JP2007204312A - Method for manufacturing silicon single crystal - Google Patents

Method for manufacturing silicon single crystal Download PDF

Info

Publication number
JP2007204312A
JP2007204312A JP2006024696A JP2006024696A JP2007204312A JP 2007204312 A JP2007204312 A JP 2007204312A JP 2006024696 A JP2006024696 A JP 2006024696A JP 2006024696 A JP2006024696 A JP 2006024696A JP 2007204312 A JP2007204312 A JP 2007204312A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
silicon
magnetic field
liquid surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006024696A
Other languages
Japanese (ja)
Other versions
JP5034247B2 (en
Inventor
Hideki Hara
英輝 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2006024696A priority Critical patent/JP5034247B2/en
Publication of JP2007204312A publication Critical patent/JP2007204312A/en
Application granted granted Critical
Publication of JP5034247B2 publication Critical patent/JP5034247B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a silicon single crystal having a uniform in-plane distribution of the oxygen concentration in the radial direction. <P>SOLUTION: In a method for manufacturing a silicon single crystal by pulling a silicon single crystal SI from a silicon melt M contained in a crucible 2 and growing, a magnetic field applying step is equipped to apply a magnetic field 9 in the radial direction of the silicon single crystal SI and the height position B of the center A of the magnetic field 9 from the liquid surface of the silicon melt M is set at a position where the in-plane distribution of oxygen concentration in the radial direction in the silicon single crystal SI is uniform. Specifically, the height position B of the center of the magnetic field 9 from the liquid surface of the silicon melt is preferably 0-80 mm above the liquid surface, and more preferably 60-80 mm above the liquid surface. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、酸素濃度の径方向面内分布が均一であるシリコン単結晶を製造できるシリコン単結晶の製造方法に関する。   The present invention relates to a method for producing a silicon single crystal capable of producing a silicon single crystal having a uniform oxygen concentration radial in-plane distribution.

シリコン単結晶は、坩堝に収容された多結晶シリコン原料をヒータで加熱してシリコン融液とし、チョクラルスキー法(以下、「CZ法」と略記する。)によりシリコン融液から引き上げながら成長させることにより製造される。シリコン基板は、上記の方法で製造されたシリコン単結晶をスライス(切断)することにより製造される。近年、半導体回路の高集積化による素子の微細化に伴い、その基板となるシリコン単結晶に対する品質要求が高まってきている。   A silicon single crystal is grown while being pulled from a silicon melt by the Czochralski method (hereinafter abbreviated as “CZ method”) by heating a polycrystalline silicon raw material contained in a crucible with a heater to form a silicon melt. It is manufactured by. The silicon substrate is manufactured by slicing (cutting) the silicon single crystal manufactured by the above method. In recent years, with the miniaturization of elements due to high integration of semiconductor circuits, quality requirements for a silicon single crystal serving as a substrate have increased.

従来からシリコン融液の対流を抑制することができ均一なシリコン単結晶が得られる方法として、磁場中引き上げ法(以下、「MCZ法」と略記する。)が知られている(例えば、特許文献1を参照)。
特開昭64−24090号公報
Conventionally, a method of pulling up in a magnetic field (hereinafter abbreviated as “MCZ method”) is known as a method for obtaining a uniform silicon single crystal capable of suppressing convection of a silicon melt (for example, Patent Documents). 1).
JP-A 64-24090

