JPH09278581A - Apparatus for producing single crystal and production of single crystal - Google Patents

Apparatus for producing single crystal and production of single crystal

Info

Publication number
JPH09278581A
JPH09278581A JP8407596A JP8407596A JPH09278581A JP H09278581 A JPH09278581 A JP H09278581A JP 8407596 A JP8407596 A JP 8407596A JP 8407596 A JP8407596 A JP 8407596A JP H09278581 A JPH09278581 A JP H09278581A
Authority
JP
Japan
Prior art keywords
single crystal
insulating material
heat insulating
crucible
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8407596A
Other languages
Japanese (ja)
Other versions
JP3129187B2 (en
Inventor
Manabu Nishimoto
学 西元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Sitix Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Sitix Corp filed Critical Sumitomo Sitix Corp
Priority to JP08084075A priority Critical patent/JP3129187B2/en
Publication of JPH09278581A publication Critical patent/JPH09278581A/en
Application granted granted Critical
Publication of JP3129187B2 publication Critical patent/JP3129187B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide both an apparatus for producing a single crystal suitable for producing the large-diameter single crystal at a high efficiency and a method for producing the single crystal. SOLUTION: This apparatus for producing a single crystal 3 comprises a gas straightening cylinder 11, having the diameter reduced from the upper to the lower sides and enclosing a heat insulating material 12 specified by the following formulas (A) to (C) therein: (A) 50 mm<=H2/3.Hf (H is the thickness of the heat insulating material), (B) 2mm<=W<=50mm (W is the thickness of the heat insulating material 12) and (C) Db <=50mm (Db is the distance of the lower end of the heat insulating material 12 from the lower end of a gas straightening cylinder 11), with the proviso that Hf denotes the length of the gas straightening cylinder 11. The thickness of a part where the heat insulating material 12 is not enclosed in the upper part of the gas straightening cylinder 11 is preferably reduced and the single crystal 3 is pulled up at a high speed by using an apparatus for producing the single crystal 3 equipped with a crucible 1 for housing a melt 6, a heater 2 for heating the crucible 1, a pulling up means 5 for bringing a seed crystal 4 into contact with the surface of the melt 6 and growing the single crystal 3, the gas straightening cylinder 11 for surrounding the periphery of a pulling up zone for the single crystal 3 and a metallic chamber 8 for housing the respective members in the apparatus for producing the single crystal 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン等の単結
晶製造装置およびその製造装置を用いる単結晶製造方法
に関し、さらに詳しくは、単結晶の引上げ速度を速め、
高能率で単結晶を製造するのに適する単結晶製造装置お
よび単結晶製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a single crystal of silicon or the like and a method for producing a single crystal using the apparatus, and more specifically, to increase the pulling rate of the single crystal,
The present invention relates to a single crystal production apparatus and a single crystal production method suitable for producing a single crystal with high efficiency.

【0002】[0002]

【従来の技術】チョクラルスキー法(以下、単に「CZ
法」という)によって製造された単結晶は、石英製坩堝
内のシリコン溶融液から引上げて製造されるため、製造
された結晶は坩堝の石英(SiO2)から溶出した多くの酸素
を含んでいる。このため、ICやLSIの製造プロセス
において繰り返し熱処理を受けても、スリップや反りを
発生しにくいという特徴がある。さらに、内部の酸素析
出物は、1000℃近傍の熱処理で高密度欠陥層を形成し、
ウエーハの表面領域に存在する不純物を低減するという
作用 (いわゆるイントリンシックゲッタリング) もあ
る。このような特徴から、CZ法は半導体用シリコン単
結晶の代表的な製造方法とされている。
2. Description of the Related Art Czochralski method (hereinafter simply referred to as "CZ").
Method)), the single crystal produced by pulling up from the silicon melt in the quartz crucible contains a large amount of oxygen eluted from the crucible quartz (SiO 2 ). . Therefore, even if the heat treatment is repeatedly performed in the IC or LSI manufacturing process, slip or warpage is unlikely to occur. Furthermore, the oxygen precipitates inside form a high-density defect layer by heat treatment near 1000 ° C,
It also has the function of reducing the impurities present in the surface area of the wafer (so-called intrinsic gettering). Due to such characteristics, the CZ method is regarded as a typical method for producing a silicon single crystal for semiconductors.

【0003】図3は、CZ法で使用される単結晶製造装
置を示す装置中心を通る縦断面図である。同図に示すよ
うに、坩堝1は有底円筒形状の石英製坩堝1aとこの外側
に嵌め合わされた同じく有底円筒形状の黒鉛製坩堝1bと
から構成された二重構造であり、坩堝受皿10を介して支
持軸9上に設置される。この支持軸9には昇降・回転機
構(図示せず)設けられており、これらの作用によって
坩堝1は昇降・回転が可能になる。さらに坩堝1の外周
には坩堝1を囲んで加熱ヒーター2が同心円筒状に配設
されており、さらに加熱ヒーター2の外側には黒鉛製の
保温筒7が同心円筒状に配設されている。坩堝1内には
加熱ヒーター2によって溶融された結晶用原料の溶融液
6が収容される。
FIG. 3 is a vertical cross-sectional view showing a single crystal manufacturing apparatus used in the CZ method and passing through the center of the apparatus. As shown in the figure, the crucible 1 has a double structure composed of a quartz crucible 1a having a bottomed cylindrical shape and a graphite crucible 1b having the same bottomed shape fitted to the outside of the crucible 1a. The crucible tray 10 It is installed on the support shaft 9 via. The support shaft 9 is provided with an elevating / rotating mechanism (not shown), and these actions enable the crucible 1 to elevate / rotate. Further, a heater 2 is concentrically arranged around the crucible 1 so as to surround the crucible 1, and a heat insulating cylinder 7 made of graphite is concentrically arranged outside the heater 2. . In the crucible 1, a melt 6 of a raw material for crystal melted by a heater 2 is contained.

