坩堝回転数を6rpmとして、チャンバー内のAr
流量は50リットル/分で、引上げ過程での雰囲気圧力
(以後、炉内圧力と表現する場合もある)を20Torr、50
Torrおよび80Torrで変動させた。さらに、カスプ磁場の
強度は、0G(無磁場)、300Gおよび600Gとした。こ
のときの結果を、図2〜図4に示す。
Using the manufacturing apparatus shown in FIG.
Was placed in a quartz crucible having an effective inner diameter of 560 mm and sufficiently melted to produce a silicon single crystal having a diameter of 8 inches. When pulling, the main conditions are a crystal rotation speed of 12 rpm, a crucible rotation speed of 6 rpm, and Ar in the chamber.
The flow rate is 50 l / min, and the atmospheric pressure during the pulling process (hereinafter sometimes referred to as furnace pressure) is 20 Torr, 50
Fluctuated at Torr and 80 Torr. Further, the strength of the cusp magnetic field was set to 0 G (no magnetic field), 300 G and 600 G. The results at this time are shown in FIGS.

【0023】図2は雰囲気圧力(炉内圧力)が20Torrで
ある場合での磁場強度と結晶成長方向の酸素濃度分布と
の関係を示す図であり、図3は雰囲気圧力(炉内圧力)
が50Torrである場合、図4は雰囲気圧力(炉内圧力)が
80Torrである場合での、それぞれの磁場強度と結晶成長
方向の酸素濃度分布との関係を示す図である。図2〜図
4から明らかなように、雰囲気圧力が20Torrでは明らか
な低酸素化の効果を発揮したが、雰囲気圧力が50Torr、
80Torrになるにしたがって、低酸素化の効果が小さくな
ることが分かる。この傾向は、高圧条件の下では磁場強
度が300G〜600Gの範囲ではほぼ同様である。また、こ
のときの酸素濃度は、14×1017atoms/cm3程度の制御が
可能になっている。
FIG. 2 is a diagram showing the relationship between the magnetic field strength and the oxygen concentration distribution in the crystal growth direction when the atmospheric pressure (furnace pressure) is 20 Torr, and FIG. 3 is the atmospheric pressure (furnace pressure).
Is 50 Torr, FIG. 4 shows that the atmospheric pressure (furnace pressure)
FIG. 4 is a diagram showing the relationship between each magnetic field strength and the oxygen concentration distribution in the crystal growth direction at 80 Torr. As apparent from FIGS. 2 to 4, when the atmospheric pressure was 20 Torr, a clear oxygen reduction effect was exhibited.
It can be seen that the effect of reducing oxygen becomes smaller as the pressure becomes 80 Torr. This tendency is almost the same under high pressure conditions when the magnetic field strength is in the range of 300 G to 600 G. Further, the oxygen concentration at this time can be controlled to about 14 × 10 17 atoms / cm 3 .

【0024】図5は、雰囲気圧力をパラメータとした場
合の酸素濃度と磁場強度との関係を引上げ開始から500m
m位置のトップ側での酸素濃度で示した図である。同図
からも、雰囲気圧力を50Torr、さらには80Torrと高圧条
件にすることによって、酸素濃度の低下が防止でき、制
御性が改善できることが分かる。
FIG. 5 shows the relationship between the oxygen concentration and the magnetic field strength when the atmospheric pressure is used as a parameter, which is 500 m from the start of the pulling.
FIG. 7 is a diagram showing oxygen concentration at the top side of the m position. It can also be seen from the figure that the reduction of the oxygen concentration can be prevented and the controllability can be improved by setting the atmospheric pressure to a high pressure condition of 50 Torr, and further to 80 Torr.

【0025】次ぎに、雰囲気圧力(炉内圧力)と磁場強
度がROGに及ぼす影響を調査した。ROGは、結晶面
内の中心部、中心から50mmの位置、外周から10mmの位置
で測定した3箇所の酸素濃度値を用いて、下記式から
算出する。
Next, the effects of atmospheric pressure (furnace pressure) and magnetic field strength on ROG were investigated. ROG is calculated from the following equation using three oxygen concentration values measured at the center of the crystal plane, at a position 50 mm from the center, and at a position 10 mm from the outer periphery.

【0026】 ROG={(Max値−Min値)/Min値}×100(%) ・・・ 各条件で引上げられて単結晶の引上げ端から0mm、100m
m、400mm、700mmおよび1000mmの各位置におけるROG
の測定結果を、表1にまとめる。
ROG = {(Max value−Min value) / Min value} × 100 (%) ... 0 mm, 100 m from the pulling end of the single crystal after being pulled under each condition
ROG at each position of m, 400mm, 700mm and 1000mm
Table 1 summarizes the measurement results.

【0027】[0027]

【表1】 [Table 1]

【0028】表1の結果から、磁場強度が0G、300G
または600Gのいずれの場合にも、雰囲気圧力の変動に
伴うROGの変化が少ないが、逆に、いずれの雰囲気圧
力であっても、磁場強度を印加することによってROG
が改善できることが分かる。また、ここでは示さなかっ
たが、磁場を600G超とした場合にはROGは次第に悪
化していき、800G以上で通常のCZ法と同様となり、
磁場による改善は皆無となる。600Gを超える磁場を用
いる場合は、電力消費量が大きくなるというデメリット
がある。すなわち、ROGの改善には、磁場強度の増大
が有効であるが、カスプ磁場を300G〜600Gの強度範囲
で適用するのが望ましい。
From the results in Table 1, it is found that the magnetic field strength is 0 G, 300 G
In any case of 600 G, the change of ROG due to the change of the atmospheric pressure is small, but conversely, at any atmospheric pressure, the ROG is changed by applying the magnetic field intensity.
Can be improved. Although not shown here, ROG gradually deteriorates when the magnetic field exceeds 600 G, and becomes the same as a normal CZ method at 800 G or more.
There is no improvement by the magnetic field. When a magnetic field exceeding 600 G is used, there is a demerit that power consumption increases. That is, to improve the ROG, it is effective to increase the magnetic field strength. However, it is desirable to apply the cusp magnetic field in the strength range of 300 G to 600 G.

【0029】例えば、表1中の条件7(雰囲気圧力:20
Torr、磁場強度:600G)と条件9(雰囲気圧力:80Tor
r、磁場強度:600G)とを比較すると、殆どROGの悪
化を生ずることなく、図2および図4に示すように、酸
素濃度を10×1017atoms/cm3程度の制御から14×1017ato
ms/cm3程度の制御に変更できることが分かる。
For example, condition 7 in Table 1 (atmospheric pressure: 20
Torr, magnetic field strength: 600 G) and condition 9 (atmospheric pressure: 80 Torr)
r, the magnetic field strength: 600G) are compared, and almost without causing deterioration of the ROG, 2 and 4, the oxygen concentration 10 × 10 17 atoms / cm 3 order control from 14 × 10 17 ato
It can be seen that the control can be changed to about ms / cm 3 .

【0030】以上の説明では、本発明の製造方法の前提
として雰囲気圧力が特定値以上の一定値で保持する場合
について説明したが、特定値以上の範囲で引上げの進捗
に伴い変動させることにより、成長方向の酸素濃度を一
定にすることが可能であり、次ぎにこの制御について説
明する。
In the above description, as a premise of the manufacturing method of the present invention, the case where the atmospheric pressure is maintained at a constant value equal to or higher than a specific value has been described. The oxygen concentration in the growth direction can be kept constant. Next, this control will be described.

【0031】図6は、引上げの進捗に伴い雰囲気圧力を
特定値以上の範囲で変動させる場合の酸素濃度分布を示
した図である。図6で雰囲気圧力を変動させるプロファ
イルを示しているが、製品となるボディプロセス開始
後、速やかに雰囲気圧力を50Torr以上にしておき、引上
げの進捗に伴って70Torr程度まで上昇させた。これによ
り、酸素濃度の12×1017atoms/cm3程度で制御でき、非
常に優れた制御性を示す。一方、ROGは、図示しない
が、表1に示すと同等のバラツキ精度であることを確認
している。
FIG. 6 is a diagram showing an oxygen concentration distribution in the case where the atmospheric pressure is varied within a range equal to or more than a specific value with the progress of pulling. FIG. 6 shows a profile in which the atmospheric pressure is varied. After the start of the body process as a product, the atmospheric pressure was immediately increased to 50 Torr or more, and increased to about 70 Torr with the progress of pulling. Thereby, control can be performed at an oxygen concentration of about 12 × 10 17 atoms / cm 3 , and extremely excellent controllability is exhibited. On the other hand, although the ROG is not shown, it has been confirmed that the variation accuracy is equivalent to that shown in Table 1.

【0032】本発明の製造方法による酸素濃度の制御性
と比較するため、従来方法による酸素濃度の制御性を調
査した。対象とした従来法は、前述の「坩堝回転制御方
法」と「特開平5-194077公報で提案された製造方法」
の2法とした。
For comparison with the controllability of the oxygen concentration by the production method of the present invention, the controllability of the oxygen concentration by the conventional method was investigated. The conventional methods covered are the aforementioned “crucible rotation control method” and “the manufacturing method proposed in Japanese Patent Application Laid-Open No. 5-194077”.
And two methods.

【0033】図7は、従来方法のうち「坩堝回転制御方
法」による酸素濃度の制御性を調査した結果を示す図で
ある。前述の条件7(雰囲気圧力:20Torr、磁場強度:
600G)を基準にして、坩堝回転制御法によって酸素濃
度制御を行った。坩堝の回転数は、引上げ当初は6rpm
とし、引上げとともに11rpmまで漸増させた。その結
果、坩堝回転制御法によって、結晶成長方向の酸素濃度
を上昇させることができるが、坩堝回転数の増大に伴っ
てROGの悪化が顕著に現れる。また、特開平5-19407
7号公報に記載されるように、結晶回転を順次上昇させ
る方法を用いればROGを改善できるが、結晶回転の増
加は成長速度の低下をもたらし生産性を低下させるの
で、有効な方法でないことが分かる。
FIG. 7 is a diagram showing the results of an investigation on the controllability of the oxygen concentration by the "crucible rotation control method" among the conventional methods. Condition 7 described above (atmospheric pressure: 20 Torr, magnetic field strength:
The oxygen concentration was controlled by a crucible rotation control method based on 600 G). The rotation speed of the crucible is 6rpm at the beginning.
, And gradually increased to 11 rpm with the lifting. As a result, the oxygen concentration in the crystal growth direction can be increased by the crucible rotation control method, but the ROG deteriorates significantly with an increase in the crucible rotation speed. In addition, Japanese Patent Laid-Open No.
As described in Japanese Patent Publication No. 7 (1994), ROG can be improved by using a method of sequentially increasing the crystal rotation, but since increasing the crystal rotation decreases the growth rate and lowers the productivity, it is not an effective method. I understand.

【0034】図8は、従来方法のうち「特開平5-19407
7号公報で提案された製造方法」による酸素濃度の制御
性を調査した結果を示す図である。同様に、条件7(雰
囲気圧力:20Torr、磁場強度:600G)を基準にして、
前述の特開平5-194077公報で提案された製造方法を用
いて酸素濃度制御を行った。具体的な制御方法として
は、磁場強度に関し当初500Gの印加であったが、引上
げ直後から低減を開始し、引上げ長さ300mm位置で磁場
印加をなくした。また、坩堝回転数は当初6rpmであっ
たが、引上げ長さ300mm位置の時点から回転数を漸増さ
せ、7.5rpm程度まで増加させた。
FIG. 8 shows one of the conventional methods described in Japanese Patent Laid-Open No. 5-19407.
7 is a diagram showing the results of an investigation on the controllability of oxygen concentration by the "production method proposed in Japanese Patent Publication No. 7-No. 7". Similarly, based on condition 7 (atmospheric pressure: 20 Torr, magnetic field strength: 600 G),
The oxygen concentration was controlled using the manufacturing method proposed in the above-mentioned Japanese Patent Application Laid-Open No. 5-194077. As a specific control method, although the application of the magnetic field intensity was initially 500 G, the reduction was started immediately after the pulling, and the application of the magnetic field was stopped at the position of 300 mm of the pulling length. The rotation speed of the crucible was 6 rpm at the beginning, but the rotation speed was gradually increased from the position of 300 mm of the pulling length to about 7.5 rpm.

【0035】図8に示す結果から明らかなように、この
「特開平5-194077号公報で提案された製造方法」によ
って、坩堝の回転数を僅かに上昇させるだけで、結晶成
長方向の酸素濃度を上昇させることができる。しかし、
有転位化については問題があり、5本の単結晶の引上げ
を行ったところ、2本について結晶中間部と結晶後半部
で有転位化を発生した。この有転位化は、引上げ過程に
おける実質的な磁場印加の時間が短いことに起因するも
のである。さらに、坩堝回転数を上昇させ磁場強度を減
少させるため、結晶後半部でROGが悪化する。
As is clear from the results shown in FIG. 8, the "production method proposed in Japanese Patent Application Laid-Open No. 5-194077" allows the oxygen concentration in the crystal growth direction to be increased by slightly increasing the number of rotations of the crucible. Can be raised. But,
There was a problem with dislocations, and when five single crystals were pulled, dislocations occurred in two of the crystals in the middle part and the latter part of the crystal. This dislocation is caused by the fact that the time for substantially applying the magnetic field in the pulling process is short. Further, since the number of rotations of the crucible is increased to reduce the magnetic field strength, ROG is deteriorated in the latter half of the crystal.

【0036】上述の通り、従来方法による酸素濃度の制
御方法であれば、結晶成長方向の酸素濃度の制御性を確
保することができるが、ROGの低下、または有転位化
の発生を回避することができない。これに対して、本発
明の方法では、結晶成長方向の酸素濃度分布およびRO
Gの均一化が図れるとともに、結晶成長中の有転位化を
防止することができる。
As described above, according to the conventional method for controlling the oxygen concentration, the controllability of the oxygen concentration in the crystal growth direction can be ensured, but the reduction of ROG or the occurrence of dislocations is avoided. Can not. On the other hand, in the method of the present invention, the oxygen concentration distribution in the crystal growth direction and RO
G can be made uniform and dislocations during crystal growth can be prevented.

【0037】[0037]

【発明の効果】本発明のシリコン単結晶の製造方法によ
れば、カスプ磁場を印加するCZ法に適用され、雰囲気
圧力が特定値以上の値で変化させ制御することによっ
て、結晶成長方向の酸素分布およびROGを均一に制御
し、さらに結晶成長中の有転位化を防止して、優れた品
質のシリコン単結晶を製造することができる。
According to the method for producing a silicon single crystal of the present invention, the method is applied to the CZ method in which a cusp magnetic field is applied. The distribution and ROG can be controlled uniformly, and dislocations during crystal growth can be prevented, so that a silicon single crystal of excellent quality can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のシリコン単結晶の製造方法が適用され
る製造装置の構造を模式的に説明する図である。
FIG. 1 is a diagram schematically illustrating a structure of a manufacturing apparatus to which a method for manufacturing a silicon single crystal of the present invention is applied.

【図2】雰囲気圧力(炉内圧力)が20Torrである場合で
の磁場強度と結晶成長方向の酸素濃度分布との関係を示
す図である。
FIG. 2 is a diagram showing the relationship between the magnetic field strength and the oxygen concentration distribution in the crystal growth direction when the atmospheric pressure (furnace pressure) is 20 Torr.

【図3】雰囲気圧力(炉内圧力)が50Torrである場合で
の磁場強度と結晶成長方向の酸素濃度分布との関係を示
す図である。
FIG. 3 is a diagram showing the relationship between the magnetic field strength and the oxygen concentration distribution in the crystal growth direction when the atmospheric pressure (furnace pressure) is 50 Torr.

【図4】雰囲気圧力(炉内圧力)が80Torrである場合で
の磁場強度と結晶成長方向の酸素濃度分布との関係を示
す図である。
FIG. 4 is a diagram showing the relationship between the magnetic field strength and the oxygen concentration distribution in the crystal growth direction when the atmospheric pressure (furnace pressure) is 80 Torr.

【図5】雰囲気圧力をパラメータとした場合の酸素濃度
と磁場強度との関係を引上げ開始から500mm位置のトッ
プ側での酸素濃度で示した図である。
FIG. 5 is a diagram showing the relationship between the oxygen concentration and the magnetic field strength when the atmospheric pressure is used as a parameter, as the oxygen concentration at the top 500 mm from the start of pulling.

【図6】本発明方法のうち、引上げの進捗に伴い雰囲気
圧力を特定値以上の範囲で変動させる場合の酸素濃度分
布を示した図である。
FIG. 6 is a diagram showing an oxygen concentration distribution in the case where the atmospheric pressure is changed within a range equal to or more than a specific value with the progress of pulling in the method of the present invention.

【図7】従来方法のうち「坩堝回転制御方法」による酸
素濃度の制御性を調査した結果を示す図である。
FIG. 7 is a diagram showing the results of an investigation on the controllability of oxygen concentration by the “crucible rotation control method” among conventional methods.

【図8】従来方法のうち「特開平5-194077公報で提案
された製造方法」による酸素濃度の制御性を調査した結
果を示す図である。
FIG. 8 is a diagram showing the results of an investigation on the controllability of oxygen concentration by the “production method proposed in Japanese Patent Laid-Open No. 5-194077” among conventional methods.

【図9】坩堝回転数と有転位化位置との関係を示す図で
ある。
FIG. 9 is a diagram showing a relationship between a crucible rotation speed and a dislocation position.

【図10】坩堝回転数と融液温度変動との関係を示す図
である。
FIG. 10 is a diagram showing the relationship between the number of rotations of the crucible and the fluctuation of the melt temperature.

【符号の説明】[Explanation of symbols]

1:坩堝、 1a:石英坩堝、 1b:黒鉛坩堝 2:加熱用ヒーター、 3:種結晶 4:溶融液、 5:単結晶 6:磁場印加用コイル 6a:上部コイル、 6b:下部コイル 7:引上げ装置、 8:チャンバー 9:プルチャンバー、 10:保温材 1: Crucible, 1a: Quartz crucible, 1b: Graphite crucible 2: Heater for heating, 3: Seed crystal 4: Melt, 5: Single crystal 6: Coil for applying magnetic field 6a: Upper coil, 6b: Lower coil 7: Pull-up Equipment, 8: Chamber 9: Pull chamber, 10: Insulation material

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】坩堝内に収容される溶融液に引上げ軸に対
して等軸対称のカスプ磁場を印加しつつ結晶を引上げる
チョクラルスキー法によるシリコン単結晶の製造方法で
あって、単結晶の引上げ過程では雰囲気圧力を特定値以
上の値で変化させ制御することを特徴とするシリコン単
結晶の製造方法。
1. A method for producing a silicon single crystal by a Czochralski method in which a crystal is pulled while applying a cusp magnetic field which is equiaxially symmetric with respect to a pulling axis to a melt accommodated in a crucible. In the step of pulling, the ambient pressure is controlled by changing it to a value equal to or higher than a specific value.
【請求項2】上記雰囲気圧力が50Torr以上であることを
特徴とする請求項1記載のシリコン単結晶の製造方法。
2. The method for producing a silicon single crystal according to claim 1, wherein said atmospheric pressure is 50 Torr or more.
【請求項3】上記カスプ磁場の強度が300G(ガウス)
〜600G(ガウス)であることを特徴とする請求項1記
載のシリコン単結晶の製造方法。
3. The strength of the cusp magnetic field is 300 G (Gauss).
2. The method for producing a silicon single crystal according to claim 1, wherein the pressure is up to 600 G (Gauss).
JP04158499A 1999-02-19 1999-02-19 Method for producing silicon single crystal Expired - Lifetime JP4151148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04158499A JP4151148B2 (en) 1999-02-19 1999-02-19 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04158499A JP4151148B2 (en) 1999-02-19 1999-02-19 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2000239096A true JP2000239096A (en) 2000-09-05
JP4151148B2 JP4151148B2 (en) 2008-09-17

Family

ID=12612496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04158499A Expired - Lifetime JP4151148B2 (en) 1999-02-19 1999-02-19 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP4151148B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063027A1 (en) * 2000-02-28 2001-08-30 Shin-Etsu Handotai Co., Ltd Method for preparing silicon single crystal and silicon single crystal
JP2007031260A (en) * 2005-07-26 2007-02-08 Siltron Inc Method and apparatus for growing high quality silicon single crystal ingot, silicon single crystal ingot grown thereby and wafer produced from the single crystal ingot
KR100829061B1 (en) 2006-12-11 2008-05-16 주식회사 실트론 Method of manufacturing silicon single crystal using cusp magnetic field
JP2013023415A (en) * 2011-07-22 2013-02-04 Covalent Materials Corp Single crystal pulling-up method
WO2019107190A1 (en) * 2017-11-29 2019-06-06 株式会社Sumco Silicon single crystal, method for producing same, and silicon wafer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812727B (en) * 2010-04-13 2011-12-28 上海太阳能电池研究与发展中心 Method for directionally solidifying and purifying polycrystalline silicon under DC electric field

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063027A1 (en) * 2000-02-28 2001-08-30 Shin-Etsu Handotai Co., Ltd Method for preparing silicon single crystal and silicon single crystal
US6592662B2 (en) 2000-02-28 2003-07-15 Shin-Etsu Handotai Co., Ltd. Method for preparing silicon single crystal and silicon single crystal
KR100735902B1 (en) * 2000-02-28 2007-07-04 신에쯔 한도타이 가부시키가이샤 Method for preparing silicon single crystal and silicon single crystal
JP2007031260A (en) * 2005-07-26 2007-02-08 Siltron Inc Method and apparatus for growing high quality silicon single crystal ingot, silicon single crystal ingot grown thereby and wafer produced from the single crystal ingot
KR100829061B1 (en) 2006-12-11 2008-05-16 주식회사 실트론 Method of manufacturing silicon single crystal using cusp magnetic field
JP2013023415A (en) * 2011-07-22 2013-02-04 Covalent Materials Corp Single crystal pulling-up method
WO2019107190A1 (en) * 2017-11-29 2019-06-06 株式会社Sumco Silicon single crystal, method for producing same, and silicon wafer

Also Published As

Publication number Publication date
JP4151148B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
KR960006260B1 (en) Method for controlling oxygen content of silicon crystals using a combination of cusp magnetic field and crystal and crucible rotation rates
US8172943B2 (en) Single Crystal manufacturing method
US20100101485A1 (en) Manufacturing method of silicon single crystal
US7282095B2 (en) Silicon single crystal pulling method
JP5240191B2 (en) Silicon single crystal pulling device
JP2009114054A (en) Method for producing semiconductor single crystal having improved oxygen concentration characteristics
JPH09188590A (en) Production of single crystal and apparatus therefor
JP5782323B2 (en) Single crystal pulling method
JP3760769B2 (en) Method for producing silicon single crystal
JP4045666B2 (en) Method for producing silicon single crystal
JP4151148B2 (en) Method for producing silicon single crystal
JP2004189559A (en) Single crystal growth method
JP4013324B2 (en) Single crystal growth method
WO2021095324A1 (en) Method for producing silicon single crystal
JP6958632B2 (en) Silicon single crystal and its manufacturing method and silicon wafer
JPH10287488A (en) Pulling up of single crystal
JP4951186B2 (en) Single crystal growth method
JP3521862B2 (en) Single crystal growth method
JP2001089289A (en) Method of pulling single crystal
JP4801869B2 (en) Single crystal growth method
KR100221087B1 (en) Silicon single crystal and its growing method
WO2007007479A1 (en) Process for producing single crystal
KR100831052B1 (en) Method for controlling oxygen content in silicon single crystalline ingot, ingot produced thereby
KR100829061B1 (en) Method of manufacturing silicon single crystal using cusp magnetic field
JP2004083320A (en) Silicon single crystal growth method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term