しかしながら、特許文献1の技術は、シリコン単結晶の引き上げ速度を低下させることなく、シリコン単結晶中の酸素濃度を増加させることを目的とするものであり、酸素濃度の径方向面内分布が均一であるシリコン単結晶を製造できるものではなかった。
このため、シリコン単結晶の酸素濃度の径方向面内分布におけるばらつきを小さくすることが要求されていた。特に、シリコン単結晶の径方向面内における外周に近い領域で酸素濃度が少なくなる現象が発生することがあり、問題となっていた。この問題を解決するため、従来から、シリコン単結晶を製造する際に必要な外形寸法よりも大きい外形寸法の単結晶を成長させ、成長後に外周部分を削って酸素濃度が所定濃度よりも少なくなっている部分をとり除く方法が行われている。しかしながら、単結晶の成長後に外周部分を削る場合、無駄になる減量が多いことや、削る手間がかかるという不都合があった。
However, the technique of Patent Document 1 aims to increase the oxygen concentration in the silicon single crystal without reducing the pulling rate of the silicon single crystal, and the radial in-plane distribution of the oxygen concentration is uniform. It was not possible to produce a silicon single crystal.
For this reason, it has been required to reduce the variation in the radial in-plane distribution of the oxygen concentration of the silicon single crystal. In particular, a phenomenon that the oxygen concentration decreases in a region near the outer periphery in the radial direction plane of the silicon single crystal may occur, which is a problem. In order to solve this problem, conventionally, a single crystal having an outer dimension larger than that required for manufacturing a silicon single crystal is grown, and after the growth, the outer peripheral portion is shaved to reduce the oxygen concentration below a predetermined concentration. The method of removing the part which is done is done. However, when the outer peripheral portion is cut after the growth of the single crystal, there are inconveniences that a lot of weight loss is wasted and that it takes time and effort to cut.

本発明は、上記事情に鑑みてなされたものであり、酸素濃度の径方向面内分布が均一であるシリコン単結晶を製造できるシリコン単結晶の製造方法を実現することを目的とする。   This invention is made | formed in view of the said situation, and it aims at implement | achieving the manufacturing method of the silicon single crystal which can manufacture the silicon single crystal with which radial direction surface distribution of oxygen concentration is uniform.

上記課題を解決するために、本発明のシリコン単結晶の製造方法は、坩堝に収容されたシリコン融液からシリコン単結晶を引き上げながら成長させて製造するシリコン単結晶の製造方法において、前記シリコン単結晶の径方向に磁場を印加する磁場印加ステップを備え、前記シリコン融液の液面に対する前記磁場の中心高さ位置を、前記シリコン単結晶中の酸素濃度の径方向面内分布が均一になる位置としたことを特徴とする。
本発明によれば、シリコン融液の液面に対する前記磁場の中心高さ位置を、シリコン単結晶中の酸素濃度の径方向面内分布が均一になる位置としているので、酸素濃度の径方向面内分布が均一であるシリコン単結晶を製造できる。
In order to solve the above-described problems, a method for producing a silicon single crystal according to the present invention is the method for producing a silicon single crystal, wherein the silicon single crystal is produced by growing while pulling up a silicon single crystal from a silicon melt contained in a crucible. A magnetic field applying step for applying a magnetic field in the radial direction of the crystal, and the radial distribution in the radial direction of the oxygen concentration in the silicon single crystal is uniform at the center height position of the magnetic field with respect to the liquid surface of the silicon melt. It is characterized by its position.
According to the present invention, the position of the center height of the magnetic field with respect to the liquid surface of the silicon melt is a position where the distribution in the radial direction of the oxygen concentration in the silicon single crystal is uniform. A silicon single crystal having a uniform internal distribution can be manufactured.

また、上記のシリコン単結晶の製造方法においては、前記シリコン融液の液面に対する前記磁場の中心高さ位置を、液面上方0〜80mmの範囲とすることができる。
このような製造方法とすることで、酸素濃度の径方向面内分布が均一であるシリコン単結晶を容易に製造できる。
In the method for producing a silicon single crystal, the center height position of the magnetic field with respect to the liquid surface of the silicon melt can be set in a range of 0 to 80 mm above the liquid surface.
By adopting such a manufacturing method, a silicon single crystal having a uniform distribution in the radial direction of the oxygen concentration can be easily manufactured.

また、上記のシリコン単結晶の製造方法においては、前記シリコン融液の液面に対する前記磁場の中心高さ位置を、液面上方60〜80mmの範囲とすることができる。
このような製造方法とすることで、シリコン単結晶の径方向面内における外周に近い領域で酸素濃度が少なくなる現象の発生を抑止することができ、酸素濃度の径方向面内分布が外周に近い領域まで均一であるシリコン単結晶を製造できる。
In the method for producing a silicon single crystal, the center height position of the magnetic field with respect to the liquid surface of the silicon melt can be set in a range of 60 to 80 mm above the liquid surface.
By using such a manufacturing method, it is possible to suppress the occurrence of a phenomenon in which the oxygen concentration decreases in a region near the outer periphery in the radial plane of the silicon single crystal, and the radial in-plane distribution of the oxygen concentration is on the outer periphery. A silicon single crystal that is uniform up to a near region can be manufactured.

