JP2004196569A - Silicon single crystal pulling method - Google Patents

Silicon single crystal pulling method Download PDF

Info

Publication number
JP2004196569A
JP2004196569A JP2002364983A JP2002364983A JP2004196569A JP 2004196569 A JP2004196569 A JP 2004196569A JP 2002364983 A JP2002364983 A JP 2002364983A JP 2002364983 A JP2002364983 A JP 2002364983A JP 2004196569 A JP2004196569 A JP 2004196569A
Authority
JP
Japan
Prior art keywords
magnetic field
single crystal
silicon single
center
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002364983A
Other languages
Japanese (ja)
Other versions
JP4153293B2 (en
Inventor
Shunichiro Matsuyama
俊一郎 松山
Motohiro Tsukahara
基弘 塚原
Yoshitaka Kobayashi
芳隆 小林
Atsushi Uehara
敦志 植原
Hitoshi Kusaka
仁 日下
Kenji Iida
健二 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2002364983A priority Critical patent/JP4153293B2/en
Publication of JP2004196569A publication Critical patent/JP2004196569A/en
Application granted granted Critical
Publication of JP4153293B2 publication Critical patent/JP4153293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for pulling a silicon single crystal by applying horizontal magnetic field which realizes low-oxygen concentration in the silicon single crystal. <P>SOLUTION: A method wherein the silicon single crystal is pulled while applying horizontal magnetic field to a silicon melt prepared by melting polysilicon filled in a quartz crucible by a heater, is improved. A relative flow rate, defined as a value obtained by dividing an inert gas flow rate (unit [L/min]) by a furnace pressure (unit [Torr]), is controlled to ≤1.0. The center of the horizontal magnetic field is moved along with the change in the liquid level of the silicon melt. A rate of change in crystal length is adjusted while keeping a relative flow rate range of ≤1.0 according to the distribution of oxygen concentration in the growth axis direction of the silicon single crystal being pulled. In the depth direction of the silicon melt, the center of the horizontal magnetic field is adjusted to a position with the lowest oxygen concentration between the center of the melt to the vicinity of the liquid level. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、横磁場印加引上(orizontal agnetic Field Applied Czochralski 以下、HMCZと呼ぶ)用の装置によるシリコン単結晶の引上げ方法に関し、特にHMCZシリコン単結晶の成長軸方向での低酸素濃度化が実現できるシリコン単結晶引上げ方法に関する。
【0002】
【従来の技術】
図1は、従来のHMCZ装置の概略を示す。
【0003】
図1において、横型磁場印加装置1が炉体2の外周に配置されている。黒鉛製ルツボ3が炉体2内に設けられていて、その中に石英ルツボ4が保持されている。黒鉛製ヒーター5が石英ルツボ4内に充填されたポリシリコンを溶融して、シリコン融液6となる。そのシリコン融液6に水平磁場を印加しながら、シリコン単結晶7を引上げる。このとき、シリコン融液6の上方には輻射シールド8が設置される。輻射シールド8は輻射シールド支持筒9により保持される。また、熱源である黒鉛製ヒーター5を囲むように黒鉛製内部保温筒10が配置され、その黒鉛製内部保温筒10の外側には高断熱性保温筒11が配置されている。さらに、高断熱性保温筒11の上面には上部保温板12が配置されている。黒鉛製ルツボ3の下方には、その黒鉛製ルツボ3を保持する黒鉛製シャフト13と黒鉛製ルツボ受皿14が配置され、最下部には下部受皿15が配置される。
【0004】
図2に示すように、左右のコイル1において発生した磁場分布では、コイル中心軸付近に比較的強い磁束密度(コイル中心軸の磁束密度と同程度のもの)の領域が、図2の斜線のところに形成される。
【0005】
このようなHMCZ装置によるHMCZシリコン単結晶の引上げにおいては、シリコン融液に水平磁場が印加され、融液の熱対流が抑制されるため、HMCZシリコン単結晶の低酸素濃度化に効果がある。さらに、炉体2の外部から印加される水平磁場の磁束密度が大きい程、融液の熱対流の抑制効果が大きくなるため、酸素濃度は、さらに低くなる。
【0006】
一方、シリコン融液に磁場を印加しない無磁界引上げ装置(CZ装置)によってCZシリコン単結晶を引上げる場合には、不活性ガス流量および炉内圧力の増減による調節でCZシリコン単結晶の酸素濃度を制御することができる。不活性ガス流量(単位[リットル/mm])を炉内圧力(単位[Torr])で除した値を比流速と定義したとき、この比流速が大きいと酸素濃度は低くなり、比流速が小さいと酸素濃度は高くなる。
【0007】
ところで、HMCZ装置で引上げたHMCZシリコン単結晶は、中性子照射による不純物ドープ用原料として利用されている。中性子照射後は、照射による結晶格子配列の損傷を回復させるために熱処理を施すが、このとき、ライフタイムの低下を誘発することが知られている。
【0008】
特許第2635450号では、中性子照射を行ったHMCZシリコン単結晶において、損傷回復熱処理後のライフタイムの低下を防止するために、酸素濃度を制限している。たとえば、重水炉照射の場合、0.90×1018[atoms/cm3](JEIDA)(1.44×1018[atoms/cm3](old ASTM))以下と定めている。軽水炉照射の場合は、0.50×1018[atoms/cm3](JEIDA)(0.80×1018[atoms/cm3](old ASTM))以下と定めている。
【0009】
【発明が解決しようとする課題】
HMCZ装置を使用して、中性子照射用のHMCZシリコン単結晶の酸素濃度を低くするために、磁束密度を水平磁場印加装置の最大値に調節し、さらに比流速を大きくしたが、所望の低酸素濃度を得ることができなかった。
【0010】
たとえば、図3に示す米国特許第4565671号公報に記載の水平磁場印加装置では、図3に示すように、磁場の中心と融液の液面を一致させる構成が示されている。この構成では、磁場中心付近に形成される強磁場領域(コイル中心軸磁束密度と同程度の領域)が下半分しか有効に活用されないことを、本発明者らは究明した。
【0011】
また、図4に示す特開平9−188590号公報に記載の水平磁場印加装置においては、図4に示すように、磁場中心がシリコン融液の最下部付近に調整されている。この構成においても、強磁場領域が上半分しか活用されず、それは、MHCZシリコン単結晶の低酸素濃度化には極めて不利であることを、本発明者らは究明した。
【0012】
本発明は、HMCZシリコン単結晶の低酸素濃度化を実現することができるシリコン単結晶引上方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本願の請求項1に係る発明は、ヒーターで石英ルツボに充填されたポリシリコンを溶融して、シリコン融液を作り、そのシリコン融液に水平磁場を印加しながらシリコン単結晶を引上げる方法において、不活性ガス流量を炉内圧力で除した値を比流速と定義し、この比流速を1.0以下に制御し、かつ、シリコン融液の液面の変動に合わせて水平磁場の中心を移動させて、シリコン融液の深さ方向でみて、つねに水平磁場の中心をシリコン融液の中心から液面までの間の所定位置に制御することを特徴とするシリコン単結晶引上方法である。
【0014】
シリコン融液の液面の移動(たとえば降下)に合わせて水平磁場の中心を移動(降下)させると、より正確に低酸素濃度化が実現できる。
【0015】
また、比流速を1以下と小さくすると、HMCZシリコン単結晶の酸素濃度を低くすることができる。これに対し、シリコン融液に磁場を印加しない無磁界引上げ装置(CZ装置)におけるCZシリコン単結晶引上では、比流速を大きくすると、酸素濃度が低くなる。本発明による比流速と酸素濃度の関係は、シリコン融液に磁場を印加しない無磁界引上げ装置における関係とは正反対の結果になるのである。
【0016】
本願の請求項2に係る発明は、引き上げられつつあるシリコン単結晶の成長軸方向の酸素濃度分布に応じて、比流速1.0以下の範囲内で、結晶長変化率を調整するシリコン単結晶引上方法である。
【0017】
HMCZシリコン単結晶の成長軸方向の酸素濃度分布に対して、比流速を1.0以下の範囲にして、結晶長変化率を調整すると、引上げられるHMCZシリコン単結晶のすべてにおいて、所望の低酸素濃度をより確実に実現できる。
【0018】
本願の請求項3に係る発明は、シリコン融液の深さ方向でみて、水平磁場の中心が、融液の中心から液面までの間の最も酸素濃度が低い位置に調節されるシリコン単結晶引上方法である。
【0019】
シリコン融液の深さ方向(垂直方向)でみて、磁場中心(コイル中心軸)を融液の中心より上側半分の区間の最適位置に調節すると、融液中心より下側半分の区間に磁場中心を調整するよりも、MHCZシリコン単結晶の低酸素濃度効果が大幅に向上することを、本発明者らは新たな知見として見出した。この方法により、磁場中心付近に形成される強磁場領域の全体が有効に活用できる。その結果、融液の熱対流が効果的に抑制される。
【0020】
シリコン融液の中心とは、原則として、石英ルツボ内で溶融したシリコン融液の液面からその深さ方向に向かって石英ルツボ内の融液最下部までの距離の半分の深さの位置を示す。
【0021】
【実施例】
図5は、本発明の実施例を示す。
【0022】
図5において、横型磁場印加装置1が炉体2の外周に上下方向に移動可能に配置されており、そのための駆動手段や制御手段は図示していない。
【0023】
黒鉛製ルツボ3が炉体2内に設けられている。その黒鉛製ルツボ3の中に石英ルツボ4が保持されている。黒鉛製ヒーター5によって石英ルツボ4が加熱されて、石英ルツボ4内に充填されたポリシリコンが溶融して、シリコン融液6となる。
【0024】
横型磁場印加装置1によってシリコン融液6に水平磁場を印加しながら、シリコン単結晶7を引上げる。このとき、シリコン融液6の上方には輻射シールド8が設置される。輻射シールド8は輻射シールド支持筒9により保持される。