【0004】坩堝1の中心軸上には引上げワイヤ等から
構成される引上げ手段5が設けられ、昇降・回転機構
(図示せず)によって引上げ手段5は坩堝1の回転方向
と同方向または逆方向への回転が可能になる。引上げ手
段5の先端に種結晶4が取り付けられる。溶融液6表面
に種結晶4の下端を接触させて上方へ引き上げることに
よって、その下端に溶融液6を凝固させて単結晶3を成
長させる。これらの部品、部材は金属チャンバー8内に
収納され、全体として単結晶製造装置を構成している。
A pulling means 5 composed of a pulling wire or the like is provided on the central axis of the crucible 1, and the pulling means 5 is moved in the same direction or in the opposite direction to the rotation direction of the crucible 1 by an elevating / rotating mechanism (not shown). It is possible to rotate to. The seed crystal 4 is attached to the tip of the pulling means 5. The lower end of the seed crystal 4 is brought into contact with the surface of the melt 6 and pulled up to solidify the melt 6 at the lower end to grow the single crystal 3. These parts and members are housed in the metal chamber 8 and constitute a single crystal manufacturing apparatus as a whole.

【0005】単結晶の引上げ中は、金属チャンバー8の
上方の中央部から常時不活性ガスとして高純度のアルゴ
ンガスが供給され、図中で示すガス流れ21を形成する。
ガス流れ21は、坩堝1に収納されるシリコン溶融液6の
表面から蒸発する一酸化珪素(SiO )およびこの一酸化
珪素と加熱ヒーター2や黒鉛坩堝2b等の高温の黒鉛部材
との反応により生成される一酸化炭素(CO)などを伴っ
て、加熱ヒーター2の内外周面を下方に流れて、図示し
ない排出口から製造装置外へ排出される。
During the pulling of the single crystal, a high-purity argon gas is constantly supplied as an inert gas from the central portion above the metal chamber 8 to form a gas flow 21 shown in the figure.
The gas stream 21 is generated by the reaction of silicon monoxide (SiO 2) evaporated from the surface of the silicon melt 6 contained in the crucible 1 and the reaction between this silicon monoxide and a high temperature graphite member such as the heater 2 or the graphite crucible 2b. Along with the generated carbon monoxide (CO) and the like, it flows downward on the inner and outer peripheral surfaces of the heater 2, and is discharged to the outside of the manufacturing apparatus from a discharge port (not shown).

【0006】CZ法による単結晶の引上げにおいて、そ
の引上速度はその冷却速度、すなわち、引上げられる単
結晶の引上げ方向における温度勾配と密接な関係があ
り、温度勾配を大きくすることによって引上速度を速く
することができる。このため、単結晶の引上げ中は不活
性ガスの流れを制御するとともに、坩堝1、加熱ヒータ
ー2および溶融液6からの輻射熱を遮断するため、引き
上げられる単結晶の周囲を囲繞するようにガス整流筒を
配設し、単結晶の引上げ方向における温度勾配を大きく
する方法が採用されている。
In the pulling of a single crystal by the CZ method, the pulling rate is closely related to the cooling rate, that is, the temperature gradient in the pulling direction of the pulled single crystal, and the pulling rate can be increased by increasing the temperature gradient. Can be faster. Therefore, the flow of the inert gas is controlled during the pulling of the single crystal, and the radiant heat from the crucible 1, the heater 2 and the melt 6 is blocked, so that the gas rectification is performed so as to surround the single crystal to be pulled. A method of arranging a cylinder and increasing the temperature gradient in the pulling direction of the single crystal is adopted.

【0007】図1は、後述する本発明のガス整流筒を配
設してシリコン単結晶をCZ法によって製造する装置の
中心軸を通る縦断面図である。図1に示す構成のほとん
どの部品、部材は図3のものと同様であるので、これら
と同一の部品、部材には同一の符号を付す。通常、溶融
液6の上方に引上げられるシリコン単結晶を囲繞するよ
うにガス整流筒11が配設されている。
FIG. 1 is a vertical cross-sectional view through the central axis of an apparatus for manufacturing a silicon single crystal by the CZ method, in which a gas rectifying cylinder of the present invention described later is arranged. Since most of the components and members of the configuration shown in FIG. 1 are the same as those in FIG. 3, the same components and members as these are designated by the same reference numerals. Usually, a gas rectifying cylinder 11 is arranged so as to surround the silicon single crystal pulled up above the melt 6.

【0008】図1に示すように、このガス整流筒11によ
ってガス流れ21が制御されるとともに、単結晶3に向か
う加熱ヒーター2および溶融液6の表面からの輻射熱が
遮断され、引上げられる単結晶3の温度勾配を大きくで
き、引上げ時の冷却速度を制御することができる。CZ
法による単結晶の引上げにおいて、単結晶の冷却速度は
その引上速度に直接影響するものであるから、前述した
ガス整流筒11と同様な機能を有する部材を用いて単結晶
の冷却速度を制御する方法が多く提案されている。
As shown in FIG. 1, a gas flow 21 is controlled by the gas rectifying cylinder 11, and radiant heat from the surfaces of the heater 2 and the melt 6 directed to the single crystal 3 is cut off and pulled up. The temperature gradient of 3 can be increased, and the cooling rate at the time of pulling up can be controlled. CZ
In pulling a single crystal by the method, since the cooling rate of the single crystal directly affects the pulling rate, the cooling rate of the single crystal is controlled by using a member having the same function as the gas rectifying cylinder 11 described above. Many methods have been proposed.

【0009】例えば、特開平3−88794 号公報では、下
端部が半透明でその他の部分が透明である逆円錐筒を設
けて、加熱ヒーターおよび溶融液等から結晶へ照射され
る輻射熱量を調整し、結晶品質を確保するため徐冷すべ
き部位は徐冷するが、単結晶の成長界面の近傍部では急
冷化して、引上速度を向上させる方法が提案されてい
る。しかし、提案の方法は、本来急冷化の傾向で引上げ
られている直径6インチ以下の小径単結晶の引上げには
有効であるが、徐冷化の傾向にある直径8インチあるい
は12インチの大径単結晶の引上げでは十分な対策とはな
らない。特に、最近のように半導体デバイスプロセスの
効率化の観点から、引上げられる単結晶が大径化・大重
量化するにともなって、単結晶の引上げ方法として適用
が困難である。
For example, in Japanese Unexamined Patent Publication (Kokai) No. 3-88794, an inverted conical tube having a semi-transparent lower end and a transparent other part is provided to adjust the amount of radiant heat applied to a crystal from a heater or a melt. However, in order to secure the crystal quality, the portion to be gradually cooled is gradually cooled, but a method has been proposed in which the portion near the growth interface of the single crystal is rapidly cooled to improve the pulling rate. However, the proposed method is effective for pulling small-diameter single crystals with a diameter of 6 inches or less, which was originally pulled due to rapid cooling, but has a large diameter of 8 inches or 12 inches with a tendency for slow cooling. Pulling a single crystal is not a sufficient measure. Particularly, from the viewpoint of increasing the efficiency of the semiconductor device process recently, it is difficult to apply the method for pulling a single crystal as the pulled single crystal becomes larger in diameter and heavier.