本発明によれば、シリコン融液の液面に対する前記磁場の中心高さ位置を、シリコン単結晶中の酸素濃度の径方向面内分布が均一になる位置としているので、酸素濃度の径方向面内分布が均一であるシリコン単結晶を製造できる。   According to the present invention, the position of the center height of the magnetic field with respect to the liquid surface of the silicon melt is a position where the distribution in the radial direction of the oxygen concentration in the silicon single crystal is uniform. A silicon single crystal having a uniform internal distribution can be manufactured.

以下、図面を参照して本発明の一実施形態によるシリコン単結晶の製造方法について詳細に説明する。図1は、本発明の第1実施形態によるシリコン単結晶の製造方法において使用するシリコン単結晶製造装置の概略断面図である。図1において、符号2は石英で形成された坩堝であり、坩堝2の両側には一対の磁気コイル1、1が所定の間隔を空けて対向配置されている。また、坩堝2は、坩堝2から所定の間隔をあけて坩堝2と磁気コイル1、1との間に配置された筒状のヒータ(図示略)により包囲されている。   Hereinafter, a method for producing a silicon single crystal according to an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a silicon single crystal manufacturing apparatus used in the method for manufacturing a silicon single crystal according to the first embodiment of the present invention. In FIG. 1, reference numeral 2 denotes a crucible made of quartz, and a pair of magnetic coils 1 and 1 are arranged on both sides of the crucible 2 so as to face each other with a predetermined interval. The crucible 2 is surrounded by a cylindrical heater (not shown) disposed between the crucible 2 and the magnetic coils 1 and 1 at a predetermined interval from the crucible 2.

坩堝2には、坩堝2に投入された高純度のシリコン多結晶体をヒータで加熱・融解して得られたシリコン融液Mが収容されている。シリコン単結晶SIは、下面がシリコン融液Mの液面に接するように、引上げワイヤー(図示略)により坩堝2の回転中心に向って垂下されている。
坩堝2は不図示の坩堝駆動手段に接続され、坩堝2が水平面内で回転し得るとともに、シリコン融液Mの液面変化に対応して上下方向に移動可能となっている。また、磁気コイル1、1は不図示の磁気コイル駆動手段により上下方向に移動可能とされ、シリコン融液Mの液面変化に対応して磁場の中心高さ位置Aを変化させることができるようになっている。
The crucible 2 accommodates a silicon melt M obtained by heating and melting a high-purity silicon polycrystalline body charged in the crucible 2 with a heater. The silicon single crystal SI is suspended toward the rotation center of the crucible 2 by a pulling wire (not shown) so that the lower surface is in contact with the liquid surface of the silicon melt M.
The crucible 2 is connected to a crucible driving means (not shown), and the crucible 2 can be rotated in a horizontal plane and can be moved in the vertical direction in response to a change in the liquid level of the silicon melt M. Further, the magnetic coils 1 and 1 can be moved in the vertical direction by a magnetic coil driving means (not shown) so that the center height position A of the magnetic field can be changed corresponding to the change in the liquid level of the silicon melt M. It has become.

このようなシリコン単結晶製造装置を用いてシリコン単結晶SIを製造するには、まずヒータで坩堝2内に収容された多結晶シリコン原料を加熱してシリコン融液Mとし、シリコン融液Mの温度を所定の温度に設定する。次いで、磁気コイル1、1からシリコン単結晶の径方向に磁場9を印加し、先端に種結晶が取り付けられた引上げワイヤーを下方へ引き下げてシリコン融液M表面に種結晶の下端を接触させてから上方への引き上げを開始する。   In order to manufacture a silicon single crystal SI using such a silicon single crystal manufacturing apparatus, first, a polycrystalline silicon raw material housed in the crucible 2 is heated with a heater to form a silicon melt M. Set the temperature to a predetermined temperature. Next, a magnetic field 9 is applied from the magnetic coils 1, 1 in the radial direction of the silicon single crystal, and a pulling wire having a seed crystal attached to the tip is pulled downward to bring the lower end of the seed crystal into contact with the surface of the silicon melt M Start to pull upward from