【0025】
また、熱源である黒鉛製ヒーター5を囲むように黒鉛製内部保温筒10が配置され、その黒鉛製内部保温筒10の外側には高断熱性保温筒11が配置されている。さらに、高断熱性保温筒11の上面には上部保温板12が配置されている。黒鉛製ルツボ3の下方には、その黒鉛製ルツボ3を保持する黒鉛製シャフト13と、その上に黒鉛製ルツボ受皿14が配置されている。最下部には下部受皿15が配置される。
【0026】
横型磁場印加装置1のコイル1において発生した磁場分布では、コイル中心軸付近に比較的強い磁束密度(コイル中心軸の磁束密度と同程度)の領域が形成される。このようにシリコン融液に水平磁場が印加されると、融液の熱対流が抑制される。その結果、低酸素濃度化がはかれる。
【0027】
図5のHMCZ装置において、5インチ(100)方位のHMCZシリコン単結晶の引上げを行い、所望の低酸素濃度が得られるか否かを確認した。
【0028】
各実施例1〜3において、実施形態は18インチホットゾーン、ポリシリコン60kgチャージ、磁場中心3000ガウス、ルツボ回転0.1rpm、シード回転13rpmであった。
【0029】
図5に示すように、融液表面から垂直方向(融液深さ方向)に融液最下部までの距離(融液深さ)をDとする。
【0030】
また、所望の酸素濃度は0.6×1018[atoms/cm3](old A STM)以下とする。
【0031】
実施例1
融液の液面が変動したとき、それに合わせて、つねに磁場中心(コイル中心軸)が融液の液面から垂直方向(融液深さ方向)にみてD/4の位置にくるように調節し、かつ、HMCZシリコン単結晶の引上当初から引上完了までの比流速を1.0として実施した。つまり、比流速は、(50リットル/min)/(50torr)=1.0であった。この場合の酸素濃度を図7に示す。
【0032】
実施例1においては、図7からもわかるように、得られたHMCZシリコン単結晶の尾部側で所望の酸素濃度を超える結果となった。
【0033】
実施例2
磁場中心を実施例1と同様に融液の液面から垂直方向(融液深さ方向)でみてD/4の位置にくるように調節し、引上当初から引上完了にかけて、比流速を1.0から0.6まで任意に変化させて実施した。たとえば、比流速は、(50リットル/min)/(80torr)=0.6であった。この場合の酸素濃度を同じく図7に示す。
【0034】
実施例2では、得られたHMCZシリコン単結晶のすべてが所望の酸素濃度となった。
【0035】
実施例3
磁場中心を実施例1〜2と同様に制御し、引上当初から引上完了にかけて、比流速を1.0から0.375まで任意に変化させて実施した。たとえば、比流速は、(30リットル/min)/(80torr)=0.375であった。この場合の酸素濃度を同じく図7に示す。
【0036】
実施例3においては、得られたHMCZシリコン単結晶のすべてが所望の酸素濃度となったばかりではなく、実施例2と比較して、さらに低い酸素濃度が得られた。
【0037】
比較例1
比較例1では、磁場中心を実施例1と同様に制御し、引上当初から引上完了にかけて、比流速を1.6として実施した。つまり、比流速は、(80リットル/min)/(50torr)=1.6であった。この場合の酸素濃度を同じく図7に示す。
【0038】
比較例1は、得られたHMCZシリコン単結晶の尾部側で所望の酸素濃度を大きく超える結果となった。この比較例1により、比流速が1.0を超えると低酸素濃度化には不利であることが検証された。
【0039】
比較例2
比較例2では、引上当初から引上完了にかけて、比流速を1.0とし、磁場中心を融液の液面と一致するように調節して実施した(図3)。この場合の酸素濃度を同じく図7に示す。
【0040】
比較例2は、実施例1と比較して、酸素濃度が高くなった。この比較例2によれば、図3で示すように、コイル中心軸付近に形成される強磁場領域(とくに上半分)が有効に活用されていなければ、低酸素濃度化には不利であることが検証された。
【0041】
比較例3
比較例3でも、引上当初から引上完了にかけて比流速を1.0とし、磁場中心を融液の最下部と一致するように調節して実施した(図4)。この場合の酸素濃度を同じく図7に示す。
【0042】
比較例3は、実施例1と比較して、酸素濃度が極めて高くなった。この比較例3によれば、図4で示すように、コイル中心軸付近に形成される強磁場領域(とくに下半分)が有効に活用されず、さらに磁場中心が融液の深さ方向の上側半分の区間に調節されていなければ、低酸素濃度化には極めて不利であることが検証された。
【0043】
前述のHMCZ装置によるシリコン単結晶の引上げにおいて、(従来は明らかになっていなかった)比流速と酸素濃度との関係を検証し、さらには、融液に対する磁場中心位置と酸素濃度との関係を明確にすることに成功した。これにより、HMCZシリコン単結晶の低酸素濃度化に極めて有効な製造条件を究明することができた。
【0044】
まず、不活性ガス流量(単位[リットル/min])を炉内圧力(単位[Torr])で除した値を比流速と定義し、この比流速を1.0以下に制御することが、極めて有効な製造条件である。
【0045】
これに加えて、垂直方向(シリコン融液深さ方向)でみて、磁場中心(コイル中心軸)を融液中心より上側半分の区間内の最適位置に調節することが重要である。これにより、HMCZシリコン単結晶の酸素濃度を低く抑えることがより効果的となる。特に、中性子照射用としては、照射後の結晶格子の損傷を回復させるために実施する熱処理後のライフタイム低下を防止する効果が顕著となる。
【0046】
図8は、本発明の変形例を示す。
【0047】
図8のHMCZ装置においては、図5のHMCZ装置に加えて、シリコン融液6の上方に設置された輻射シールド8を支える輻射シールド支持筒9の外側に高断熱性上部保温筒16を設置している。
【0048】
こうすることで、黒鉛製ヒーター5の消費電力削減を図り、その結果として、シリコン融液と石英ルツボの反応が緩和される。そのため、シリコン融液の酸素濃度が低くなる効果がより顕著となる。
【図面の簡単な説明】
【図1】従来のHMCZ装置を示す説明図。
【図2】HMCZ装置における強磁場領域を示す説明図。
【図3】従来の強磁場領域と融液の関係の一例を示す。
【図4】従来の強磁場領域と融液の関係の他の例を示す。
【図5】本発明によるHMCZ装置の実施形態の一例を示す説明図。
【図6】従来例と本発明の実施例に関する磁場中心と酸素濃度の関係を示す説明図。
【図7】本発明の実施例および比較例の酸素濃度結果を示すグラフ。
【図8】本発明の変形例を示す。
【符号の説明】
1 横型磁場印加装置
2 炉体
3 黒鉛製ルツボ
4 石英ルツボ
5 黒鉛製ヒーター
6 シリコン融液
7 シリコン単結晶
8 輻射シールド
9 輻射シールド支持筒
10 黒鉛製内部保温筒
11 高断熱性保温筒
12 上部保温板
13 黒鉛製シャフト
14 黒鉛製ルツボ受皿
15 下部受皿
16 高断熱性上部保温筒
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention, transverse magnetic field applied pulling (H orizontal M agnetic Field Applied Cz ochralski hereinafter referred to as HMCZ) low oxygen concentration in the growth axis direction relates pulling method of a silicon single crystal by the apparatus for, particularly HMCZ silicon single crystal The present invention relates to a method for pulling a silicon single crystal that can be realized.
[0002]
[Prior art]
FIG. 1 schematically shows a conventional HMCZ apparatus.
[0003]
In FIG. 1, a horizontal magnetic field applying device 1 is arranged on the outer periphery of a furnace body 2. A graphite crucible 3 is provided in the furnace body 2 and a quartz crucible 4 is held therein. The graphite heater 5 melts the polysilicon filled in the quartz crucible 4 to form a silicon melt 6. While applying a horizontal magnetic field to the silicon melt 6, the silicon single crystal 7 is pulled up. At this time, a radiation shield 8 is provided above the silicon melt 6. The radiation shield 8 is held by the radiation shield support cylinder 9. A graphite internal heat retaining cylinder 10 is disposed so as to surround the graphite heater 5 serving as a heat source, and a high heat insulating thermal retaining cylinder 11 is disposed outside the graphite internal heat retaining cylinder 10. Further, an upper heat insulating plate 12 is arranged on the upper surface of the high heat insulating heat insulating cylinder 11. Below the graphite crucible 3, a graphite shaft 13 for holding the graphite crucible 3 and a graphite crucible tray 14 are arranged, and a lower tray 15 is arranged at the lowest part.
[0004]
As shown in FIG. 2, in the magnetic field distribution generated in the left and right coils 1, a region of relatively strong magnetic flux density (similar to the magnetic flux density of the coil central axis) near the coil central axis is indicated by hatching in FIG. Where it is formed.
[0005]
In pulling an HMCZ silicon single crystal by such an HMCZ apparatus, a horizontal magnetic field is applied to the silicon melt, and thermal convection of the melt is suppressed, which is effective in reducing the oxygen concentration of the HMCZ silicon single crystal. Furthermore, the greater the magnetic flux density of the horizontal magnetic field applied from the outside of the furnace body 2, the greater the effect of suppressing the heat convection of the melt, so the oxygen concentration is further reduced.
