JP4151148B2 - Method for producing silicon single crystal - Google Patents

Method for producing silicon single crystal Download PDF

Info

Publication number
JP4151148B2
JP4151148B2 JP04158499A JP4158499A JP4151148B2 JP 4151148 B2 JP4151148 B2 JP 4151148B2 JP 04158499 A JP04158499 A JP 04158499A JP 4158499 A JP4158499 A JP 4158499A JP 4151148 B2 JP4151148 B2 JP 4151148B2
Authority
JP
Japan
Prior art keywords
magnetic field
crucible
oxygen concentration
crystal
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04158499A
Other languages
Japanese (ja)
Other versions
JP2000239096A (en
Inventor
俊二 倉垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP04158499A priority Critical patent/JP4151148B2/en
Publication of JP2000239096A publication Critical patent/JP2000239096A/en
Application granted granted Critical
Publication of JP4151148B2 publication Critical patent/JP4151148B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、坩堝内の溶融液にカスプ磁場を印加してチョクラルスキー法(以下、「CZ法」という)によってシリコン単結晶の製造する方法に関し、さらに詳しくは、カスプ磁場を引上げ軸に対して等軸対称に印加して、結晶成長方向の酸素濃度分布を均一に制御するとともに、結晶面内の酸素濃度分布(以下、「ROG:Radial Oxygen Gradient」という)のバラツキを抑制したシリコン単結晶の製造方法に関するものである。
【0002】
【従来の技術】
超々高集積回路に用いるシリコン単結晶では、シリコン結晶中の酸素を酸化物として析出させ、ウェーハ表面近傍において素子歩留を低下させる要因となる重金属不純物をゲッタする、いわゆるゲッタリング技術が用いられている。このゲッタリング機能を十分に発揮させるには、結晶中に酸素を均一に取り込むことが重要である。
【0003】
近年のように、半導体用デバイスの高機能化に対応して、基板に要求される酸素濃度値が厳しく規定されるようになると、従来のCZ法では対応が困難になる。しかも、最近導入される大型の単結晶(8インチ、12インチ)製造装置においては、単結晶の引上げ過程で有転位化する現象が増加する傾向にある。そのため、この有転位化の問題にも対応する観点からも、単結晶の引上げに際して、坩堝内の溶融液に引上げ軸を対称中心として半径方向のカスプ磁場を印加する方法が注目されている。
【0004】
このカスプ磁場を印加する方法では、反対方向に環状電流を流す一対の磁石(コイル)を坩堝の上方および下方に配置する。この磁石の配置によって、コイルの中心軸上で水平磁場成分が0(ゼロ)になる。さらに、この中心軸上の上下磁石の中間付近で垂直磁場成分も0(ゼロ)になる点が生じる。以下、このような点を磁場中心位置と表現する。この磁場中心位置から半径方向、垂直方向に離れるに従って、磁場の水平成分、垂直成分が発生する。カスプ磁場は、このような磁場成分によって坩堝内の溶融液の流動を拘束して、溶融液の安定化を図ることができる。すなわち、溶融液にカスプ磁場を印加することによって対流を抑制し、坩堝表面からの石英の溶け込みを抑えて、結果として結晶成長中の有転位化を防止することができる。
【0005】
さらに、カスプ磁場の印加によって、坩堝表面からの石英の溶け込みを抑制することができるので、同時に結晶中の酸素濃度も低下させることが可能になる。通常、このような効果は、磁場強度の増大によって促進される(平田ら:J.Crystal Growth, 98, 777 (1989)参照)。したがって、このような効果を、引上げ開始直後に酸素濃度が高くなる結晶のトップ側で適用すれば、その部分では低酸素化が図れて、製品歩留まりを向上させることができる。しかし、結晶トップ側以降の引上げでは、単結晶の引上げの進捗に伴って酸素濃度が低減するので、カスプ磁場印加の条件の下では、この領域での低酸素化を回避するために、酸素濃度を高める制御方法の開発が必要になる。
【0006】
結晶トップ側以降における低酸素化を回避するための手段として、いわゆる坩堝回転制御法(特開昭57-135796号公報参照)が知られている。この方法は坩堝の回転数を変化させることによって、酸素の供給源である石英坩堝の溶解速度が変わることを利用したものである。具体的には、坩堝の回転数を大きくすると石英の溶け込みが増え、結晶中に取り込まれる酸素量も増加するが、坩堝の回転数を小さくすると石英の溶け込みが減り、結晶中に取り込まれる酸素量が減少することにしている。しかし、この方法を用いる場合に、結晶中の酸素濃度を上昇させる範囲が大きくなるため、この上昇範囲を確保するため、大きな坩堝回転数の増加が必要となる。
【0007】
ところで、前述したゲッタリング機能を十分に発揮させるには、引上げられた単結晶の結晶成長方向の酸素濃度分布に併せて、結晶面内の酸素濃度分布を表す「ROG」を均一に制御する必要がある。通常、ROGは結晶とそれと逆方向に回転する坩堝回転数の比率に依存することが知られており、具体的には「結晶回転数/坩堝回転数」の比が小さくなる程ROGのバラツキが大きくなる。
【0008】
上記の「結晶回転数/坩堝回転数」の比を大きくするためには、坩堝回転数を小さくするか、または結晶回転数を大きくすることが有効である。しかし、実際に用いられている坩堝回転数は、4〜5rpmを下限としている。図9は坩堝回転数と有転位化位置との関係を示す図であるが、同図から3乃至5rpm程度の低回転で引上げを行うと、ボディ前半で有転位化が多発することが分かる。この要因は、図10に示す坩堝回転数と融液温度変動との関係から明らかなように、5rpm未満の坩堝回転数になると、融液温度の変動が大きくなり、有転位化が多発すると考えられる。
【0009】