【0010】また、特開平6−211592号公報には、冷却
水を通水した高周波加熱コイルを引上げられる単結晶の
周りに配置することにより、通電時は加熱用コイルとし
て、通電停止時は冷却コイルとして機能させ、単結晶の
冷却速度を制御する方法が開示されている。しかし、こ
の方法を適用することによって、単結晶の入熱量および
放熱量が調整できて、所定の冷却速度の制御が可能にな
るが、新たに高周波電源等の設備が必要になるだけでな
く、製造装置内に高周波加熱コイルを配設するのが難し
く、多大の設備費用を要することになる。
Further, in Japanese Patent Laid-Open No. 6-211592, a high-frequency heating coil, through which cooling water is passed, is arranged around a single crystal to be pulled so that it is used as a heating coil when energized and cooled when energized. A method of controlling the cooling rate of a single crystal by functioning as a coil is disclosed. However, by applying this method, the heat input amount and heat radiation amount of the single crystal can be adjusted, and it becomes possible to control a predetermined cooling rate, but not only new equipment such as a high frequency power source is required, It is difficult to dispose the high frequency heating coil in the manufacturing apparatus, which requires a large equipment cost.

【0011】[0011]

【発明が解決しようとする課題】前述の通り、従来から
提案されている単結晶の冷却速度の制御方法では、単結
晶が大径化・大重量化する傾向のなかで適用が困難であ
り、また、多大の設備費用を要することから、有効な引
上げ時の冷却速度を制御する手段とはなり得ない。一
方、本願出願人は、先にその内部に断熱材を具備するガ
ス整流筒を提案しているが、これとても効果的な結晶の
冷却速度向上を意図するものではない (特開昭63−3155
89号公報参照)。
As described above, the conventionally proposed method for controlling the cooling rate of a single crystal is difficult to apply because the single crystal tends to have a large diameter and a large weight. In addition, since it requires a large amount of equipment cost, it cannot be an effective means for controlling the cooling rate during pulling. On the other hand, the applicant of the present application has previously proposed a gas flow straightening cylinder having a heat insulating material therein, but this is not intended to improve the crystal cooling rate very effectively (Japanese Patent Laid-Open No. 63-3155).
(See No. 89 publication).

【0012】本発明は、従来の引上げ時における結晶冷
却速度の制御方法での問題点に鑑み、直径8インチ以上
の大径単結晶の引上げ時においても有効に結晶冷却速度
の向上が図れ、単結晶の引上げ速度を速めることができ
て高能率で単結晶を製造するのに適する単結晶製造装置
および単結晶製造方法を提供することを目的としてい
る。
In view of the problems of the conventional method of controlling the crystal cooling rate during pulling, the present invention can effectively improve the crystal cooling rate even when pulling a large-diameter single crystal having a diameter of 8 inches or more. It is an object of the present invention to provide a single crystal production apparatus and a single crystal production method that can increase the crystal pulling rate and that is suitable for producing a single crystal with high efficiency.

【0013】[0013]

【課題を解決するための手段】本発明は、図1および図
2に示す、次の(1) の単結晶製造装置および(2) の単結
晶製造方法を要旨としている。
The gist of the present invention is the following single crystal production apparatus (1) and single crystal production method (2) shown in FIGS. 1 and 2.

【0014】(1) 成長させるべき単結晶の原料溶融液を
収容する坩堝1と、この溶融液を加熱するヒーター2
と、坩堝内の溶融液6の表面に種結晶4を接触させて単
結晶を成長させる引上げ手段5と、単結晶の引上げ域の
周囲を囲繞するガス整流筒11と、前記各部材を収納する
金属チャンバー8とを具備する単結晶製造装置におい
て、前記ガス整流筒11は単結晶の引上げ域の周囲を囲繞
する円筒状または上方から下方に向かうに従って縮径さ
れており、かつ下方の一部には下記 (A)乃至 (C)式で規
定される断熱材12が内包されていることを特徴とする単
結晶製造装置。
(1) A crucible 1 containing a raw material melt of a single crystal to be grown, and a heater 2 for heating the melt.
The pulling means 5 for growing the single crystal by bringing the seed crystal 4 into contact with the surface of the melt 6 in the crucible, the gas straightening cylinder 11 surrounding the pulling region of the single crystal, and the above-mentioned members are housed. In the apparatus for producing a single crystal including the metal chamber 8, the gas rectifying cylinder 11 has a cylindrical shape surrounding the periphery of the pulling region of the single crystal or is reduced in diameter from the upper side to the lower side, and a part of the lower side is formed. Is an apparatus for producing a single crystal, wherein a heat insulating material 12 defined by the following formulas (A) to (C) is included.

【0015】 50mm≦H≦ 2/3・Hf ・・・ (A) 2mm≦W≦50mm ・・・ (B) Db ≦50mm ・・・ (C) ただし、H:断熱材長さ、 W:断熱材厚さ Db :断熱材下端からガス整流筒下端までの距離 Hf:ガス整流筒長さ 上記のガス整流筒は、その上方であって断熱材が内包さ
れていない部分の厚さを薄くするのが望ましい。
50 mm ≦ H ≦ 2/3 · Hf ・ ・ ・ (A) 2 mm ≦ W ≦ 50 mm ・ ・ ・ (B) D b ≦ 50 mm ・ ・ ・ (C) where H: length of heat insulating material, W: Insulating material thickness D b : Distance from the lower end of the insulating material to the lower end of the gas rectifying cylinder Hf: Length of the gas rectifying cylinder In the above gas rectifying cylinder, the thickness of the portion above the insulating material is thin. It is desirable to do.