[0006]
On the other hand, when a CZ silicon single crystal is pulled by a non-magnetic field pulling device (CZ device) that does not apply a magnetic field to the silicon melt, the oxygen concentration of the CZ silicon single crystal is adjusted by increasing or decreasing the inert gas flow rate and the furnace pressure. Can be controlled. When the value obtained by dividing the inert gas flow rate (unit [liter / mm]) by the furnace pressure (unit [Torr]) is defined as the specific flow rate, if the specific flow rate is large, the oxygen concentration becomes low and the specific flow rate is small. And the oxygen concentration increases.
[0007]
By the way, the HMCZ silicon single crystal pulled by the HMCZ apparatus is used as a raw material for impurity doping by neutron irradiation. After neutron irradiation, heat treatment is performed to recover damage to the crystal lattice arrangement due to irradiation, and it is known that this time causes a reduction in lifetime.
[0008]
In Japanese Patent No. 2635450, the oxygen concentration is limited in a HMCZ silicon single crystal that has been subjected to neutron irradiation in order to prevent a decrease in the lifetime after the damage recovery heat treatment. For example, in the case of irradiation with a heavy water reactor, it is determined to be 0.90 × 10 18 [atoms / cm 3 ] (JEIDA) (1.44 × 10 18 [atoms / cm 3 ] (old ASTM)) or less. In the case of light water reactor irradiation, it is specified to be 0.50 × 10 18 [atoms / cm 3 ] (JEIDA) (0.80 × 10 18 [atoms / cm 3 ] (old ASTM)) or less.
[0009]
[Problems to be solved by the invention]
In order to lower the oxygen concentration of the HMCZ silicon single crystal for neutron irradiation using an HMCZ device, the magnetic flux density was adjusted to the maximum value of the horizontal magnetic field application device, and the specific flow rate was further increased. No concentration could be obtained.
[0010]
For example, in the horizontal magnetic field applying device described in U.S. Pat. No. 4,565,671 shown in FIG. 3, a configuration is shown in which the center of the magnetic field and the liquid level of the melt coincide with each other, as shown in FIG. The present inventors have found that in this configuration, only the lower half of the strong magnetic field region (region of the same order as the coil center axis magnetic flux density) formed near the center of the magnetic field is effectively used.
[0011]
Further, in the horizontal magnetic field applying apparatus described in Japanese Patent Application Laid-Open No. 9-188590 shown in FIG. 4, the center of the magnetic field is adjusted near the lowermost portion of the silicon melt as shown in FIG. Also in this configuration, the present inventors have found that only the upper half of the high magnetic field region is utilized, which is extremely disadvantageous for reducing the oxygen concentration of the MHCZ silicon single crystal.
[0012]
An object of the present invention is to provide a silicon single crystal pulling method capable of realizing a low oxygen concentration of an HMCZ silicon single crystal.
[0013]
[Means for Solving the Problems]
The invention according to claim 1 of the present application is directed to a method of pulling a silicon single crystal while melting a polysilicon filled in a quartz crucible with a heater to form a silicon melt and applying a horizontal magnetic field to the silicon melt. The value obtained by dividing the flow rate of the inert gas by the pressure in the furnace is defined as a specific flow rate. This specific flow rate is controlled to 1.0 or less, and the center of the horizontal magnetic field is adjusted in accordance with the fluctuation of the liquid level of the silicon melt. It is a method for pulling a silicon single crystal, wherein the center of the horizontal magnetic field is always controlled to a predetermined position between the center of the silicon melt and the liquid surface, as viewed in the depth direction of the silicon melt by moving the silicon single crystal. .
[0014]
If the center of the horizontal magnetic field is moved (downward) in accordance with the movement (for example, down) of the liquid surface of the silicon melt, the oxygen concentration can be more accurately reduced.
[0015]
When the specific flow rate is reduced to 1 or less, the oxygen concentration of the HMCZ silicon single crystal can be reduced. On the other hand, in the case of pulling a CZ silicon single crystal in a non-magnetic field pulling apparatus (CZ apparatus) in which no magnetic field is applied to the silicon melt, the oxygen concentration decreases as the specific flow rate increases. The relationship between the specific flow rate and the oxygen concentration according to the present invention has the opposite result to the relationship in the non-magnetic field pulling apparatus in which no magnetic field is applied to the silicon melt.
[0016]
The invention according to claim 2 of the present application is directed to a silicon single crystal that adjusts a crystal length change rate within a range of a specific flow rate of 1.0 or less according to an oxygen concentration distribution in a growth axis direction of a silicon single crystal being pulled. It is a lifting method.
[0017]
With respect to the oxygen concentration distribution in the growth axis direction of the HMCZ silicon single crystal, when the specific flow rate is set to a range of 1.0 or less and the crystal length change rate is adjusted, the desired low oxygen concentration is obtained in all the pulled HMCZ silicon single crystals. The concentration can be realized more reliably.