他に、カスプ磁場印加を前提として、例えば、持開平5−194077号公報では、シリコンロッド中の酸素濃度および分布を調整するため、所定の単結晶ロッド直径が定まった後に、シリコン溶融物の固形化部分が増加するのに合わせて、坩堝の回転数を増加し、磁界の強度を減少させるシリコン単結晶の製造方法が提案されている。この製造方法では、引上げられる単結晶および坩堝の回転は反対方向であり、単結晶が成長するとき、単結晶の回転速度は坩堝の回転速度より大きい。単結晶が引上げられるのに伴って、坩堝の回転速度が増加される。単結晶の成長につれて、磁界の強度を減少させ、坩堝の底および側壁を垂直に横切る磁界成分を減少させる。そして、仕込み溶融液の約50〜80%が固化した後に、磁界を消すことになる。その後は、単結晶の回転速度に対して、坩堝回転数を増加することによって酸素含有量を調整することにしている。
【0010】
しかしながら、この提案の製造方法では、単結晶の成長にともなって磁界の強度を減少させ、さらには消去させることから、磁場印加による有転位化の抑制効果が不十分となり、有転位化の発生に伴う製品歩留まりの低下という問題と、坩堝回転数を上昇させることによってROGが悪化するという問題もある。
【0011】
【発明が解決しようとする課題】
本発明は、上述したような結晶中の酸素濃度、特に結晶トップ側以降の酸素濃度を調整するために、カスプ磁場を印加するCZ法での問題に鑑みて開発されたものであり、単結晶を引上げる際に引上炉内の雰囲気圧力を制御して、結晶成長方向の酸素分布と同時にROGを均一に制御し、さらに結晶成長中の有転位化を防止して、優れた品質のシリコン単結晶を製造する方法を提供することを目的としている。
【0012】
【課題を解決するための手段】
本発明者は、上記の課題を解決するため、CZ法による単結晶製造における雰囲気圧力に着目して、種々の検討を行った。従来から、磁場印加をしない条件で、炉内の雰囲気圧力を調整して酸素濃度を制御する方法が提案されている(例えば、特開平3−159986号公報参照)。ここで提案された制御方法に関して検討した結果、次のような見解が得られた。
【0013】
すなわち、雰囲気圧力を調整して酸素濃度を制御する効果は、極めて小さいものに留まり、具体的には、1×1017atoms/cm3の酸素濃度を変化させるのに60Torr(20Torr→80Torr)の雰囲気圧力を変化させなければならない。また、酸素濃度を制御する効果は、上記圧力以上で雰囲気圧力が大きくなるほど飽和して、圧力の変化量に対する酸素濃度を制御する効果が小さくなる。また、雰囲気圧力を100Torr以上の高圧条件にすると、チヤンバー内に導入されている不活性ガスの滞留のため、溶融液面から発生するSiOガスの排出が効率的に行われず、チヤンバー内に析出し、その析出したSiOガスがチヤンバーから液面に落下して有転位化を起こす恐れがある。このような見解が存在することから、磁場印加するCZ法において、雰囲気圧力を調整して酸素濃度を制御する方法を適用することは考慮されていなかった。
【0014】
ところが、本発明者によるCZ法での雰囲気圧力に着目した多くの検討結果によれば、カスプ磁場を印加する場合には、磁場印加をしない場合に比べて、雰囲気圧力を調整することによって、結晶成長方向および結晶面内の酸素濃度の制御性が著しく向上することが明らかになった。また、磁場印加することにより石英坩堝の溶け込みが抑制されるため、結果的にSiOガスの蒸発が小さくなり、従来のCZ法で用いることができなかった高炉内圧(100〜150Torr)でも有転位化の弊害を発生させず結晶育成できることも分かった。本願発明は、このような知見に基づいて完成されたものであり、下記のシリコン単結晶の製造方法を要旨としている。
【0015】
すなわち、坩堝内に収容される溶融液に引上げ軸に対して等軸対称のカスプ磁場を印加しつつ結晶を引上げるチョクラルスキー法によるシリコン単結晶の製造方法であって、単結晶の引上げ過程では雰囲気圧力を50Torr以上に制御するとともに、前記カスプ磁場300G(ガウス)〜600G(ガウス)の強度範囲で制御することを特徴とするシリコン単結晶の製造方法である。
【0016】
上記雰囲気圧力を、さらに80Torrにするのが一層望ましい。
【0017】
本発明において、雰囲気圧力の制御は少なくとも、単結晶の製品直径を形成する直胴部の引上げ過程であればよく、ネック部およびショルダー部の形成の際に雰囲気圧力の制御を行わなくても良い。
【0018】
本発明で規定する磁場強度は、互いに磁界が打ち消し合って垂直方向、水平方向の磁場強度が0(ゼロ)となる、磁場中心位置の高さにおける坩堝側壁での半径方向の水平磁場の強度で示している。
【0019】
【発明の実施の形態】
本発明者は、下記の図1に示すカスプ磁場の印加装置を備えた製造装置を用いて、雰囲気の圧力条件、カスプ磁場の印加条件等を変動させながら実験を重ねた結果、単結晶の引上げ過程おける雰囲気圧力が特定値以上にすることによって、酸素濃度の制御性が改善されることを明らかにした。
【0020】
図1は、本発明のシリコン単結晶の製造方法が適用される製造装置の構造を模式的に説明する図である。ここで、結晶原料となるシリコンは溶融状態で坩堝1内に保持され、種結晶3を溶融液4の表面に接した状態にして回転させ、種結晶3に凝固成長する速度に合わせて上方に引上げ、成長させて所定直径の単結晶5を得る。溶融液を入れる石英坩堝1aは、外側支持用の黒鉛坩堝1bの内側に嵌合されており、この坩堝1はその中心軸を引上げ軸と一致させて、回転軸11によって全体をその周りに回転させることができるとともに、また上下に移動させることができる。
【0021】
坩堝1の中心軸の上方には、引上げ可能なワイヤからなる引上げ装置7が配置されている。坩堝1の外側には、加熱用のヒーター2、およびさらに外側には保温材10が同心円状に配置され、これら全体が外気を遮断できるチャンバー8およびプルチャンバー9内に収容されている。坩堝1を介して、上方および下方に相対向するように磁場印加用のコイル6を一対設けている。一対の上部コイル6aおよび下部コイル6bには互いに逆向きに回る電流を流すことによって、坩堝内の溶融液4の部分にカスプ磁場を形成することができる。なお、図中のCcは磁場中心位置を示している。
【0022】
前記図1に示す製造装置を用いて、100Kgの多結晶シリコンを有効内径560mmの石英坩堝に投入して、充分に溶解した後、直径8インチのシリコン単結晶を製造した。引上げに際しては、主な条件は結晶回転数を12rpm、坩堝回転数を6rpmとして、チャンバー内のAr流量は50リットル/分で、引上げ過程での雰囲気圧力(以後、炉内圧力と表現する場合もある)を20Torr、50Torrおよび80Torrで変動させた。さらに、カスプ磁場の強度は、0G(無磁場)、300Gおよび600Gとした。このときの結果を、図2〜図4に示す。
【0023】
図2は雰囲気圧力(炉内圧力)が20Torrである場合での磁場強度と結晶成長方向の酸素濃度分布との関係を示す図であり、図3は雰囲気圧力(炉内圧力)が50Torrである場合、図4は雰囲気圧力(炉内圧力)が80Torrである場合での、それぞれの磁場強度と結晶成長方向の酸素濃度分布との関係を示す図である。図2〜図4から明らかなように、雰囲気圧力が20Torrでは明らかな低酸素化の効果を発揮したが、雰囲気圧力が50Torr、80Torrになるにしたがって、低酸素化の効果が小さくなることが分かる。この傾向は、高圧条件の下では磁場強度が300G〜600Gの範囲ではほぼ同様である。また、このときの酸素濃度は、14×1017atoms/cm3程度の制御が可能になっている。
【0024】
図5は、雰囲気圧力をパラメータとした場合の酸素濃度と磁場強度との関係を引上げ開始から500mm位置のトップ側での酸素濃度で示した図である。同図からも、雰囲気圧力を50Torr、さらには80Torrと高圧条件にすることによって、酸素濃度の低下が防止でき、制御性が改善できることが分かる。
【0025】
次ぎに、雰囲気圧力(炉内圧力)と磁場強度がROGに及ぼす影響を調査した。ROGは、結晶面内の中心部、中心から50mmの位置、外周から10mmの位置で測定した3箇所の酸素濃度値を用いて、下記▲1▼式から算出する。
【0026】
ROG={(Max値−Min値)/Min値}×100(%) ・・・ ▲1▼
各条件で引上げられて単結晶の引上げ端から0mm、100mm、400mm、700mmおよび1000mmの各位置におけるROGの測定結果を、表1にまとめる。
【0027】
【表1】

Figure 0004151148
【0028】
表1の結果から、磁場強度が0G、300Gまたは600Gのいずれの場合にも、雰囲気圧力の変動に伴うROGの変化が少ないが、逆に、いずれの雰囲気圧力であっても、磁場強度を印加することによってROGが改善できることが分かる。また、ここでは示さなかったが、磁場を600G超とした場合にはROGは次第に悪化していき、800G以上で通常のCZ法と同様となり、磁場による改善は皆無となる。600Gを超える磁場を用いる場合は、電力消費量が大きくなるというデメリットがある。すなわち、ROGの改善には、磁場強度の増大が有効であるが、カスプ磁場を300G〜600Gの強度範囲で適用する。
【0029】
例えば、表1中の条件7(雰囲気圧力:20Torr、磁場強度:600G)と条件9(雰囲気圧力:80Torr、磁場強度:600G)とを比較すると、殆どROGの悪化を生ずることなく、図2および図4に示すように、酸素濃度を10×1017atoms/cm3程度の制御から14×1017atoms/cm3程度の制御に変更できることが分かる。
【0030】
以上の説明では、本発明の製造方法の前提として雰囲気圧力が特定値以上の一定値で保持する場合について説明したが、特定値以上の範囲で引上げの進捗に伴い変動させることにより、成長方向の酸素濃度を一定にすることが可能であり、次ぎにこの制御について説明する。
【0031】
図6は、引上げの進捗に伴い雰囲気圧力を特定値以上の範囲で変動させる場合の酸素濃度分布を示した図である。図6で雰囲気圧力を変動させるプロファイルを示しているが、製品となるボディプロセス開始後、速やかに雰囲気圧力を50Torr以上にしておき、引上げの進捗に伴って70Torr程度まで上昇させた。これにより、酸素濃度の12×1017atoms/cm3程度で制御でき、非常に優れた制御性を示す。一方、ROGは、図示しないが、表1に示すと同等のバラツキ精度であることを確認している。
【0032】
本発明の製造方法による酸素濃度の制御性と比較するため、従来方法による酸素濃度の制御性を調査した。対象とした従来法は、前述の「坩堝回転制御方法」と「特開平5-194077公報で提案された製造方法」の2法とした。
【0033】
図7は、従来方法のうち「坩堝回転制御方法」による酸素濃度の制御性を調査した結果を示す図である。前述の条件7(雰囲気圧力:20Torr、磁場強度:600G)を基準にして、坩堝回転制御法によって酸素濃度制御を行った。坩堝の回転数は、引上げ当初は6rpmとし、引上げとともに11rpmまで漸増させた。その結果、坩堝回転制御法によって、結晶成長方向の酸素濃度を上昇させることができるが、坩堝回転数の増大に伴ってROGの悪化が顕著に現れる。また、特開平5-194077号公報に記載されるように、結晶回転を順次上昇させる方法を用いればROGを改善できるが、結晶回転の増加は成長速度の低下をもたらし生産性を低下させるので、有効な方法でないことが分かる。
【0034】
図8は、従来方法のうち「特開平5-194077号公報で提案された製造方法」による酸素濃度の制御性を調査した結果を示す図である。同様に、条件7(雰囲気圧力:20Torr、磁場強度:600G)を基準にして、前述の特開平5-194077公報で提案された製造方法を用いて酸素濃度制御を行った。具体的な制御方法としては、磁場強度に関し当初500Gの印加であったが、引上げ直後から低減を開始し、引上げ長さ300mm位置で磁場印加をなくした。また、坩堝回転数は当初6rpmであったが、引上げ長さ300mm位置の時点から回転数を漸増させ、7.5rpm程度まで増加させた。
【0035】
図8に示す結果から明らかなように、この「特開平5-194077号公報で提案された製造方法」によって、坩堝の回転数を僅かに上昇させるだけで、結晶成長方向の酸素濃度を上昇させることができる。しかし、有転位化については問題があり、5本の単結晶の引上げを行ったところ、2本について結晶中間部と結晶後半部で有転位化を発生した。この有転位化は、引上げ過程における実質的な磁場印加の時間が短いことに起因するものである。さらに、坩堝回転数を上昇させ磁場強度を減少させるため、結晶後半部でROGが悪化する。
【0036】
上述の通り、従来方法による酸素濃度の制御方法であれば、結晶成長方向の酸素濃度の制御性を確保することができるが、ROGの低下、または有転位化の発生を回避することができない。これに対して、本発明の方法では、結晶成長方向の酸素濃度分布およびROGの均一化が図れるとともに、結晶成長中の有転位化を防止することができる。
【0037】
【発明の効果】
本発明のシリコン単結晶の製造方法によれば、カスプ磁場を印加するCZ法に適用され、雰囲気圧力が特定値以上の値で変化させ制御することによって、結晶成長方向の酸素分布およびROGを均一に制御し、さらに結晶成長中の有転位化を防止して、優れた品質のシリコン単結晶を製造することができる。
【図面の簡単な説明】
【図1】本発明のシリコン単結晶の製造方法が適用される製造装置の構造を模式的に説明する図である。
【図2】雰囲気圧力(炉内圧力)が20Torrである場合での磁場強度と結晶成長方向の酸素濃度分布との関係を示す図である。
【図3】雰囲気圧力(炉内圧力)が50Torrである場合での磁場強度と結晶成長方向の酸素濃度分布との関係を示す図である。
【図4】雰囲気圧力(炉内圧力)が80Torrである場合での磁場強度と結晶成長方向の酸素濃度分布との関係を示す図である。
【図5】雰囲気圧力をパラメータとした場合の酸素濃度と磁場強度との関係を引上げ開始から500mm位置のトップ側での酸素濃度で示した図である。
【図6】本発明方法のうち、引上げの進捗に伴い雰囲気圧力を特定値以上の範囲で変動させる場合の酸素濃度分布を示した図である。