このとき、シリコン融液Mの液面に対する磁場9の中心A高さ位置Bを、シリコン単結晶中の酸素濃度の径方向面内分布が均一になる位置とする。具体的には、シリコン融液の液面に対する前記磁場の中心高さ位置Bを、液面上方0〜80mmの範囲とすることが望ましく、液面上方60〜80mmの範囲とすることがより望ましい。前記磁場の中心高さ位置Bを0mm未満(つまり液面に対して下方)とすると、得られたシリコン単結晶中の酸素濃度の径方向面内分布におけるばらつきが大きくなるため望ましくない。また、前記磁場の中心高さ位置Bが液面上方80mmを越えると、シリコン融液の対流を抑制する効果が十分に得られなくなるおそれが生じるため望ましくない。さらに、前記磁場の中心高さ位置Bを液面上方60〜80mmの範囲とした場合、シリコン単結晶の径方向面内における外周に近い領域で酸素濃度が少なくなる現象の発生を抑止することができる。   At this time, the center A height position B of the magnetic field 9 with respect to the liquid surface of the silicon melt M is a position where the radial in-plane distribution of the oxygen concentration in the silicon single crystal becomes uniform. Specifically, the center height position B of the magnetic field with respect to the liquid surface of the silicon melt is preferably in the range of 0 to 80 mm above the liquid surface, and more preferably in the range of 60 to 80 mm above the liquid surface. . If the center height position B of the magnetic field is less than 0 mm (that is, downward with respect to the liquid surface), the variation in the radial in-plane distribution of the oxygen concentration in the obtained silicon single crystal is not desirable. Further, if the center height position B of the magnetic field exceeds 80 mm above the liquid surface, the effect of suppressing the convection of the silicon melt may not be obtained sufficiently, which is not desirable. Furthermore, when the center height position B of the magnetic field is in the range of 60 to 80 mm above the liquid surface, it is possible to suppress the occurrence of a phenomenon in which the oxygen concentration decreases in a region close to the outer periphery in the radial plane of the silicon single crystal. it can.

また、磁気コイル1、1の中心における磁束密度は、2000〜4000ガウスとすることができ、2500〜3500ガウスとすることが望ましい。磁気コイル1、1の中心における磁束密度が4000ガウスを越えると、シリコン単結晶の径方向面内における外周に近い領域で酸素濃度が少なくなる現象が顕著になるため望ましくない。また、磁気コイル1、1の中心における磁束密度が2000ガウス未満であると、シリコン融液の対流を抑制する効果が十分に得られなくなるおそれが生じるため望ましくない。
なお、磁気コイル1、1の半径、磁気コイル1、1と坩堝2との距離、磁気コイル1、1相互間の距離、坩堝2の回転数、引き上げ速度などの製造条件は、適宜選択することができ、特に限定されない。
The magnetic flux density at the center of the magnetic coils 1 and 1 can be 2000 to 4000 gauss, and is preferably 2500 to 3500 gauss. If the magnetic flux density at the center of the magnetic coils 1 and exceeds 4000 gauss, the phenomenon that the oxygen concentration decreases in a region near the outer periphery in the radial plane of the silicon single crystal is not desirable. Further, if the magnetic flux density at the center of the magnetic coils 1 and 1 is less than 2000 gauss, the effect of suppressing the convection of the silicon melt may not be obtained sufficiently, which is not desirable.
The manufacturing conditions such as the radius of the magnetic coils 1 and 1, the distance between the magnetic coils 1 and 1 and the crucible 2, the distance between the magnetic coils 1 and 1, the number of revolutions of the crucible 2, and the pulling speed should be selected as appropriate. There is no particular limitation.

「実施例」
(実験例1)
シリコン単結晶SIの直径Dを300mm、磁場9の中心Aの高さ位置をシリコン融液Mの液面の上方80mmとし、磁気コイル1、1の中心における磁束密度を3000ガウスとし、坩堝2を0.1〜20[min−1]程度の回転速度で回転させるとともに、引き上げるシリコン単結晶SIを1〜25[min−1]程度の回転速度で逆回転させ、シリコン単結晶SIの引き上げ速度0.35〜0.75[mm/min]でシリコン融液Mを固化させることにより長さ1600mmのシリコン単結晶製造を製造し、得られたシリコン単結晶をシリコン単結晶の種結晶側から長さ200mmの位置でスライスしてシリコンウェーハを得た。
"Example"
(Experimental example 1)
The diameter D of the silicon single crystal SI is 300 mm, the height of the center A of the magnetic field 9 is 80 mm above the surface of the silicon melt M, the magnetic flux density at the center of the magnetic coils 1 and 1 is 3000 gauss, and the crucible 2 The silicon single crystal SI to be pulled up is rotated at a rotation speed of about 0.1 to 20 [min −1 ], and the silicon single crystal SI to be pulled up is reversely rotated at a rotation speed of about 1 to 25 [min −1 ] to raise the silicon single crystal SI to a pulling speed of 0. A silicon single crystal having a length of 1600 mm is manufactured by solidifying the silicon melt M at a rate of .35 to 0.75 [mm / min], and the obtained silicon single crystal is lengthened from the seed crystal side of the silicon single crystal. A silicon wafer was obtained by slicing at a position of 200 mm.

(実験例2)
磁場9の中心Aの高さ位置Bをシリコン融液Mの液面の上方60mmとしたこと以外は実験例1と同様にしてシリコン単結晶を製造し、得られたシリコン単結晶を実験例1と同様にしてスライスしてシリコンウェーハを得た。
(実験例3)
磁場9の中心Aの高さ位置Bをシリコン融液Mの液面とした(0mm)こと以外は実験例1と同様にしてシリコン単結晶を製造し、得られたシリコン単結晶を実験例1と同様にしてスライスしてシリコンウェーハを得た。
(実験例4)
磁場9の中心Aの高さ位置Bをシリコン融液Mの液面の下方130mmとしたこと以外は実験例1と同様にしてシリコン単結晶を製造し、得られたシリコン単結晶を実験例1と同様にしてスライスしてシリコンウェーハを得た。
(Experimental example 2)
A silicon single crystal was produced in the same manner as in Experimental Example 1 except that the height position B of the center A of the magnetic field 9 was set to 60 mm above the liquid surface of the silicon melt M. A silicon wafer was obtained by slicing in the same manner as described above.
(Experimental example 3)
A silicon single crystal was manufactured in the same manner as in Experimental Example 1 except that the height position B of the center A of the magnetic field 9 was set to the surface of the silicon melt M (0 mm). A silicon wafer was obtained by slicing in the same manner as described above.
(Experimental example 4)
A silicon single crystal was produced in the same manner as in Experimental Example 1 except that the height position B of the center A of the magnetic field 9 was set to 130 mm below the liquid surface of the silicon melt M. A silicon wafer was obtained by slicing in the same manner as described above.

実験例1〜実験例4で得られたシリコンウェーハの酸素濃度を調べることにより、シリコン単結晶の種結晶側から長さ200mmの位置でのシリコン単結晶中の酸素濃度の径方向面内分布を調べた。その結果を図2〜図5に示す。図2〜図5は、シリコンウェーハの中心からの距離と酸素濃度との関係を図2に示したグラフであり、図2には実験例2、図3には実験例1、図4には実験例4、図5には実験例3の結果を示した。なお、図2〜図5において、縦軸の1目盛は、1×1017atoms/cm3である。
図4に示すように、磁場9の中心Aの高さ位置Bをシリコン融液Mの液面の下方130mmとした実験例4では、酸素濃度の径方向面内分布におけるばらつきが大きく、径方向面内における外周に近い領域で急激に酸素濃度が少なくなっている。
これに対し、図5に示すように、磁場9の中心Aの高さ位置Bをシリコン融液Mの液面とした実験例3では、径方向面内における外周に近い中心から130mmよりも外側の領域を除き、酸素濃度の径方向面内分布におけるばらつきが0.6×1017atoms/cm3(6%)程度であり、図4に示す実験例4と比較して小さくなっている。ここで、6%とは、(酸素濃度Max値 - Min値)/(Max値) で算出した割合である。
また、図3に示す磁場9の中心Aの高さ位置Bをシリコン融液Mの液面の上方80mmとした実験例1や、図2に示す上方60mmとした実験例2では、酸素濃度の径方向面内分布におけるばらつきが面内全域に渡って0.3×1017atoms/cm3(3%)程度であり、実験例3や実験例4と比較して小さくなっている。ここで、3%も、同様に(酸素濃度Max値 - Min値)/(Max値) で算出した割合である。しかも、実験例1や実験例2では、実験例3や実験例4と比較して、径方向面内における外周に近い領域で酸素濃度が少なくなる現象が抑止されることが確認できた。
また、磁束密度は3000Gに限らず2500〜3500Gの範囲内では同様の結果を得ることができた。
By examining the oxygen concentration of the silicon wafer obtained in Experimental Example 1 to Experimental Example 4, the distribution in the radial direction of the oxygen concentration in the silicon single crystal at a position 200 mm in length from the seed crystal side of the silicon single crystal was obtained. Examined. The results are shown in FIGS. 2 to 5 are graphs showing the relationship between the distance from the center of the silicon wafer and the oxygen concentration in FIG. 2. FIG. 2 shows experimental example 2, FIG. 3 shows experimental example 1, and FIG. Experimental Example 4 and FIG. 5 show the results of Experimental Example 3. 2 to 5, one scale on the vertical axis is 1 × 10 17 atoms / cm 3 .
As shown in FIG. 4, in Experimental Example 4 in which the height position B of the center A of the magnetic field 9 is 130 mm below the liquid surface of the silicon melt M, the variation in the radial in-plane distribution of oxygen concentration is large. The oxygen concentration rapidly decreases in a region near the outer periphery in the plane.
On the other hand, as shown in FIG. 5, in Experimental Example 3 in which the height position B of the center A of the magnetic field 9 is the liquid level of the silicon melt M, the outer side is more than 130 mm from the center near the outer periphery in the radial plane. Except for this region, the variation in the in-plane distribution of the oxygen concentration is about 0.6 × 10 17 atoms / cm 3 (6%), which is smaller than that of Experimental Example 4 shown in FIG. Here, 6% is a ratio calculated by (Oxygen concentration Max value−Min value) / (Max value).
Further, in Experimental Example 1 in which the height position B of the center A of the magnetic field 9 shown in FIG. 3 is 80 mm above the liquid surface of the silicon melt M, and in Experimental Example 2 in which 60 mm is shown in FIG. The variation in the radial in-plane distribution is about 0.3 × 10 17 atoms / cm 3 (3%) over the entire in-plane, and is smaller than those in Experimental Example 3 and Experimental Example 4. Here, 3% is a ratio similarly calculated by (oxygen concentration Max value−Min value) / (Max value). Moreover, in Experimental Example 1 and Experimental Example 2, it was confirmed that the phenomenon in which the oxygen concentration decreases in a region near the outer periphery in the radial direction surface is suppressed as compared with Experimental Example 3 and Experimental Example 4.
Further, the magnetic flux density is not limited to 3000G, and the same result can be obtained within the range of 2500-3500G.

以上、本発明の実施形態について説明したが、本発明は上記の内容に限られず、本発明の範囲内で自由に変更可能である。例えば、本発明は製造するシリコン単結晶SIの径(直径)の大きさに制限はなく、任意の直径を有するシリコン単結晶を製造する場合に適用することができる。   As mentioned above, although embodiment of this invention was described, this invention is not restricted to said content, It can change freely within the scope of the present invention. For example, the present invention is not limited in the size (diameter) of the silicon single crystal SI to be manufactured, and can be applied to manufacturing a silicon single crystal having an arbitrary diameter.