[0018]
The invention according to claim 3 of the present application is directed to a silicon single crystal in which the center of the horizontal magnetic field is adjusted to the position where the oxygen concentration is lowest between the center of the melt and the liquid surface when viewed in the depth direction of the silicon melt. It is a lifting method.
[0019]
When the center of the magnetic field (coil center axis) is adjusted to the optimum position in the upper half section from the center of the melt when viewed in the depth direction (vertical direction) of the silicon melt, the magnetic field center is located in the lower half section from the melt center. The present inventors have found as a new finding that the low oxygen concentration effect of the MHCZ silicon single crystal is significantly improved as compared with the case of adjusting the temperature. According to this method, the entire strong magnetic field region formed near the center of the magnetic field can be effectively used. As a result, thermal convection of the melt is effectively suppressed.
[0020]
The center of the silicon melt is, as a rule, a position at a depth of half the distance from the surface of the silicon melt melted in the quartz crucible to the bottom of the melt in the quartz crucible in the depth direction. Show.
[0021]
【Example】
FIG. 5 shows an embodiment of the present invention.
[0022]
In FIG. 5, the horizontal magnetic field applying device 1 is arranged on the outer periphery of the furnace body 2 so as to be vertically movable, and a driving means and a control means therefor are not shown.
[0023]
A graphite crucible 3 is provided in the furnace body 2. A quartz crucible 4 is held in the graphite crucible 3. The quartz crucible 4 is heated by the graphite heater 5, and the polysilicon filled in the quartz crucible 4 is melted to form a silicon melt 6.
[0024]
While applying a horizontal magnetic field to the silicon melt 6 by the horizontal magnetic field applying device 1, the silicon single crystal 7 is pulled up. At this time, a radiation shield 8 is provided above the silicon melt 6. The radiation shield 8 is held by the radiation shield support cylinder 9.
[0025]
A graphite internal heat retaining cylinder 10 is disposed so as to surround the graphite heater 5 serving as a heat source, and a high heat insulating thermal retaining cylinder 11 is disposed outside the graphite internal heat retaining cylinder 10. Further, an upper heat insulating plate 12 is arranged on the upper surface of the high heat insulating heat insulating cylinder 11. Below the graphite crucible 3, a graphite shaft 13 for holding the graphite crucible 3 and a graphite crucible tray 14 are arranged thereon. A lower tray 15 is disposed at the lowermost position.
[0026]
In the magnetic field distribution generated in the coil 1 of the horizontal magnetic field applying device 1, a region having a relatively strong magnetic flux density (about the same as the magnetic flux density of the coil central axis) is formed near the coil central axis. When a horizontal magnetic field is applied to the silicon melt in this way, the heat convection of the melt is suppressed. As a result, the oxygen concentration is reduced.
[0027]
In the HMCZ apparatus shown in FIG. 5, a 5-inch (100) orientation HMCZ silicon single crystal was pulled, and it was confirmed whether or not a desired low oxygen concentration could be obtained.
[0028]
In each of Examples 1 to 3, the embodiment has an 18-inch hot zone, a polysilicon charge of 60 kg, a magnetic field center of 3000 Gauss, a crucible rotation of 0.1 rpm, and a seed rotation of 13 rpm.
[0029]
As shown in FIG. 5, the distance (melt depth) from the melt surface to the lowermost portion of the melt in the vertical direction (melt depth direction) is represented by D.
[0030]
The desired oxygen concentration is set to 0.6 × 10 18 [atoms / cm 3 ] (old ASTM) or less.
[0031]
Example 1
When the liquid level of the melt fluctuates, the center of the magnetic field (coil central axis) is always adjusted to the position of D / 4 when viewed from the liquid level of the melt in the vertical direction (the depth direction of the melt). In addition, the specific flow rate from the beginning of the pulling of the HMCZ silicon single crystal to the completion of the pulling was set at 1.0. That is, the specific flow rate was (50 liters / min) / (50 torr) = 1.0. FIG. 7 shows the oxygen concentration in this case.
[0032]
In Example 1, as can be seen from FIG. 7, the result exceeded the desired oxygen concentration on the tail side of the obtained HMCZ silicon single crystal.
[0033]
Example 2
As in Example 1, the center of the magnetic field was adjusted so as to be at the position of D / 4 when viewed from the melt surface in the vertical direction (the melt depth direction). The test was carried out by arbitrarily changing from 1.0 to 0.6. For example, the specific flow rate was (50 liters / min) / (80 torr) = 0.6. FIG. 7 also shows the oxygen concentration in this case.
[0034]
In Example 2, all of the obtained HMCZ silicon single crystals had a desired oxygen concentration.
[0035]
Example 3
The center of the magnetic field was controlled in the same manner as in Examples 1 and 2, and the specific flow rate was arbitrarily changed from 1.0 to 0.375 from the beginning to the completion of the lifting. For example, the specific flow rate was (30 l / min) / (80 torr) = 0.375. FIG. 7 also shows the oxygen concentration in this case.