【0016】(2) 成長させるべき単結晶の原料溶融液を
収容する坩堝1と、この溶融液を加熱するヒーター2
と、坩堝内の溶融液6の表面に種結晶4を接触させて単
結晶を成長させる引上げ手段5と、単結晶の引上げ域の
周囲を囲繞するガス整流筒11と、前記各部材を収納する
金属チャンバー8とを具備する単結晶製造装置を使用す
る単結晶の製造方法において、単結晶の引上げ域の周囲
を囲繞する円筒または上方から下方に向かうに従って縮
径された筒状であって、かつ下方の一部に下記 (A)乃至
(C)式で規定される断熱材12を内包するガス整流筒11を
坩堝内の溶融液6の上方に配設し、単結晶3を高速度で
引上げることを特徴とする単結晶製造方法。
(2) A crucible 1 for containing a single crystal raw material melt to be grown, and a heater 2 for heating the melt.
The pulling means 5 for growing the single crystal by bringing the seed crystal 4 into contact with the surface of the melt 6 in the crucible, the gas straightening cylinder 11 surrounding the pulling region of the single crystal, and the above-mentioned members are housed. In a method for producing a single crystal using a single crystal production apparatus comprising a metal chamber 8, a cylinder surrounding a pulling region of the single crystal or a tubular shape whose diameter is reduced from the upper side to the lower side, and The following (A) to a part of the bottom
A method for producing a single crystal, characterized in that a gas rectifying cylinder 11 containing a heat insulating material 12 defined by the formula (C) is arranged above the molten liquid 6 in the crucible and the single crystal 3 is pulled up at a high speed. .

【0017】 50mm≦H≦ 2/3・Hf ・・・ (A) 2mm≦W≦50mm ・・・ (B) Db ≦50mm ・・・ (C) ただし、H:断熱材長さ、 W:断熱材厚さ Db :断熱材下端からガス整流筒下端までの距離 Hf:ガス整流筒長さ50 mm ≦ H ≦ 2/3 · Hf ・ ・ ・ (A) 2 mm ≦ W ≦ 50 mm ・ ・ ・ (B) D b ≦ 50 mm ・ ・ ・ (C) where H: length of heat insulating material, W: Insulating material thickness D b : Distance from the lower end of the insulating material to the lower end of the gas rectifying cylinder Hf: Length of the gas rectifying cylinder

【0018】[0018]

【発明の実施の形態】本発明者らは、引上げ時において
結晶冷却速度を有効に制御するため、単結晶およびこれ
を囲繞するガス整流筒の伝熱シミュレーションを行い、
伝熱挙動を詳細に検討した結果、ガス整流筒にはその下
部において結晶への入熱作用があるのに対し、その上部
において結晶から熱を奪う作用があることを知見した。
この知見に従えば、単結晶の冷却速度を速めて、高速引
上げを実現するには、ガス整流筒の下部から結晶へ入熱
される熱量を抑え、一方、結晶からガス整流筒上部への
抜熱を促進することが有効であることが認識できる。こ
のような認識に基づいて本発明は完成されたものであ
り、その特徴は、ガス整流筒が単結晶の引上げ域の周囲
を囲繞する円筒状または上方から下方に向かうに従って
縮径されており、かつその下方の一部には断熱材が内包
されていることにある。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors conducted heat transfer simulation of a single crystal and a gas rectifying cylinder surrounding the single crystal in order to effectively control the crystal cooling rate during pulling,
As a result of detailed examination of the heat transfer behavior, it was found that the gas straightening cylinder has a heat input action to the crystal at the lower part thereof, but has an action of removing heat from the crystal at the upper part thereof.
According to this knowledge, in order to speed up the cooling rate of the single crystal and achieve high-speed pulling, the heat input to the crystal from the lower part of the gas straightening cylinder is suppressed, while the heat removal from the crystal to the upper part of the gas straightening cylinder is performed. It can be recognized that it is effective to promote. Based on such recognition, the present invention has been completed, and its feature is that the gas straightening cylinder has a cylindrical shape surrounding the periphery of the pulling region of the single crystal or the diameter is reduced from the upper side to the lower side, In addition, a heat insulating material is included in a part below the heat insulating material.

【0019】図2は、本発明に適用されるガス整流筒の
一例を示す軸対象の右半分の縦断面図であり、その内部
に内包される断熱材の形状を表している。同図(a)は
ガス整流筒厚さが一定の場合を、(b)は上方であって
断熱材が内包されていない部分のガス整流筒厚さを薄く
する場合を示している。
FIG. 2 is a vertical cross-sectional view of the right half of the axial object showing an example of the gas rectifying cylinder applied to the present invention, and shows the shape of the heat insulating material contained therein. The figure (a) shows the case where the gas straightening tube thickness is constant, and the figure (b) shows the case where the gas straightening tube thickness of the part which is an upper part and does not contain a heat insulating material is made thin.

【0020】図2から明らかなように、ガス整流筒の形
状は、不活性ガスとして用いられるアルゴンガスの流れ
を制御し易くするため、円筒状または上方から下方に向
かうに従って縮径されたものとなっている。さらに、ガ
ス整流筒の少なくとも下方の一部には断熱材が内包され
ているが、ガス整流筒の上方には断熱材を有しない構造
になっている。このような構造を採用することによっ
て、ガス整流筒の下部では内包される断熱材によって、
加熱ヒーターおよび溶融液の表面等からの輻射熱が遮断
されて、結晶への入熱量が抑制される。一方、ガス整流
筒の上部ではアルゴンガスの流れによって比較的冷却さ
れるとともに、ガス整流筒上部から保温筒上部に伝熱に
よって熱量が移行される構造になっているので、引上げ
られる結晶からの抜熱を促進することになる。このた
め、ガス整流筒上部には断熱材を存在させないこととし
ている。この場合に、さらにガス流れによる冷却とガス
整流筒上部から保温筒上部への熱移動を促進するため
に、ガス整流筒の上部を薄肉にするのが望ましい。
As is apparent from FIG. 2, the shape of the gas flow straightening cylinder is cylindrical or has a diameter reduced from the upper side to the lower side in order to facilitate control of the flow of the argon gas used as the inert gas. Has become. Further, the heat insulating material is included in at least a part of the lower portion of the gas rectifying cylinder, but the heat insulating material is not provided above the gas rectifying cylinder. By adopting such a structure, the heat insulating material included in the lower part of the gas rectifying cylinder causes
Radiant heat from the heater and the surface of the melt is blocked, and the amount of heat input to the crystal is suppressed. On the other hand, the upper part of the gas straightening cylinder is relatively cooled by the flow of argon gas, and the heat quantity is transferred from the upper part of the gas straightening cylinder to the upper part of the heat retaining cylinder by heat transfer. It will promote heat. Therefore, no heat insulating material is allowed to exist above the gas straightening cylinder. In this case, it is desirable to make the upper portion of the gas flow straightening cylinder thin in order to further promote cooling by the gas flow and heat transfer from the upper portion of the gas flow straightening cylinder to the upper portion of the heat retaining cylinder.