図1は、本発明の第1実施形態によるシリコン単結晶の製造方法において使用するシリコン単結晶製造装置の概略断面図である。FIG. 1 is a schematic cross-sectional view of a silicon single crystal manufacturing apparatus used in the method for manufacturing a silicon single crystal according to the first embodiment of the present invention. 図2は、シリコンウェーハの中心からの距離と酸素濃度との関係を示したグラフである。FIG. 2 is a graph showing the relationship between the distance from the center of the silicon wafer and the oxygen concentration. 図3は、シリコンウェーハの中心からの距離と酸素濃度との関係を示したグラフである。FIG. 3 is a graph showing the relationship between the distance from the center of the silicon wafer and the oxygen concentration. 図4は、シリコンウェーハの中心からの距離と酸素濃度との関係を示したグラフである。FIG. 4 is a graph showing the relationship between the distance from the center of the silicon wafer and the oxygen concentration. 図5は、シリコンウェーハの中心からの距離と酸素濃度との関係を示したグラフである。FIG. 5 is a graph showing the relationship between the distance from the center of the silicon wafer and the oxygen concentration.

符号の説明Explanation of symbols

1、1:磁気コイル、2:坩堝、9:磁場、M:シリコン融液、SI:シリコン単結晶、A:磁場の中心

1, 1: Magnetic coil, 2: Crucible, 9: Magnetic field, M: Silicon melt, SI: Silicon single crystal, A: Center of magnetic field

Claims (3)

坩堝に収容されたシリコン融液からシリコン単結晶を引き上げながら成長させて製造するシリコン単結晶の製造方法において、
前記シリコン単結晶の径方向に磁場を印加する磁場印加ステップを備え、
前記シリコン融液の液面に対する前記磁場の中心高さ位置を、前記シリコン単結晶中の酸素濃度の径方向面内分布が均一になる位置としたことを特徴とするシリコン単結晶の製造方法。
In a method for producing a silicon single crystal, which is produced by growing a silicon single crystal from a silicon melt stored in a crucible
A magnetic field application step of applying a magnetic field in a radial direction of the silicon single crystal,
A method for producing a silicon single crystal, characterized in that a center height position of the magnetic field with respect to a liquid surface of the silicon melt is a position where a radial in-plane distribution of oxygen concentration in the silicon single crystal becomes uniform.
前記シリコン融液の液面に対する前記磁場の中心高さ位置を、液面上方0〜80mmの範囲としたことを特徴とする請求項1に記載のシリコン単結晶の製造方法。   2. The method for producing a silicon single crystal according to claim 1, wherein a center height position of the magnetic field with respect to a liquid surface of the silicon melt is in a range of 0 to 80 mm above the liquid surface. 前記シリコン融液の液面に対する前記磁場の中心高さ位置を、液面上方60〜80mmの範囲としたことを特徴とする請求項1に記載のシリコン単結晶の製造方法。

2. The method for producing a silicon single crystal according to claim 1, wherein a center height position of the magnetic field with respect to a liquid surface of the silicon melt is in a range of 60 to 80 mm above the liquid surface.

JP2006024696A 2006-02-01 2006-02-01 Method for producing silicon single crystal Active JP5034247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006024696A JP5034247B2 (en) 2006-02-01 2006-02-01 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006024696A JP5034247B2 (en) 2006-02-01 2006-02-01 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2007204312A true JP2007204312A (en) 2007-08-16
JP5034247B2 JP5034247B2 (en) 2012-09-26

Family

ID=38484101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006024696A Active JP5034247B2 (en) 2006-02-01 2006-02-01 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP5034247B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024120A (en) * 2008-07-24 2010-02-04 Sumco Corp Silicon single crystal and its growing method
KR20180094102A (en) * 2015-12-22 2018-08-22 실트로닉 아게 Silicon wafers with homogeneous radial oxygen variations
US20180237939A1 (en) * 2015-08-19 2018-08-23 Sk Siltron Co., Ltd. Apparatus for growing single crystalline ingot and method for growing same
CN114086241A (en) * 2021-11-25 2022-02-25 西安奕斯伟材料科技有限公司 Method for drawing silicon single crystal rod and silicon single crystal rod