[0036]
In Example 3, not only all of the obtained HMCZ silicon single crystals had a desired oxygen concentration, but also a lower oxygen concentration was obtained as compared with Example 2.
[0037]
Comparative Example 1
In Comparative Example 1, the magnetic field center was controlled in the same manner as in Example 1, and the specific flow rate was set to 1.6 from the beginning to the completion of the pulling. That is, the specific flow rate was (80 liters / min) / (50 torr) = 1.6. FIG. 7 also shows the oxygen concentration in this case.
[0038]
In Comparative Example 1, the result was that the oxygen concentration on the tail side of the obtained HMCZ silicon single crystal greatly exceeded the desired oxygen concentration. According to Comparative Example 1, it was verified that when the specific flow rate exceeded 1.0, it was disadvantageous for lowering the oxygen concentration.
[0039]
Comparative Example 2
In Comparative Example 2, the specific flow rate was set to 1.0 and the center of the magnetic field was adjusted so as to coincide with the liquid level of the melt from the beginning to the completion of the lifting (FIG. 3). FIG. 7 also shows the oxygen concentration in this case.
[0040]
In Comparative Example 2, the oxygen concentration was higher than in Example 1. According to this comparative example 2, as shown in FIG. 3, if the high magnetic field region (especially the upper half) formed near the center axis of the coil is not effectively used, it is disadvantageous for lowering the oxygen concentration. Has been verified.
[0041]
Comparative Example 3
In Comparative Example 3, the specific flow rate was set to 1.0 from the beginning to the completion of the pulling, and the center of the magnetic field was adjusted so as to coincide with the lowermost part of the melt (FIG. 4). FIG. 7 also shows the oxygen concentration in this case.
[0042]
In Comparative Example 3, the oxygen concentration was extremely higher than that in Example 1. According to Comparative Example 3, as shown in FIG. 4, the strong magnetic field region (especially the lower half) formed near the center axis of the coil is not effectively utilized, and the magnetic field center is located above the melt in the depth direction. It was verified that if the regulation was not performed in half the section, it would be extremely disadvantageous for lowering the oxygen concentration.
[0043]
In pulling a silicon single crystal by the above-mentioned HMCZ apparatus, the relationship between the specific flow rate and the oxygen concentration (which was not clarified conventionally) was verified. Successfully clarified. As a result, it was possible to find manufacturing conditions that are extremely effective in reducing the oxygen concentration of the HMCZ silicon single crystal.
[0044]
First, a value obtained by dividing an inert gas flow rate (unit [liter / min]) by a furnace pressure (unit [Torr]) is defined as a specific flow rate, and controlling this specific flow rate to 1.0 or less is extremely difficult. These are effective manufacturing conditions.
[0045]
In addition to this, it is important to adjust the center of the magnetic field (coil center axis) to the optimum position in the upper half section from the center of the melt when viewed in the vertical direction (the silicon melt depth direction). This makes it more effective to keep the oxygen concentration of the HMCZ silicon single crystal low. In particular, for neutron irradiation, the effect of preventing a reduction in the lifetime after heat treatment performed to recover damage to the crystal lattice after irradiation is remarkable.
[0046]
FIG. 8 shows a modification of the present invention.
[0047]
In the HMCZ apparatus shown in FIG. 8, in addition to the HMCZ apparatus shown in FIG. ing.
[0048]
By doing so, the power consumption of the graphite heater 5 is reduced, and as a result, the reaction between the silicon melt and the quartz crucible is reduced. Therefore, the effect of lowering the oxygen concentration of the silicon melt becomes more remarkable.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a conventional HMCZ apparatus.
FIG. 2 is an explanatory diagram showing a strong magnetic field region in the HMCZ apparatus.
FIG. 3 shows an example of a conventional relationship between a strong magnetic field region and a melt.
FIG. 4 shows another example of a conventional relationship between a strong magnetic field region and a melt.
FIG. 5 is an explanatory view showing an example of an embodiment of an HMCZ apparatus according to the present invention.
FIG. 6 is an explanatory diagram showing the relationship between the center of the magnetic field and the oxygen concentration in the conventional example and the embodiment of the present invention.
FIG. 7 is a graph showing the results of oxygen concentration in Examples of the present invention and Comparative Examples.
FIG. 8 shows a modification of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Horizontal magnetic field application apparatus 2 Furnace body 3 Graphite crucible 4 Quartz crucible 5 Graphite heater 6 Silicon melt 7 Silicon single crystal 8 Radiation shield 9 Radiation shield support cylinder 10 Graphite internal thermal insulation cylinder 11 High heat insulation thermal insulation cylinder 12 Upper thermal insulation Plate 13 Graphite shaft 14 Graphite crucible pan 15 Lower pan 16 Highly heat-insulating upper insulation tube