【0021】本発明で使用されるガス整流筒は、グラフ
ァイトで作製するのが望ましい。ガス整流筒をグラファ
イト製とするのは、高純度で製造することができ、重金
属等による引上げ結晶の汚染のおそれが少ないからであ
る。ガス整流筒長さHf は、引上げられる単結晶のサイ
ズにもよるが、通常、 300〜 600mmの範囲とされてい
る。また、ガス整流筒の厚さWf1は、一般的に10〜50mm
とされるが、前述のように、結晶から熱移動を促進する
ためにガス整流筒の上部を薄肉にする場合には、Wf2
1〜15mmの範囲が採用される。結晶からの抜熱を促進す
るには、ガス整流筒の厚さは薄い程よいが、強度の確保
するため1mm以上にする必要があるからである。
The gas rectifying cylinder used in the present invention is preferably made of graphite. The reason why the gas rectifying cylinder is made of graphite is that it can be manufactured with high purity and there is little risk of contamination of the pulled crystal by heavy metals or the like. The gas straightening tube length Hf is usually in the range of 300 to 600 mm, though it depends on the size of the pulled single crystal. Also, the thickness Wf 1 of the gas flow straightening tube is generally 10 to 50 mm.
However, as described above, when the upper part of the gas flow straightening cylinder is made thin to promote heat transfer from the crystal, Wf 2 in the range of 1 to 15 mm is adopted. In order to accelerate the heat removal from the crystal, the thinner the gas rectifying cylinder is, the better, but it is necessary to make it 1 mm or more to secure the strength.

【0022】本発明において、引上げ単結晶の冷却速度
を有効に制御するには、ガス整流筒に内包される断熱材
の寸法を的確に規定する必要があり、本発明者らの検討
に基づいて規定される断熱材の寸法は次の通りである。
In the present invention, in order to effectively control the cooling rate of the pulled single crystal, it is necessary to precisely specify the dimensions of the heat insulating material contained in the gas flow straightening cylinder, and based on the study by the present inventors. The dimensions of the specified heat insulating material are as follows.

【0023】(A) 断熱材長さH:50mm≦H≦ 2/3・Hf Hが50mm未満であると、加熱ヒーターおよび溶融液表面
等からの輻射熱を遮断する効果が著しく劣化するからで
ある。一方、Hが 2/3・Hfを超えると、ガス整流筒上
方での結晶からの抜熱が十分にできなくなる。
(A) Insulating material length H: 50 mm ≦ H ≦ 2/3 · If Hf H is less than 50 mm, the effect of blocking the radiant heat from the heater and the surface of the melt will be significantly deteriorated. . On the other hand, if H exceeds 2/3 · Hf, heat cannot be sufficiently removed from the crystal above the gas straightening cylinder.

【0024】(B) 断熱材厚さW:2mm≦W≦50mm Wが2mm未満では効果がなく、50mmを超えると効果が飽
和するからである。
(B) Heat insulating material thickness W: 2 mm ≦ W ≦ 50 mm If W is less than 2 mm, no effect is obtained, and if it exceeds 50 mm, the effect is saturated.

【0025】(C) 断熱材下端のガス整流筒下端からの距
離Db :Db ≦50mm Db が50mmを超えると、加熱ヒーターおよび溶融液の表
面等からの輻射熱が遮断されず、ガス整流筒の下端部を
通過して結晶へ入熱される熱量が増加するからである。
(C) Distance of lower end of heat insulating material from lower end of gas rectifying cylinder D b : D b ≦ 50 mm When D b exceeds 50 mm, radiant heat from the heater and the surface of the melt is not blocked, and gas rectifying is performed. This is because the amount of heat that passes through the lower end of the cylinder and is input to the crystal increases.

【0026】本発明に用いられる断熱材には、フェルト
状カーボン繊維やロックウール等が採用される。特に、
フェルト状カーボン繊維製の断熱材は断熱効果が高く、
また汚染による結晶品質の劣化の問題がないから有効で
ある。
As the heat insulating material used in the present invention, felt-like carbon fiber, rock wool or the like is adopted. Especially,
Insulating material made of felt-like carbon fiber has a high heat insulating effect,
It is also effective because there is no problem of deterioration of crystal quality due to contamination.

【0027】本発明は、前述の通り、引上げ時における
結晶の冷却速度を制御して、単結晶の引上げ速度を速め
ることを主眼になされたものである。一方、引上げられ
た単結晶の品質と熱履歴とは綿密な関係があるとされ、
例えば、結晶温度 850℃〜1150℃の範囲での急冷は結晶
中の酸化誘起積層欠陥を低減するので、本発明の製造装
置および製造方法は、単に高能率で単結晶を製造するの
に用いられるだけでなく、単結晶の品質を向上させる手
段としても適用することができる。
As described above, the present invention is mainly aimed at increasing the pulling rate of the single crystal by controlling the cooling rate of the crystal during pulling. On the other hand, it is said that there is a close relationship between the quality of the pulled single crystal and the heat history,
For example, since quenching in the crystal temperature range of 850 ° C. to 1150 ° C. reduces the oxidation-induced stacking faults in the crystal, the production apparatus and production method of the present invention are used only for producing a single crystal with high efficiency. Not only can it be applied as a means for improving the quality of single crystals.

【0028】[0028]

【実施例】以下、本発明の効果を、その実施例によって
具体的に説明する。
EXAMPLES The effects of the present invention will be specifically described below with reference to the examples.

【0029】図1に示す単結晶製造装置を用いて、直径
8インチ( 205mm)の半導体用P型単結晶の引上げを行
った。図1に示すように、この製造装置のホットゾーン
部分の構造は従来のCZ法に用いられるものと同様であ
り、坩堝1は有底円筒状をなす石英製坩堝1aと石英製坩
堝1aの外側に嵌め合わされた黒鉛製坩堝1bとから構成さ
れる二重構造となっており、坩堝1は坩堝受皿10を介し
て支持軸9上に設置され、回転しつつ昇降できるように
なっている。坩堝1の外周には坩堝1を囲んで加熱ヒー
ター2が同心円筒状に配設されており、さらに加熱ヒー
ター2の外側には黒鉛製の保温筒7が同心円筒状に配設
されている。さらに、引上げられる単結晶3を囲繞する
ように、上方から下方に向かうに従って縮径されたグラ
ファイト製ガス整流筒11が設けられる。
A single crystal manufacturing apparatus shown in FIG. 1 was used to pull up a P-type single crystal for semiconductor having a diameter of 8 inches (205 mm). As shown in FIG. 1, the structure of the hot zone part of this manufacturing apparatus is the same as that used in the conventional CZ method, and the crucible 1 has a bottomed cylindrical quartz crucible 1a and an outer side of the quartz crucible 1a. It has a double structure composed of a graphite crucible 1b fitted into the crucible 1. The crucible 1 is installed on the support shaft 9 via the crucible tray 10 and can be raised and lowered while rotating. A heater 2 is concentrically arranged around the crucible 1 so as to surround the crucible 1, and a heat insulating cylinder 7 made of graphite is concentrically arranged outside the heater 2. Further, a graphite gas rectifying cylinder 11 whose diameter is reduced from the upper side to the lower side is provided so as to surround the pulled single crystal 3.

【0030】引上げに際しては、石英製坩堝1aとして内
径22インチ、高さ14インチ、厚さ7.0mm の坩堝を使用
し、加熱ヒーター2として内径 650mm、外径 700mm、高
さ 300mmの抵抗加熱方式のものを用いた。さらに本発明
のガス整流筒11の効果を確認するため、グラファイト製
ガス整流筒の下方にフェルト状炭素繊維製の断熱材を内
包させた。その条件を表1に示す。
At the time of pulling up, a quartz crucible 1a having an inner diameter of 22 inches, a height of 14 inches and a thickness of 7.0 mm was used, and the heater 2 was a resistance heating system having an inner diameter of 650 mm, an outer diameter of 700 mm and a height of 300 mm. I used one. Further, in order to confirm the effect of the gas rectifying cylinder 11 of the present invention, a heat insulating material made of felt-like carbon fiber was included below the graphite gas rectifying cylinder. The conditions are shown in Table 1.

【0031】図1に示す単結晶製造装置を用いて単結晶
を引上げるに際し、下記の手順および引上げ条件を採用
した。
In pulling a single crystal using the single crystal manufacturing apparatus shown in FIG. 1, the following procedure and pulling conditions were adopted.

【0032】 坩堝1内に結晶原料として高純度多結
晶シリコンを 110Kg充填し、加熱ヒーター2で全て溶解
し、石英製坩堝1a内に収容した。ドーパント剤としてリ
ン(P)を所定量添加させた。金属チャンバー8内は10
torrの真空雰囲気とし、アルゴンガスを流量30リットル
/分で流した。
110 kg of high-purity polycrystalline silicon as a crystal raw material was filled in the crucible 1, melted entirely by the heater 2, and housed in the quartz crucible 1a. A predetermined amount of phosphorus (P) was added as a dopant agent. 10 inside the metal chamber 8
A vacuum atmosphere of torr was set, and an argon gas was flown at a flow rate of 30 l / min.

【0033】 坩堝の回転数を8rpm とし溶融液6面
が安定すると、引上げ手段の先端に付けた種結晶4を融
液面につけて、ネック部形成後徐々に結晶径を大きく
し、直胴部の直径が 205mmの単結晶を引き上げた。
When the number of revolutions of the crucible was set to 8 rpm and the surface of the melt was stabilized, the seed crystal 4 attached to the tip of the pulling means was attached to the surface of the melt to gradually increase the crystal diameter after the neck portion was formed, and the straight body portion A single crystal with a diameter of 205 mm was pulled up.

【0034】 直胴部の結晶径が 205±5mmの範囲に
入るように、加熱ヒーター2に投入されるヒーターパワ
ーを調整しながら、引上げ速度をゆっくりと上昇させ
た。このとき、各条件毎に、単結晶に有転位化すること
なく、また、結晶直径がくねることなく、安定して引上
げることができる最大引上げ速度を測定し、その結果を
表1に示す。
The pulling speed was slowly increased while adjusting the heater power supplied to the heater 2 so that the crystal diameter of the straight body portion was in the range of 205 ± 5 mm. At this time, the maximum pulling rate at which the single crystal could be stably pulled without causing dislocation in the single crystal and without bending the crystal diameter was measured under each condition, and the results are shown in Table 1.

【0035】さらに、本発明例のうち、断熱材の内包さ
れていないガス整流筒の上部の厚さを薄くした場合につ
いても単結晶の引上げを行い、同様に、安定して引上げ
ることができる最大引上げ速度を測定して、その結果を
表2に示す。
Further, among the examples of the present invention, even when the thickness of the upper part of the gas flow straightening cylinder in which the heat insulating material is not included is reduced, the single crystal is pulled, and similarly, the pulling can be performed stably. The maximum pulling speed was measured and the results are shown in Table 2.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】表1および表2の結果から、次のことが確
認できる。
From the results shown in Tables 1 and 2, the following can be confirmed.

【0039】断熱材長さH、断熱材厚さWおよび断熱材
下端からガス整流筒下端までの距離Db が規定範囲に該
当する本発明例1〜8では、最大引上げ速度は1.3 〜1.
6mm/分となり、従来の断熱材を内包しないガス整流筒を
用いた場合の1.0mm/分(比較例15)に比べ、単結晶の引
上げ速度の大幅に向上させることができる。
In Examples 1 to 8 of the present invention in which the length H of the heat insulating material, the thickness W of the heat insulating material, and the distance D b from the lower end of the heat insulating material to the lower end of the gas rectifying cylinder fall within the specified ranges, the maximum pulling speed is 1.3 to 1.
This is 6 mm / min, and the pulling rate of the single crystal can be significantly improved compared to 1.0 mm / min (Comparative Example 15) in the case of using a conventional gas rectifying tube that does not include a heat insulating material.

【0040】これに対し、比較例で明らかなように、H
が50mm未満であると引上げ速度を速める効果が少なく、
また、 2/3・Hf を超える場合にもその効果が減少する
(比較例9、10)。また、断熱材厚さに関し、Wが2mm
未満になると、その効果が低減し(比較例11)、一方、
Wが50mmを超える場合にはその効果が飽和する(比較例
12、13)。さらに、Db が50mmを超えると、同様に、引
上げ速度を速める効果が少なくなる(比較例14)。
On the other hand, as is clear in the comparative example, H
Is less than 50 mm, there is little effect of increasing the pulling speed,
Further, the effect is reduced when it exceeds 2/3 · Hf (Comparative Examples 9 and 10). Also, regarding the thickness of the heat insulating material, W is 2 mm
If less than, the effect is reduced (Comparative Example 11), while,
When W exceeds 50 mm, the effect is saturated (comparative example
12, 13). Further, when D b exceeds 50 mm, similarly, the effect of increasing the pulling speed decreases (Comparative Example 14).

【0041】発明例のうち、断熱材の内包されていない
ガス整流筒の上部の厚さを薄くした場合については、本
発明例2に比べ、その部分を薄くすることによって、引
上げ速度をさらに向上させることができることが分かる
(本発明例21、22)。
Among the invention examples, when the thickness of the upper part of the gas flow straightening cylinder not containing the heat insulating material is made thin, the pulling speed is further improved by making the portion thinner than in the invention example 2. It can be seen that this can be done (Examples 21 and 22 of the present invention).

【0042】[0042]

【発明の効果】本発明の単結晶製造装置および単結晶製
造方法によれば、直径8インチ以上の大径単結晶の引上
げ時においても有効に結晶冷却速度の向上が図れ、単結
晶の引上げ速度を速めることができ、品質に優れた単結
晶を高能率で製造できる。しかも、製造装置の構造を大
幅に改造することなく、目的を達成することができる。
According to the apparatus for producing a single crystal and the method for producing a single crystal of the present invention, the crystal cooling rate can be effectively improved even when pulling a large-diameter single crystal having a diameter of 8 inches or more, and the pulling rate of the single crystal can be improved. Therefore, a single crystal having excellent quality can be produced with high efficiency. Moreover, the object can be achieved without significantly modifying the structure of the manufacturing apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガス整流筒を配設してシリコン単結晶
をCZ法によって製造する装置の中心軸を通る縦断面図
である。
FIG. 1 is a vertical cross-sectional view passing through a central axis of an apparatus for manufacturing a silicon single crystal by a CZ method, in which a gas rectifying cylinder of the present invention is arranged.

【図2】本発明に適用されるガス整流筒の一例を説明す
る縦断面図であり、その内部に内包される断熱材の形状
を示す図である。
FIG. 2 is a vertical cross-sectional view illustrating an example of a gas rectifying cylinder applied to the present invention, and is a view showing a shape of a heat insulating material contained inside thereof.

【図3】CZ法で使用される単結晶製造装置を示す装置
中心を通る縦断面図である。
FIG. 3 is a vertical cross-sectional view showing the single crystal manufacturing apparatus used in the CZ method, which passes through the center of the apparatus.

【符号の説明】[Explanation of symbols]

1…坩堝、 1a…石英製坩堝、 1b…黒鉛製坩堝、 2
…加熱ヒーター 3…単結晶、 4…種結晶、 5…引上げ手段、 7…
保温筒 8…金属チャンバー、 9…支持軸、 10…坩堝受け皿 11…ガス整流筒、 12…断熱材、 21…ガス流れ
1 ... crucible, 1a ... quartz crucible, 1b ... graphite crucible, 2
... Heating heater 3 ... Single crystal, 4 ... Seed crystal, 5 ... Pulling means, 7 ...
Heat-insulating cylinder 8 ... Metal chamber, 9 ... Support shaft, 10 ... Crucible tray 11 ... Gas rectifying cylinder, 12 ... Heat insulating material, 21 ... Gas flow

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】成長させるべき単結晶の原料溶融液を収容
する坩堝と、この溶融液を加熱するヒーターと、坩堝内
の溶融液の表面に種結晶を接触させて単結晶を成長させ
る引上げ手段と、単結晶の引上げ域の周囲を囲繞するガ
ス整流筒と、前記各部材を収納する金属チャンバーとを
具備する単結晶製造装置において、前記ガス整流筒は単
結晶の引上げ域の周囲を囲繞する円筒状または上方から
下方に向かうに従って縮径されており、かつ下方の一部
には下記 (A)乃至 (C)式で規定される断熱材が内包され
ていることを特徴とする単結晶製造装置。 50mm≦H≦ 2/3・Hf ・・・ (A) 2mm≦W≦50mm ・・・ (B) Db ≦50mm ・・・ (C) ただし、H:断熱材長さ、 W:断熱材厚さ Db :断熱材下端からガス整流筒下端までの距離 Hf:ガス整流筒長さ
1. A crucible for containing a raw material melt of a single crystal to be grown, a heater for heating the melt, and a pulling means for growing a single crystal by bringing a seed crystal into contact with the surface of the melt in the crucible. And a gas rectifying tube surrounding a single crystal pulling region, and a metal chamber for housing each of the members, the gas rectifying tube surrounds a single crystal pulling region. Single crystal manufacturing characterized by being cylindrical or having a diameter that decreases from the top to the bottom, and a heat insulating material defined by the following formulas (A) to (C) is included in a part of the bottom. apparatus. 50mm ≤ H ≤ 2/3 · Hf ・ ・ ・ (A) 2mm ≤ W ≤ 50mm ・ ・ ・ (B) D b ≤ 50mm ・ ・ ・ (C) where H: length of heat insulating material, W: thickness of heat insulating material D b : Distance from the lower end of the heat insulating material to the lower end of the gas rectifying cylinder Hf: Length of the gas rectifying cylinder
【請求項2】上記ガス整流筒の上方であって、断熱材が
内包されていない部分の厚さを薄くすることを特徴とす
る請求項1記載の単結晶製造装置。
2. The apparatus for producing a single crystal according to claim 1, wherein the thickness of the portion above the gas rectifying cylinder and not containing the heat insulating material is reduced.
【請求項3】成長させるべき単結晶の原料溶融液を収容
する坩堝と、この溶融液を加熱するヒーターと、坩堝内
の溶融液の表面に種結晶を接触させて単結晶を成長させ
る引上げ手段と、単結晶の引上げ域の周囲を囲繞するガ
ス整流筒と、前記各部材を収納する金属チャンバーとを
具備する単結晶製造装置を使用する単結晶の製造方法に
おいて、単結晶の引上げ域の周囲を囲繞する円筒または
上方から下方に向かうに従って縮径された筒状であっ
て、かつ下方の一部に下記 (A)乃至 (C)式で規定される
断熱材を内包するガス整流筒を坩堝内の溶融液の上方に
配設し、単結晶を高速度で引上げることを特徴とする単
結晶製造方法。 50mm≦H≦ 2/3・Hf ・・・ (A) 2mm≦W≦50mm ・・・ (B) Db ≦50mm ・・・ (C) ただし、H:断熱材長さ、 W:断熱材厚さ Db :断熱材下端からガス整流筒下端までの距離 Hf:ガス整流筒長さ
3. A crucible for containing a raw material melt of a single crystal to be grown, a heater for heating the melt, and a pulling means for growing a single crystal by bringing a seed crystal into contact with the surface of the melt in the crucible. In the method for producing a single crystal using a single crystal production apparatus comprising a gas rectifying cylinder surrounding the periphery of the single crystal pulling region, and a metal chamber accommodating the above-mentioned members, the periphery of the single crystal pulling region Or a gas rectifying cylinder having a cylindrical shape whose diameter is reduced from the upper side to the lower side and enclosing a heat insulating material defined by the following formulas (A) to (C) in the crucible. A single crystal manufacturing method, characterized in that the single crystal is placed above the molten liquid in the inside and the single crystal is pulled at a high speed. 50mm ≤ H ≤ 2/3 · Hf ・ ・ ・ (A) 2mm ≤ W ≤ 50mm ・ ・ ・ (B) D b ≤ 50mm ・ ・ ・ (C) where H: length of heat insulating material, W: thickness of heat insulating material D b : Distance from the lower end of the heat insulating material to the lower end of the gas rectifying cylinder Hf: Length of the gas rectifying cylinder
JP08084075A 1996-04-05 1996-04-05 Single crystal manufacturing apparatus and single crystal manufacturing method Expired - Fee Related JP3129187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08084075A JP3129187B2 (en) 1996-04-05 1996-04-05 Single crystal manufacturing apparatus and single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08084075A JP3129187B2 (en) 1996-04-05 1996-04-05 Single crystal manufacturing apparatus and single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPH09278581A true JPH09278581A (en) 1997-10-28
JP3129187B2 JP3129187B2 (en) 2001-01-29

Family

ID=13820371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08084075A Expired - Fee Related JP3129187B2 (en) 1996-04-05 1996-04-05 Single crystal manufacturing apparatus and single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP3129187B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150060690A (en) 2012-10-03 2015-06-03 신에쯔 한도타이 가부시키가이샤 Silicon single crystal growing apparatus and silicon single crystal growing method
WO2016103987A1 (en) * 2014-12-24 2016-06-30 株式会社Sumco Method for producing single crystal
CN109695055A (en) * 2019-03-11 2019-04-30 苏州新美光纳米科技有限公司 Long crystal furnace and crystal system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102671885B (en) * 2012-05-18 2014-04-02 宁夏隆基硅材料有限公司 Device and method for removing quartz from monocrystalline silicon pot material
KR101566791B1 (en) * 2015-04-17 2015-11-06 (주)와이브레인 Eletrical stimulation device
US10413725B2 (en) 2016-08-11 2019-09-17 Y-Brain Inc. Electrical stimulation device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150060690A (en) 2012-10-03 2015-06-03 신에쯔 한도타이 가부시키가이샤 Silicon single crystal growing apparatus and silicon single crystal growing method
US9783912B2 (en) 2012-10-03 2017-10-10 Shin-Etsu Handotai Co., Ltd. Silicon single crystal growing apparatus and method for growing silicon single crystal
DE112013004069B4 (en) 2012-10-03 2023-02-02 Shin-Etsu Handotai Co., Ltd. Apparatus for growing a silicon single crystal and method for growing a silicon single crystal
WO2016103987A1 (en) * 2014-12-24 2016-06-30 株式会社Sumco Method for producing single crystal
JP2016121032A (en) * 2014-12-24 2016-07-07 株式会社Sumco Manufacturing method of single crystal
CN107109684A (en) * 2014-12-24 2017-08-29 胜高股份有限公司 The manufacture method of monocrystalline
KR20170106971A (en) * 2014-12-24 2017-09-22 가부시키가이샤 사무코 Manufacturing method of single crystal
US10329686B2 (en) 2014-12-24 2019-06-25 Sumco Corporation Method for producing single crystal
CN109695055A (en) * 2019-03-11 2019-04-30 苏州新美光纳米科技有限公司 Long crystal furnace and crystal system

Also Published As

Publication number Publication date
JP3129187B2 (en) 2001-01-29

Similar Documents

Publication Publication Date Title
JP3573045B2 (en) Manufacturing method of high quality silicon single crystal
US9217208B2 (en) Apparatus for producing single crystal
JP5240191B2 (en) Silicon single crystal pulling device
WO2017159028A1 (en) Method for producing silicon monocrystal
JP3267225B2 (en) Single crystal pulling method and single crystal pulling apparatus
KR20110036896A (en) Single crystal manufacturing apparatus and manufacturing method
US6755910B2 (en) Method for pulling single crystal
JP3129187B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP5392040B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
EP1614774A1 (en) Process for producing single crystal
JP3612974B2 (en) Crystal growth method
JP3207573B2 (en) Method and apparatus for producing single crystal
JPH07267776A (en) Growth method of single crystal
JP3849639B2 (en) Silicon semiconductor single crystal manufacturing apparatus and manufacturing method
JP5489064B2 (en) Method for growing silicon single crystal
CN114929951A (en) Single crystal manufacturing apparatus
JP5428608B2 (en) Method for growing silicon single crystal
JP2000239096A (en) Production of silicon single crystal
JP7115592B1 (en) Single crystal manufacturing equipment
JP7424282B2 (en) Method for manufacturing single crystal silicon ingot
JP2785623B2 (en) Single crystal growth equipment
JPH09309787A (en) Eater-cooling tower for single crystal-pulling up apparatus
JP4055351B2 (en) Crystal growth method
JP2002255684A (en) Manufacturing method of silicone monocrystal ingot
JPS5950627B2 (en) Single crystal silicon pulling equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20101117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20131117

LAPS Cancellation because of no payment of annual fees