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268987A (en) * 1998-03-20 1999-10-05 Shin Etsu Handotai Co Ltd Silicon single crystal and its production
JP2000264785A (en) * 1999-03-17 2000-09-26 Shin Etsu Handotai Co Ltd Process and device for producing silicon single crystal
JP2004196569A (en) * 2002-12-17 2004-07-15 Toshiba Ceramics Co Ltd Silicon single crystal pulling method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268987A (en) * 1998-03-20 1999-10-05 Shin Etsu Handotai Co Ltd Silicon single crystal and its production
JP2000264785A (en) * 1999-03-17 2000-09-26 Shin Etsu Handotai Co Ltd Process and device for producing silicon single crystal
JP2004196569A (en) * 2002-12-17 2004-07-15 Toshiba Ceramics Co Ltd Silicon single crystal pulling method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024120A (en) * 2008-07-24 2010-02-04 Sumco Corp Silicon single crystal and its growing method
US10435809B2 (en) * 2015-08-19 2019-10-08 Sk Siltron Co., Ltd. Apparatus for growing single crystalline ingot and method for growing same
US11214891B2 (en) 2015-08-19 2022-01-04 Sk Siltron Co., Ltd Apparatus for growing single crystalline ingot and method for growing same
US20180237939A1 (en) * 2015-08-19 2018-08-23 Sk Siltron Co., Ltd. Apparatus for growing single crystalline ingot and method for growing same
CN108474137A (en) * 2015-12-22 2018-08-31 硅电子股份公司 Silicon wafer with uniform radial oxygen variation
JP2019505467A (en) * 2015-12-22 2019-02-28 ジルトロニック アクチエンゲゼルシャフトSiltronic AG Silicon wafer with uniform radial oxygen variation
KR102089886B1 (en) * 2015-12-22 2020-03-17 실트로닉 아게 Silicon wafer with homogeneous radial oxygen change
US10731271B2 (en) 2015-12-22 2020-08-04 Siltronic Ag Silicon wafer with homogeneous radial oxygen variation
CN108474137B (en) * 2015-12-22 2021-02-26 硅电子股份公司 Silicon wafer with uniform radial oxygen variation
KR20180094102A (en) * 2015-12-22 2018-08-22 실트로닉 아게 Silicon wafers with homogeneous radial oxygen variations
CN114086241A (en) * 2021-11-25 2022-02-25 西安奕斯伟材料科技有限公司 Method for drawing silicon single crystal rod and silicon single crystal rod
WO2023093460A1 (en) * 2021-11-25 2023-06-01 西安奕斯伟材料科技有限公司 Drawing method for monocrystalline silicon rod, and monocrystalline silicon rod
TWI812402B (en) * 2021-11-25 2023-08-11 大陸商西安奕斯偉材料科技股份有限公司 A kind of drawing method of single crystal silicon rod and single crystal silicon rod

Also Published As

Publication number Publication date
JP5034247B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP4483729B2 (en) Silicon single crystal manufacturing method
TW219955B (en)
EP1831436B1 (en) Controlling melt-solid interface shape of a growing silicon crystal using a variable magnetic field
JP5269384B2 (en) Semiconductor single crystal manufacturing method using Czochralski method
TWI639736B (en) Silicon wafer with homogeneous radial oxygen variation
JP2006312575A (en) Silicon wafer and its production method
TWI324643B (en)
JP2009114054A (en) Method for producing semiconductor single crystal having improved oxygen concentration characteristics
JP2007182373A (en) Method for producing high quality silicon single crystal and silicon single crystal wafer made by using the same
JP5034247B2 (en) Method for producing silicon single crystal
JP2009057270A (en) Method of raising silicon single crystal
JPH11268987A (en) Silicon single crystal and its production
JP4710247B2 (en) Single crystal manufacturing apparatus and method
JP3634133B2 (en) Method for producing silicon single crystal with few crystal defects and silicon single crystal wafer
JP2009292663A (en) Method for growing silicon single crystal
JP2004189559A (en) Single crystal growth method
KR101193786B1 (en) Single Crystal Grower, Manufacturing Method for Single Crystal, and Single Crystal Ingot Manufacturied by the same
JP4640796B2 (en) Method for producing silicon single crystal
JP2007145666A (en) Method for manufacturing silicon single crystal
JP2000239096A (en) Production of silicon single crystal
JP2005047758A (en) Manufacturing method of single crystal and single crystal manufacturing unit
JP6601420B2 (en) Single crystal manufacturing method and single crystal pulling apparatus
JP5454625B2 (en) Silicon single crystal wafer obtained from ingot pulled by silicon single crystal pulling method
JP5136252B2 (en) Method for growing silicon single crystal
JP2007210865A (en) Silicon single crystal pulling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5034247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250