Claims (3)

ヒーターで石英ルツボに充填されたポリシリコンを溶融して、シリコン融液を作り、そのシリコン融液に水平磁場を印加しながらシリコン単結晶を引上げる方法において、不活性ガス流量を炉内圧力で除した値を比流速と定義し、この比流速を1.0以下に制御し、かつ、シリコン融液の液面の変動に合わせて水平磁場の中心を移動させて、シリコン融液の深さ方向でみて、つねに水平磁場の中心をシリコン融液の中心から液面までの間の所定位置に制御することを特徴とするシリコン単結晶引上方法。In a method of melting the polysilicon filled in a quartz crucible with a heater to form a silicon melt and pulling a silicon single crystal while applying a horizontal magnetic field to the silicon melt, the inert gas flow rate is controlled by the furnace pressure. The divided value is defined as a specific flow rate, the specific flow rate is controlled to 1.0 or less, and the center of the horizontal magnetic field is moved in accordance with the fluctuation of the liquid level of the silicon melt to obtain the depth of the silicon melt. A method for pulling a silicon single crystal, characterized in that the center of the horizontal magnetic field is always controlled to a predetermined position between the center of the silicon melt and the liquid surface when viewed in the direction. 引き上げられつつあるシリコン単結晶の成長軸方向の酸素濃度分布に応じて、比流速1.0以下の範囲内で、結晶長変化率を調整することを特徴とする請求項1に記載のシリコン単結晶引上方法。2. The silicon single crystal according to claim 1, wherein the crystal length change rate is adjusted within a range of a specific flow rate of 1.0 or less according to an oxygen concentration distribution in a growth axis direction of the silicon single crystal being pulled. Crystal pulling method. 水平磁場の中心が、シリコン融液の中心から液面までの間の最も酸素濃度が低い位置に維持されるように制御することを特徴とする請求項1に記載のシリコン単結晶引上方法。2. The method for pulling a silicon single crystal according to claim 1, wherein the center of the horizontal magnetic field is controlled so as to be maintained at a position where the oxygen concentration is lowest between the center of the silicon melt and the liquid surface.
JP2002364983A 2002-12-17 2002-12-17 Silicon single crystal pulling method Expired - Fee Related JP4153293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002364983A JP4153293B2 (en) 2002-12-17 2002-12-17 Silicon single crystal pulling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002364983A JP4153293B2 (en) 2002-12-17 2002-12-17 Silicon single crystal pulling method