【図7】従来方法のうち「坩堝回転制御方法」による酸素濃度の制御性を調査した結果を示す図である。
【図8】従来方法のうち「特開平5-194077公報で提案された製造方法」による酸素濃度の制御性を調査した結果を示す図である。
【図9】坩堝回転数と有転位化位置との関係を示す図である。
【図10】坩堝回転数と融液温度変動との関係を示す図である。
【符号の説明】
1:坩堝、 1a:石英坩堝、 1b:黒鉛坩堝
2:加熱用ヒーター、 3:種結晶
4:溶融液、 5:単結晶
6:磁場印加用コイル
6a:上部コイル、 6b:下部コイル
7:引上げ装置、 8:チャンバー
9:プルチャンバー、 10:保温材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a silicon single crystal by the Czochralski method (hereinafter referred to as “CZ method”) by applying a cusp magnetic field to a melt in a crucible. More specifically, the cusp magnetic field is applied to a pulling axis. The silicon single crystal that controls the oxygen concentration distribution in the crystal growth direction uniformly and suppresses the variation of the oxygen concentration distribution in the crystal plane (hereinafter referred to as “ROG: Radial Oxygen Gradient”). It is related with the manufacturing method.
[0002]
[Prior art]
In a silicon single crystal used for ultra-high integrated circuits, a so-called gettering technique is used, in which oxygen in the silicon crystal is precipitated as an oxide and getters heavy metal impurities that cause a reduction in device yield in the vicinity of the wafer surface. Yes. In order to sufficiently exhibit this gettering function, it is important to uniformly incorporate oxygen into the crystal.
[0003]
As in recent years, when the oxygen concentration value required for a substrate is strictly defined in response to the higher functionality of semiconductor devices, it is difficult to cope with the conventional CZ method. Moreover, in the recently introduced large single crystal (8 inch, 12 inch) manufacturing equipment, the phenomenon of dislocations in the pulling process of the single crystal tends to increase. Therefore, from the viewpoint of coping with the problem of dislocation formation, a method of applying a radial cusp magnetic field about the pulling axis to the melt in the crucible is attracting attention when pulling the single crystal.
[0004]
In this method of applying a cusp magnetic field, a pair of magnets (coils) that flow an annular current in the opposite direction are disposed above and below the crucible. With the arrangement of the magnets, the horizontal magnetic field component becomes 0 (zero) on the central axis of the coil. Further, there is a point where the vertical magnetic field component also becomes 0 (zero) near the middle of the upper and lower magnets on the central axis. Hereinafter, such a point is expressed as a magnetic field center position. As the distance from the magnetic field center position increases in the radial direction and the vertical direction, horizontal and vertical components of the magnetic field are generated. The cusp magnetic field can stabilize the melt by restricting the flow of the melt in the crucible by such a magnetic field component. That is, by applying a cusp magnetic field to the melt, convection can be suppressed, and the melting of quartz from the crucible surface can be suppressed. As a result, dislocation during crystal growth can be prevented.
[0005]
Further, the application of the cusp magnetic field can suppress the dissolution of quartz from the crucible surface, and at the same time, the oxygen concentration in the crystal can be reduced. Usually, such an effect is promoted by increasing the magnetic field strength (see Hirata et al., J. Crystal Growth, 98, 777 (1989)). Therefore, if such an effect is applied to the top side of the crystal where the oxygen concentration increases immediately after the start of pulling, the oxygen can be reduced at that portion, and the product yield can be improved. However, in the pulling after the top side of the crystal, the oxygen concentration decreases with the progress of pulling of the single crystal. Therefore, under the conditions of cusp magnetic field application, the oxygen concentration is avoided in order to avoid the reduction of oxygen in this region. It is necessary to develop a control method that enhances
[0006]
A so-called crucible rotation control method (see Japanese Patent Application Laid-Open No. 57-135796) is known as means for avoiding hypoxia after the crystal top side. This method utilizes the fact that the melting rate of the quartz crucible, which is the oxygen supply source, is changed by changing the rotational speed of the crucible. Specifically, when the crucible rotation speed is increased, the dissolution of quartz increases and the amount of oxygen taken into the crystal also increases. However, when the crucible rotation speed is reduced, the dissolution of quartz decreases and the amount of oxygen taken into the crystal. Is going to decrease. However, when this method is used, the range in which the oxygen concentration in the crystal is increased becomes large, so that a large increase in the number of revolutions of the crucible is necessary to ensure this increased range.
[0007]
By the way, in order to fully exhibit the gettering function described above, it is necessary to uniformly control “ROG” representing the oxygen concentration distribution in the crystal plane in addition to the oxygen concentration distribution in the crystal growth direction of the pulled single crystal. There is. Normally, it is known that ROG depends on the ratio of the crystal and the crucible rotation speed that rotates in the opposite direction. Specifically, as the ratio of “crystal rotation speed / crucible rotation speed” decreases, the variation in ROG decreases. growing.
[0008]
In order to increase the ratio of “crystal rotation speed / crucible rotation speed”, it is effective to reduce the crucible rotation speed or increase the crystal rotation speed. However, the crucible rotation speed actually used has a lower limit of 4 to 5 rpm. FIG. 9 is a diagram showing the relationship between the number of revolutions of the crucible and the dislocation position. From FIG. 9, it can be seen that dislocations frequently occur in the first half of the body when the pulling is performed at a low rotation of about 3 to 5 rpm. As is apparent from the relationship between the crucible rotation speed and the melt temperature fluctuation shown in FIG. 10, it is thought that when the crucible rotation speed is less than 5 rpm, the melt temperature fluctuates greatly and dislocations frequently occur. It is done.
[0009]
In addition, on the premise of applying a cusp magnetic field, for example, in Japanese Patent Application Laid-Open No. 5-194077, in order to adjust the oxygen concentration and distribution in the silicon rod, after the predetermined single crystal rod diameter is determined, the solid state of the silicon melt is determined. A method for producing a silicon single crystal has been proposed in which the number of rotations of the crucible is increased and the strength of the magnetic field is reduced in accordance with an increase in the number of formation portions. In this manufacturing method, the rotation of the pulled single crystal and the crucible is in the opposite direction, and when the single crystal grows, the rotation speed of the single crystal is larger than the rotation speed of the crucible. As the single crystal is pulled up, the rotational speed of the crucible is increased. As the single crystal grows, it reduces the strength of the magnetic field and reduces the magnetic field component perpendicularly across the bottom and side walls of the crucible. Then, after about 50 to 80% of the charged melt is solidified, the magnetic field is turned off. Thereafter, the oxygen content is adjusted by increasing the crucible rotation speed with respect to the single crystal rotation speed.
[0010]
However, in this proposed manufacturing method, the strength of the magnetic field is reduced and further erased as the single crystal grows, so that the effect of suppressing dislocation by applying a magnetic field becomes insufficient, and dislocation formation occurs. There is also a problem that the product yield is reduced, and that ROG is deteriorated by increasing the crucible rotation speed.
[0011]
[Problems to be solved by the invention]
The present invention was developed in view of the problem in the CZ method in which a cusp magnetic field is applied in order to adjust the oxygen concentration in the crystal as described above, particularly the oxygen concentration after the crystal top side. Control the atmospheric pressure in the pulling furnace when pulling up, and control the ROG uniformly at the same time as the oxygen distribution in the crystal growth direction. It aims at providing the method of manufacturing a single crystal.
[0012]
[Means for Solving the Problems]
In order to solve the above-described problems, the present inventor has made various studies focusing on the atmospheric pressure in the production of a single crystal by the CZ method. Conventionally, a method has been proposed in which the oxygen concentration is controlled by adjusting the atmospheric pressure in the furnace under the condition that no magnetic field is applied (see, for example, JP-A-3-159986). As a result of examining the control method proposed here, the following views were obtained.
[0013]
That is, the effect of adjusting the atmospheric pressure to control the oxygen concentration remains extremely small. Specifically, 60 Torr (20 Torr → 80 Torr) is required to change the oxygen concentration of 1 × 10 17 atoms / cm 3 . Atmospheric pressure must be changed. Further, the effect of controlling the oxygen concentration becomes saturated as the atmospheric pressure increases above the pressure, and the effect of controlling the oxygen concentration with respect to the amount of change in pressure is reduced. In addition, if the atmospheric pressure is set to a high pressure condition of 100 Torr or more, the inert gas introduced into the chamber is retained, so that the SiO gas generated from the melt surface is not efficiently discharged and is deposited in the chamber. The precipitated SiO gas may drop from the chamber to the liquid level and cause dislocation. Because of such a view, in the CZ method in which a magnetic field is applied, it has not been considered to apply a method of controlling the oxygen concentration by adjusting the atmospheric pressure.
[0014]
However, according to many examination results focusing on the atmospheric pressure in the CZ method by the present inventor, when applying a cusp magnetic field, by adjusting the atmospheric pressure as compared with the case where no magnetic field is applied, It became clear that the controllability of the oxygen concentration in the growth direction and in the crystal plane was remarkably improved. Further, since the melting of the quartz crucible is suppressed by applying a magnetic field, the evaporation of SiO gas is reduced as a result, and dislocation is generated even at a blast furnace internal pressure (100 to 150 Torr) that could not be used in the conventional CZ method. It has also been found that crystals can be grown without causing the adverse effects of. The present invention has been completed based on these findings, and the gist of the production method under Symbol of the silicon single crystal.
[0015]
That is, a method for producing a silicon single crystal by the Czochralski method for pulling up a crystal while applying a cusp magnetic field that is equiaxially symmetric with respect to the pulling axis to the melt contained in the crucible, the pulling process of the single crystal Then, the atmospheric pressure is controlled to 50 Torr or more, and the cusp magnetic field is controlled in a strength range of 300 G (Gauss) to 600 G (Gauss).
[0016]
The atmospheric pressure, have more desirable it is to further 80 Torr.
[0017]
In the present invention, the atmospheric pressure may be controlled at least in the process of pulling up the straight body portion that forms the product diameter of the single crystal, and it is not necessary to control the atmospheric pressure when forming the neck portion and the shoulder portion. .
[0018]
The magnetic field strength defined in the present invention is the strength of the horizontal horizontal magnetic field in the crucible side wall at the height of the magnetic field center position where the magnetic fields cancel each other and the vertical and horizontal magnetic field strengths are 0 (zero). Show.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
As a result of repeated experiments using the manufacturing apparatus having the cusp magnetic field application device shown in FIG. 1 below while varying the atmospheric pressure conditions, the cusp magnetic field application conditions, etc. It was clarified that the controllability of oxygen concentration was improved by setting the atmospheric pressure in the process to a specific value or more.
[0020]
FIG. 1 is a diagram schematically illustrating the structure of a manufacturing apparatus to which the silicon single crystal manufacturing method of the present invention is applied. Here, silicon as a crystal raw material is held in the crucible 1 in a molten state, rotated while the seed crystal 3 is in contact with the surface of the melt 4, and is moved upward in accordance with the speed at which the seed crystal 3 is solidified and grown. The single crystal 5 having a predetermined diameter is obtained by pulling and growing. A quartz crucible 1a for containing a molten liquid is fitted inside a graphite crucible 1b for external support, and this crucible 1 is rotated around the whole by a rotating shaft 11 with its central axis aligned with a pulling axis. And can be moved up and down.
[0021]
Above the central axis of the crucible 1, a pulling device 7 made of a pullable wire is arranged. A heater 2 for heating is arranged outside the crucible 1, and a heat insulating material 10 is arranged concentrically outside the crucible 1, and these are all housed in a chamber 8 and a pull chamber 9 that can block outside air. A pair of magnetic field application coils 6 are provided through the crucible 1 so as to face each other upward and downward. A cusp magnetic field can be formed in the portion of the melt 4 in the crucible by flowing currents that flow in opposite directions to the pair of upper coil 6a and lower coil 6b. In the figure, Cc indicates the magnetic field center position.
[0022]
Using the manufacturing apparatus shown in FIG. 1, 100 kg of polycrystalline silicon was put into a quartz crucible having an effective inner diameter of 560 mm and sufficiently dissolved, and then a silicon single crystal having an diameter of 8 inches was manufactured. When pulling up, the main conditions are that the crystal rotation speed is 12 rpm, the crucible rotation speed is 6 rpm, the Ar flow rate in the chamber is 50 liters / minute, and the atmospheric pressure during the pulling process (hereinafter also referred to as the furnace pressure) Were varied at 20 Torr, 50 Torr and 80 Torr. Furthermore, the strength of the cusp magnetic field was 0 G (no magnetic field), 300 G, and 600 G. The results at this time are shown in FIGS.
[0023]
FIG. 2 is a graph showing the relationship between the magnetic field strength and the oxygen concentration distribution in the crystal growth direction when the atmospheric pressure (in-furnace pressure) is 20 Torr, and FIG. 3 is the atmospheric pressure (in-furnace pressure) of 50 Torr. In this case, FIG. 4 is a diagram showing the relationship between the magnetic field strength and the oxygen concentration distribution in the crystal growth direction when the atmospheric pressure (in-furnace pressure) is 80 Torr. As apparent from FIGS. 2 to 4, when the atmospheric pressure is 20 Torr, the obvious effect of reducing oxygen was exhibited, but as the atmospheric pressure becomes 50 Torr and 80 Torr, the effect of reducing oxygen becomes smaller. . This tendency is substantially the same when the magnetic field strength is in the range of 300 G to 600 G under high pressure conditions. Further, the oxygen concentration at this time can be controlled to about 14 × 10 17 atoms / cm 3 .
[0024]
FIG. 5 is a diagram showing the relationship between the oxygen concentration and the magnetic field strength when the atmospheric pressure is used as a parameter, as the oxygen concentration on the top side at the 500 mm position from the start of pulling. It can also be seen from this figure that the oxygen concentration can be prevented from decreasing and the controllability can be improved by setting the atmospheric pressure to a high pressure condition of 50 Torr and further 80 Torr.
[0025]
Next, the effects of atmospheric pressure (furnace pressure) and magnetic field strength on ROG were investigated. ROG is calculated from the following equation (1) using three oxygen concentration values measured at the center in the crystal plane, at a position 50 mm from the center, and at a position 10 mm from the outer periphery.
[0026]
ROG = {(Max value−Min value) / Min value} × 100 (%) (1)
Table 1 summarizes the results of ROG measurement at each position of 0 mm, 100 mm, 400 mm, 700 mm, and 1000 mm from the pulled end of the single crystal pulled up under each condition.
[0027]
[Table 1]
Figure 0004151148
[0028]
From the results in Table 1, when the magnetic field strength is 0G, 300G, or 600G, the change in ROG accompanying the change in the atmospheric pressure is small, but conversely, the magnetic field strength is applied at any atmospheric pressure. It can be seen that the ROG can be improved. Although not shown here, ROG gradually deteriorates when the magnetic field exceeds 600 G, and becomes the same as the normal CZ method at 800 G or more, and there is no improvement by the magnetic field. When a magnetic field exceeding 600 G is used, there is a demerit that power consumption is increased. That is, the improvement of the ROG, although the increase in field strength is valid, that apply a cusp magnetic field intensity range of 300G~600G.
[0029]
For example, comparing condition 7 (atmospheric pressure: 20 Torr, magnetic field strength: 600 G) and Table 9 (atmospheric pressure: 80 Torr, magnetic field strength: 600 G) in Table 1 with almost no deterioration of ROG, FIG. As shown in FIG. 4, it can be seen that the oxygen concentration can be changed from control of about 10 × 10 17 atoms / cm 3 to control of about 14 × 10 17 atoms / cm 3 .
[0030]
In the above description, the case where the atmospheric pressure is held at a constant value equal to or higher than a specific value has been described as a premise of the manufacturing method of the present invention. The oxygen concentration can be made constant, and this control will be described next.
[0031]
FIG. 6 is a diagram showing an oxygen concentration distribution in the case where the atmospheric pressure is changed in a range of a specific value or more as the pulling progresses. FIG. 6 shows a profile for changing the atmospheric pressure. After starting the body process as a product, the atmospheric pressure was quickly increased to 50 Torr or more and increased to about 70 Torr as the pulling progressed. As a result, it can be controlled at an oxygen concentration of about 12 × 10 17 atoms / cm 3 and exhibits very good controllability. On the other hand, ROG has confirmed that it has the same variation accuracy as shown in Table 1, although not shown.
[0032]
In order to compare with the controllability of oxygen concentration by the production method of the present invention, the controllability of oxygen concentration by the conventional method was investigated. Two conventional methods were used: the “crucible rotation control method” and the “manufacturing method proposed in Japanese Patent Laid-Open No. 5-194077”.
[0033]
FIG. 7 is a diagram showing the result of investigating the controllability of oxygen concentration by the “crucible rotation control method” among the conventional methods. Based on the above-mentioned condition 7 (atmospheric pressure: 20 Torr, magnetic field strength: 600 G), the oxygen concentration was controlled by the crucible rotation control method. The number of rotations of the crucible was 6 rpm at the beginning, and was gradually increased to 11 rpm with the pulling. As a result, the oxygen concentration in the crystal growth direction can be increased by the crucible rotation control method, but the ROG deteriorates significantly as the crucible rotation speed increases. Further, as described in JP-A-5-194077, ROG can be improved by using a method of sequentially increasing crystal rotation, but an increase in crystal rotation causes a decrease in growth rate and decreases productivity. It turns out that it is not an effective method.
[0034]
FIG. 8 is a diagram showing the result of investigating the controllability of oxygen concentration by the “manufacturing method proposed in Japanese Patent Laid-Open No. 5-194077” among conventional methods. Similarly, on the basis of condition 7 (atmospheric pressure: 20 Torr, magnetic field strength: 600 G), oxygen concentration control was performed using the manufacturing method proposed in the above-mentioned JP-A-5-194077. As a specific control method, the magnetic field strength was initially applied with 500 G, but the reduction started immediately after the pulling and the magnetic field was not applied at the pulling length of 300 mm. The crucible rotation speed was initially 6 rpm, but the rotation speed was gradually increased from the position of the pulling length of 300 mm and increased to about 7.5 rpm.
[0035]
As is apparent from the results shown in FIG. 8, this "production method proposed in Japanese Patent Laid-Open No. 5-194077" increases the oxygen concentration in the crystal growth direction only by slightly increasing the number of revolutions of the crucible. be able to. However, there was a problem with dislocations, and when 5 single crystals were pulled up, dislocations occurred in the middle part of the crystal and the latter half of the crystal. This dislocation is caused by the fact that the substantial magnetic field application time in the pulling process is short. Furthermore, since the number of revolutions of the crucible is increased and the magnetic field strength is decreased, the ROG deteriorates in the latter half of the crystal.
[0036]
As described above, the conventional oxygen concentration control method can ensure controllability of the oxygen concentration in the crystal growth direction, but it cannot avoid the reduction of ROG or the occurrence of dislocation. On the other hand, in the method of the present invention, the oxygen concentration distribution and ROG in the crystal growth direction can be made uniform, and dislocations can be prevented during crystal growth.
[0037]
【The invention's effect】
According to the method for producing a silicon single crystal of the present invention, it is applied to the CZ method in which a cusp magnetic field is applied, and the oxygen pressure and ROG in the crystal growth direction are made uniform by changing and controlling the atmospheric pressure at a value equal to or higher than a specific value. In addition, it is possible to produce a silicon single crystal having excellent quality by controlling dislocation and preventing dislocation during crystal growth.
[Brief description of the drawings]
FIG. 1 is a diagram schematically illustrating the structure of a manufacturing apparatus to which a method for manufacturing a silicon single crystal of the present invention is applied.
FIG. 2 is a diagram showing the relationship between the magnetic field strength and the oxygen concentration distribution in the crystal growth direction when the atmospheric pressure (in-furnace pressure) is 20 Torr.
FIG. 3 is a diagram showing the relationship between the magnetic field strength and the oxygen concentration distribution in the crystal growth direction when the atmospheric pressure (in-furnace pressure) is 50 Torr.
FIG. 4 is a diagram showing the relationship between the magnetic field strength and the oxygen concentration distribution in the crystal growth direction when the atmospheric pressure (in-furnace pressure) is 80 Torr.
FIG. 5 is a diagram showing the relationship between the oxygen concentration and the magnetic field strength when the atmospheric pressure is used as a parameter, as an oxygen concentration on the top side at a position of 500 mm from the start of pulling.
FIG. 6 is a diagram showing an oxygen concentration distribution in the method of the present invention when the atmospheric pressure is varied in a range not less than a specific value as the pulling progresses.
FIG. 7 is a diagram showing the result of investigating the controllability of oxygen concentration by the “crucible rotation control method” among the conventional methods.
FIG. 8 is a diagram showing the results of investigating the controllability of oxygen concentration by the “manufacturing method proposed in Japanese Patent Laid-Open No. 5-194077” among conventional methods.
FIG. 9 is a diagram showing the relationship between crucible rotation speed and dislocation positions.
FIG. 10 is a diagram showing the relationship between crucible rotation speed and melt temperature fluctuation.
[Explanation of symbols]
1: crucible, 1a: quartz crucible, 1b: graphite crucible 2: heater for heating, 3: seed crystal 4: molten liquid, 5: single crystal 6: coil for applying magnetic field
6a: Upper coil, 6b: Lower coil 7: Lifting device, 8: Chamber 9: Pull chamber, 10: Insulating material

Claims (1)

坩堝内に収容される溶融液に引上げ軸に対して等軸対称のカスプ磁場を印加しつつ結晶を引上げるチョクラルスキー法によるシリコン単結晶の製造方法であって、
単結晶の引上げ過程では雰囲気圧力を50Torr以上に制御するとともに
前記カスプ磁場300G(ガウス)〜600G(ガウス)の強度範囲で制御することを特徴とするシリコン単結晶の製造方法。
A method for producing a silicon single crystal by the Czochralski method for pulling up a crystal while applying a cusp magnetic field that is equiaxially symmetric with respect to the pulling axis to the melt contained in the crucible,
In the pulling process of the single crystal, the atmospheric pressure is controlled to 50 Torr or higher,
A method for producing a silicon single crystal, wherein the cusp magnetic field is controlled in an intensity range of 300 G (Gauss) to 600 G (Gauss).
JP04158499A 1999-02-19 1999-02-19 Method for producing silicon single crystal Expired - Lifetime JP4151148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04158499A JP4151148B2 (en) 1999-02-19 1999-02-19 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04158499A JP4151148B2 (en) 1999-02-19 1999-02-19 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2000239096A JP2000239096A (en) 2000-09-05
JP4151148B2 true JP4151148B2 (en) 2008-09-17

Family

ID=12612496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04158499A Expired - Lifetime JP4151148B2 (en) 1999-02-19 1999-02-19 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP4151148B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812727A (en) * 2010-04-13 2010-08-25 上海太阳能电池研究与发展中心 Method for directionally solidifying and purifying polycrystalline silicon under DC electric field

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW554093B (en) * 2000-02-28 2003-09-21 Shinetsu Handotai Kk Method for preparing silicon single crystal and silicon single crystal
KR100840751B1 (en) * 2005-07-26 2008-06-24 주식회사 실트론 High quality silicon single crystalline ingot producing method, Apparatus for growing the same, Ingot, and Wafer
KR100829061B1 (en) 2006-12-11 2008-05-16 주식회사 실트론 Method of manufacturing silicon single crystal using cusp magnetic field
JP5782323B2 (en) * 2011-07-22 2015-09-24 グローバルウェーハズ・ジャパン株式会社 Single crystal pulling method
WO2019107190A1 (en) * 2017-11-29 2019-06-06 株式会社Sumco Silicon single crystal, method for producing same, and silicon wafer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812727A (en) * 2010-04-13 2010-08-25 上海太阳能电池研究与发展中心 Method for directionally solidifying and purifying polycrystalline silicon under DC electric field

Also Published As

Publication number Publication date
JP2000239096A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
KR960006260B1 (en) Method for controlling oxygen content of silicon crystals using a combination of cusp magnetic field and crystal and crucible rotation rates
JP5344822B2 (en) Control of melt-solid interface shape of growing silicon crystal using variable magnetic field
US8172943B2 (en) Single Crystal manufacturing method
US9885122B2 (en) Method of manufacturing silicon single crystal
US7282095B2 (en) Silicon single crystal pulling method
JP5240191B2 (en) Silicon single crystal pulling device
JP2009114054A (en) Method for producing semiconductor single crystal having improved oxygen concentration characteristics
JP4151148B2 (en) Method for producing silicon single crystal
JP5782323B2 (en) Single crystal pulling method
JP4045666B2 (en) Method for producing silicon single crystal
WO2007013148A1 (en) Silicon single crystal pulling apparatus and method thereof
US5840116A (en) Method of growing crystals
JP4013324B2 (en) Single crystal growth method
JP2004189559A (en) Single crystal growth method
WO2021095324A1 (en) Method for producing silicon single crystal
JP3719088B2 (en) Single crystal growth method
JP2004161566A (en) Method for manufacturing silicon wafer, apparatus for manufacturing the same, and silicon wafer
JP4293188B2 (en) Single crystal manufacturing method and silicon single crystal wafer
JP4080657B2 (en) Method for producing silicon single crystal ingot
JP6958632B2 (en) Silicon single crystal and its manufacturing method and silicon wafer
KR100869940B1 (en) Method of manufacturing silicon single crystal ingot
JP4951186B2 (en) Single crystal growth method
JPH09278581A (en) Apparatus for producing single crystal and production of single crystal
JP3521862B2 (en) Single crystal growth method
JP4801869B2 (en) Single crystal growth method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term