Publications (2)

Publication Number Publication Date
JP2004196569A true JP2004196569A (en) 2004-07-15
JP4153293B2 JP4153293B2 (en) 2008-09-24

Family

ID=32762657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002364983A Expired - Fee Related JP4153293B2 (en) 2002-12-17 2002-12-17 Silicon single crystal pulling method

Country Status (1)

Country Link
JP (1) JP4153293B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204312A (en) * 2006-02-01 2007-08-16 Sumco Corp Method for manufacturing silicon single crystal
EP2031100A1 (en) * 2007-06-08 2009-03-04 Siltronic AG Manufacturing method of single crystal
KR100906284B1 (en) * 2007-11-02 2009-07-06 주식회사 실트론 Semiconductor single crystal growth method improved in oxygen concentration characteristics
CN101886289A (en) * 2009-05-13 2010-11-17 硅电子股份公司 The method and apparatus of growing silicon single crystal from melt
CN102534748A (en) * 2012-02-03 2012-07-04 江苏协鑫硅材料科技发展有限公司 Device and method for preparing casting monocrystalline silicon
WO2016082525A1 (en) * 2014-11-27 2016-06-02 吕铁铮 Device for moving small heat insulating plate at bottom of polycrystalline silicon ingot furnace and polycrystalline silicon ingot furnace
JP2017075082A (en) * 2015-10-15 2017-04-20 上海新昇半導體科技有限公司 Single crystal silicon ingot and method for forming wafer
DE112008000033B4 (en) * 2007-05-10 2020-02-27 Sumco Techxiv Corp. Method of manufacturing a single crystal
CN114086241A (en) * 2021-11-25 2022-02-25 西安奕斯伟材料科技有限公司 Method for drawing silicon single crystal rod and silicon single crystal rod
CN114122190A (en) * 2021-10-14 2022-03-01 山西潞安太阳能科技有限责任公司 Method for improving monocrystalline PERC thermal oxidation process by normal pressure diffusion equipment

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204312A (en) * 2006-02-01 2007-08-16 Sumco Corp Method for manufacturing silicon single crystal
DE112008000033B4 (en) * 2007-05-10 2020-02-27 Sumco Techxiv Corp. Method of manufacturing a single crystal
EP2031100A1 (en) * 2007-06-08 2009-03-04 Siltronic AG Manufacturing method of single crystal
US8172943B2 (en) 2007-06-08 2012-05-08 Siltronic Ag Single Crystal manufacturing method
KR101033250B1 (en) 2007-06-08 2011-05-06 실트로닉 아게 Manufacturing method of single crystal
US8114216B2 (en) 2007-11-02 2012-02-14 Siltron, Inc. Semiconductor single crystal growth method having improvement in oxygen concentration characteristics
KR100906284B1 (en) * 2007-11-02 2009-07-06 주식회사 실트론 Semiconductor single crystal growth method improved in oxygen concentration characteristics
US8460462B2 (en) * 2009-05-13 2013-06-11 Siltronic Ag Method and an apparatus for growing a silicon single crystal from a melt
EP2270264A1 (en) 2009-05-13 2011-01-05 Siltronic AG A method and an apparatus for growing a silicon single crystal from melt
US20100288185A1 (en) * 2009-05-13 2010-11-18 Siltronic Ag Method And An Apparatus For Growing A Silicon Single Crystal From A Melt
US8679251B2 (en) 2009-05-13 2014-03-25 Siltronic Ag Method and an apparatus for growing a silicon single crystal from a melt
CN101886289A (en) * 2009-05-13 2010-11-17 硅电子股份公司 The method and apparatus of growing silicon single crystal from melt
CN102534748A (en) * 2012-02-03 2012-07-04 江苏协鑫硅材料科技发展有限公司 Device and method for preparing casting monocrystalline silicon
WO2016082525A1 (en) * 2014-11-27 2016-06-02 吕铁铮 Device for moving small heat insulating plate at bottom of polycrystalline silicon ingot furnace and polycrystalline silicon ingot furnace
JP2017075082A (en) * 2015-10-15 2017-04-20 上海新昇半導體科技有限公司 Single crystal silicon ingot and method for forming wafer
CN114122190A (en) * 2021-10-14 2022-03-01 山西潞安太阳能科技有限责任公司 Method for improving monocrystalline PERC thermal oxidation process by normal pressure diffusion equipment
CN114122190B (en) * 2021-10-14 2023-12-26 山西潞安太阳能科技有限责任公司 Transformation method for realizing monocrystalline PERC (PERC) thermal oxidation process by normal pressure diffusion equipment
CN114086241A (en) * 2021-11-25 2022-02-25 西安奕斯伟材料科技有限公司 Method for drawing silicon single crystal rod and silicon single crystal rod
WO2023093460A1 (en) * 2021-11-25 2023-06-01 西安奕斯伟材料科技有限公司 Drawing method for monocrystalline silicon rod, and monocrystalline silicon rod
TWI812402B (en) * 2021-11-25 2023-08-11 大陸商西安奕斯偉材料科技股份有限公司 A kind of drawing method of single crystal silicon rod and single crystal silicon rod

Also Published As

Publication number Publication date
JP4153293B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
US7559988B2 (en) Method and apparatus for growing high quality silicon single crystal, silicon single crystal ingot grown thereby and wafer produced from the same single crystal ingot
US8216372B2 (en) Apparatus for growing high quality silicon single crystal ingot and growing method using the same
EP2722422B1 (en) method, apparatus and crucible for producing SiC single crystal by solution growth
KR20070102675A (en) Controlling melt-solid interface shape of a growing silicon crystal using a variable magnetic field
JP5945971B2 (en) Silicon single crystal pulling device
KR101048831B1 (en) Graphite heater for producing single crystal, single crystal manufacturing device and single crystal manufacturing method
JP4153293B2 (en) Silicon single crystal pulling method
JP2007182373A (en) Method for producing high quality silicon single crystal and silicon single crystal wafer made by using the same
JP5782323B2 (en) Single crystal pulling method
JP2014080302A (en) Single crystal pulling apparatus and single crystal pulling method
KR101675903B1 (en) Apparatus and method for manufacturing semiconductor single crystal
KR101540566B1 (en) A method of growing a single crystal ingot
JP2004099416A (en) Heater for producing crystal, and apparatus for and method of producing crystal
JP5489064B2 (en) Method for growing silicon single crystal
CN114616361B (en) Method for producing silicon single crystal
JP2004323247A (en) FURNACE FOR MANUFACTURING SiC SINGLE CRYSTAL
KR20100127699A (en) Semiconductor single crystal ingot dopped by carbon and method of manufacturing the same
JP5145176B2 (en) Silicon single crystal pulling apparatus and silicon single crystal pulling method
JP2004203687A (en) Apparatus for manufacturing compound semiconductor
KR100831052B1 (en) Method for controlling oxygen content in silicon single crystalline ingot, ingot produced thereby
KR101100862B1 (en) Silicon wafer and method of manufacturing silicon single crystal ingot
KR102037751B1 (en) Method and apparatus for manufacturing silicon wafer
JP2010030860A (en) Method for growing silicon single crystal
JP2008019128A (en) Apparatus for producing single crystal, method for producing single crystal, and single crystal
JPH09263481A (en) Apparatus for pulling single crystal and method for pulling single crystal using the shame device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080703

R150 Certificate of patent or registration of utility model

Ref document number: 4153293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees