JP5145176B2 - Silicon single crystal pulling apparatus and silicon single crystal pulling method - Google Patents

Silicon single crystal pulling apparatus and silicon single crystal pulling method Download PDF

Info

Publication number
JP5145176B2
JP5145176B2 JP2008233153A JP2008233153A JP5145176B2 JP 5145176 B2 JP5145176 B2 JP 5145176B2 JP 2008233153 A JP2008233153 A JP 2008233153A JP 2008233153 A JP2008233153 A JP 2008233153A JP 5145176 B2 JP5145176 B2 JP 5145176B2
Authority
JP
Japan
Prior art keywords
magnetic field
crucible
heater
single crystal
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008233153A
Other languages
Japanese (ja)
Other versions
JP2010064928A (en
Inventor
恵子 齋藤
昭彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2008233153A priority Critical patent/JP5145176B2/en
Publication of JP2010064928A publication Critical patent/JP2010064928A/en
Application granted granted Critical
Publication of JP5145176B2 publication Critical patent/JP5145176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はシリコン単結晶引上げ装置及びシリコン単結晶引上げ方法に関し、特に、シリコン単結晶の酸素濃度が高く、かつ、面内の酸素濃度分布が均一化されたシリコン単結晶引上げ装置及びシリコン単結晶引上げ方法に関するものである。   The present invention relates to a silicon single crystal pulling apparatus and a silicon single crystal pulling method, and in particular, a silicon single crystal pulling apparatus and a silicon single crystal pulling method in which the oxygen concentration of the silicon single crystal is high and the in-plane oxygen concentration distribution is uniform. It is about the method.

近年デバイス形成プロセスの変化に伴い、デバイス形成時のストレス増加による転位発生や反りを防ぐ為、酸素濃度の高い規格のシリコンウェーハが求められるようになってきた。シリコンの強度は酸素が混入することで上がることが一般的に知られている。   In recent years, with changes in the device formation process, a standardized silicon wafer with a high oxygen concentration has been demanded in order to prevent dislocations and warpage due to increased stress during device formation. It is generally known that the strength of silicon increases when oxygen is mixed.

CZ(チョクラルスキー)法による結晶育成では、結晶後半で石英ルツボとシリコン融液との接触面積が減るにつれて石英ルツボからの酸素の溶け込み量が減り、結晶後半になるにつれて酸素濃度が下がってしまう現象が一般的に知られている。そのため結晶後半で酸素濃度の規格外れが生じ、歩留まりが低下してしまう不具合があった。   In the crystal growth by the CZ (Czochralski) method, the amount of oxygen dissolved from the quartz crucible decreases as the contact area between the quartz crucible and the silicon melt decreases in the latter half of the crystal, and the oxygen concentration decreases as the latter half of the crystal. The phenomenon is generally known. Therefore, there is a problem that the oxygen concentration is out of specification in the latter half of the crystal and the yield is lowered.

そこで、特許文献1では、横(水平)磁場を印加して、従来のCZ法と同様に石英ルツボの回転数を上げて高酸素化を図ろうとする技術が開示されている。しかし、特許文献1において、石英ルツボの回転数を上げるとシリコン単結晶の変形や多結晶化の不具合が生じてしまう(特許文献1参照)。   Therefore, Patent Document 1 discloses a technique for applying a lateral (horizontal) magnetic field to increase the rotation speed of a quartz crucible as in the conventional CZ method so as to increase oxygen. However, in Patent Document 1, if the rotation speed of the quartz crucible is increased, a problem of deformation or polycrystallization of the silicon single crystal occurs (see Patent Document 1).

また、特許文献2では、横磁場印加CZ法(Horizontal Magnetic Field Applied Czochralski、以下、「HMCZ法」という場合がある。)において、磁場位置を下げることにより石英ルツボ底からの流れを活性化し、高酸素濃度の結晶が得やすくする方法が開示されている。しかし、この磁場位置を下げる方法では、石英ルツボ底からの流れが活性化され、高酸素濃度の結晶が得やすくなる一方、面内の酸素濃度分布が著しく悪化するという問題があった。面内の酸素濃度分布の悪化により規格に入らないという事態を招き、歩留まりを低下させてしまう。   Further, in Patent Document 2, in the lateral magnetic field applied CZ method (Horizontal Magnetic Field Applied Czochralski, hereinafter referred to as “HMCZ method” in some cases), the flow from the quartz crucible bottom is activated by lowering the magnetic field position. A method for easily obtaining crystals having an oxygen concentration is disclosed. However, this method of lowering the magnetic field position has a problem that the flow from the bottom of the quartz crucible is activated and it becomes easy to obtain a crystal having a high oxygen concentration, while the in-plane oxygen concentration distribution is remarkably deteriorated. The deterioration of the in-plane oxygen concentration distribution leads to a situation where the standard is not met, and the yield is lowered.

そこで、上記の方法において、歩留まりの低下を改善する方法として磁場強度を結晶後半に向けて上げ、シリコン融液の粘性を高めることでシリコン融液と石英ルツボとの摩擦を増やし、酸素の溶け込み量を増加させる方法が考えられる。しかし、この磁場強度を結晶後半で上げる方法では、一定以上の強磁場で磁場強度を上げても磁場による粘性の増加が頭打ちになってしまい酸素濃度が上がらなくなる事態が生じ、所望の酸素濃度のシリコン結晶が得られなくなってしまう。   Therefore, in the above method, as a method of improving the yield reduction, the magnetic field strength is increased toward the latter half of the crystal, and the viscosity of the silicon melt is increased to increase the friction between the silicon melt and the quartz crucible, and the amount of oxygen dissolved A method of increasing the value can be considered. However, with this method of increasing the magnetic field strength in the second half of the crystal, even if the magnetic field strength is increased at a certain level or higher, the increase in viscosity due to the magnetic field has reached its peak, and the oxygen concentration does not increase. A silicon crystal cannot be obtained.

上述したように、磁場位置の変化では面内の酸素濃度分布が悪化してしまう。一方、磁場強度を上げる方法によっては、磁場による粘性の増加が頭打ちになってしまい所望の酸素濃度が得られない。したがって、結晶後半で酸素濃度を高くして、高酸素濃度のシリコン結晶を得るためには、磁場位置を下げつつ面内の酸素濃度分布を均一にすることが必要となる。   As described above, the in-plane oxygen concentration distribution deteriorates due to the change in the magnetic field position. On the other hand, depending on the method of increasing the magnetic field strength, the increase in viscosity due to the magnetic field reaches a peak, and a desired oxygen concentration cannot be obtained. Therefore, in order to obtain a high oxygen concentration silicon crystal by increasing the oxygen concentration in the latter half of the crystal, it is necessary to make the in-plane oxygen concentration distribution uniform while lowering the magnetic field position.

そこで、本発明者らは、磁場位置を下げた場合に面内の酸素濃度が不均一となる理由について考察した。そして、磁場位置を下げた場合、上述したように石英ルツボ底からの流れが活性化されることで、石英ルツボ底の酸素の溶け込みの不均一がシリコン結晶に影響すると思料した。すなわち、シリコン融液の流れが石英ルツボ底の酸素の溶け込みの不均一を取り込み、高酸素濃度領域を含むシリコン融液の流れと低酸素濃度領域とを含むシリコン融液の流れが代わる代わる結晶直下に流れ込み、結晶長方向に不均一になると思料した。   Therefore, the present inventors considered the reason why the in-plane oxygen concentration becomes non-uniform when the magnetic field position is lowered. Then, when the magnetic field position was lowered, the flow from the quartz crucible bottom was activated as described above, and it was thought that the inhomogeneity of oxygen dissolution at the quartz crucible bottom would affect the silicon crystal. That is, the flow of the silicon melt takes in the non-uniformity of oxygen dissolution at the bottom of the quartz crucible, and the flow of the silicon melt including the high oxygen concentration region and the flow of the silicon melt including the low oxygen concentration region replace each other. I thought that it became non-uniform in the crystal length direction.

そこで、石英ルツボ底の酸素の溶け込みの不均一を改善することで、面内の酸素濃度分布が均一でかつ高酸素濃度のシリコン単結晶を得ることができると思料した。
特開2004−189557号公報 特開2004−182560号公報
Therefore, it was thought that by improving the non-uniformity of oxygen dissolution at the bottom of the quartz crucible, a silicon single crystal having a uniform in-plane oxygen concentration distribution and a high oxygen concentration can be obtained.
JP 2004-189557 A JP 2004-182560 A

本発明は、横磁場印加CZ法の結晶後半において、磁場中心位置とヒータ位置とを同時にシリコン融液の表面より下げることで、シリコン単結晶の酸素濃度を高く維持しつつ、面内の酸素濃度を均一化できるシリコン単結晶引上げ装置及びシリコン単結晶引上げ方法を提供することを目的とする。   In the second half of the crystal of the lateral magnetic field application CZ method, the present invention lowers the magnetic field center position and the heater position simultaneously from the surface of the silicon melt, thereby maintaining the oxygen concentration of the silicon single crystal high and maintaining the in-plane oxygen concentration. An object of the present invention is to provide a silicon single crystal pulling apparatus and a silicon single crystal pulling method capable of making the above uniform.

本発明の一実施の形態によると、シリコンを溶融してシリコン融液とする石英ルツボ及び黒鉛ルツボからなるルツボと、前記ルツボを回転させながら昇降させるルツボ回転駆動部と、前記シリコンを溶融するための熱発生源であるヒータと、前記ヒータを昇降させるヒータ駆動部と、前記シリコン融液に対して磁場を印加する磁場印加部と、前記磁場印加部を昇降させる磁場駆動部と、前記ルツボ回転駆動部、前記ヒータ駆動部及び前記磁場駆動部に接続され、前記ルツボ回転駆動部、前記ヒータ駆動部及び前記磁場駆動部の駆動を制御する制御部と、を有し、前記制御部は、前記ルツボ回転駆動部による前記ルツボの昇降に同期させて、前記シリコン融液の深さをBとし、前記石英ルツボ内の前記シリコン融液の下面(最低面)の垂直方向の位置をLとし、このLを基準とし種結晶側を+とした場合、前記磁場印加部の磁場中心位置が+1/2B+L〜+1/3B+Lに位置するように前記磁場駆動部の駆動を制御して前記磁場印加部を昇降させ、同時に、前記シリコン融液の温度が常に均一になるように予め前記シリコン融液の表面及び前記石英ルツボ壁の伝熱解析によって得られたデータに基づいて前記ヒータ駆動部の駆動を制御して前記ヒータを昇降させ前記ヒータの上端及び前記黒鉛ルツボの上端を一致させた位置を基準として、前記ヒータの上端よりも前記黒鉛ルツボの上端が上側の位置にある場合を+側とした場合に、前記黒鉛ルツボの上端が+20mm以上+100mm以下となるように追従させることを特徴とするシリコン単結晶引上げ装置が提供される。 According to an embodiment of the present invention, a crucible composed of a quartz crucible and a graphite crucible that melts silicon into a silicon melt, a crucible rotation drive unit that moves up and down while rotating the crucible, and a means for melting the silicon A heater that is a heat generation source, a heater drive unit that raises and lowers the heater, a magnetic field application unit that applies a magnetic field to the silicon melt, a magnetic field drive unit that raises and lowers the magnetic field application unit, and the crucible rotation A driving unit, connected to the heater driving unit and the magnetic field driving unit, and a controller for controlling the driving of the crucible rotation driving unit, the heater driving unit and the magnetic field driving unit, the control unit, in synchronization with the vertical movement of the crucible by the crucible rotation driving unit, and the depth of the silicon melt is B, the vertical direction of the lower surface of the silicon melt in the quartz crucible (minimum surface) Position and L, when referred to this L to seed the crystal side +, the magnetic field center position of the magnetic field applying unit + 1 / 2B + L~ + 1 / 3B + the controls the driving of the magnetic field driving unit so as to be located in L Driving the heater based on data obtained by heat transfer analysis of the surface of the silicon melt and the quartz crucible wall so that the temperature of the silicon melt is always uniform at the same time A case where the upper end of the graphite crucible is in an upper position with respect to the upper end of the heater with reference to a position where the upper end of the heater and the upper end of the graphite crucible are matched by controlling the drive of the unit + when the side, the silicon single crystal pulling apparatus according to claim Rukoto tracking is as the upper end of the graphite crucible is + 20 mm above + 100 mm or less is provided.

本発明の一実施の形態によると、磁場印加部によって横磁場を印加しながら石英ルツボ内のシリコン融液からシリコン単結晶を引き上げるシリコン単結晶引上げ方法において、シリコン単結晶の引上げに伴って前記石英ルツボを回転させながら昇降させると共に前記シリコン融液の深さをBとし、前記石英ルツボ内の前記シリコン融液の下面(最低面)の垂直方向の位置をLとし、このLを基準とし種結晶側を+とした場合、前記磁場印加部の磁場中心位置が+1/2B+L〜+1/3B+Lに位置するように前記磁場印加部を昇降し、前記石英ルツボ及び前記磁場印加部の昇降と同期させて、前記シリコン融液の温度を均一に保持するように予め前記シリコン融液の表面及び前記石英ルツボ壁の伝熱解析によって得られたデータに基づいて前記石英ルツボ内のシリコン融液を加熱するヒータを昇降させ前記ヒータの上端及び前記黒鉛ルツボの上端を一致させた位置を基準として、前記ヒータの上端よりも前記黒鉛ルツボの上端が上側の位置にある場合を+側とした場合に、前記黒鉛ルツボの上端が+20mm以上+100mm以下となるように追従させることを特徴とするシリコン単結晶の引上げ方法が提供される。 According to one embodiment of the present invention, in a silicon single crystal pulling method for pulling a silicon single crystal from a silicon melt in a quartz crucible while applying a transverse magnetic field by a magnetic field applying unit, the quartz single crystal is pulled along with the pulling of the silicon single crystal. The crucible is moved up and down while the depth of the silicon melt is B, the vertical position of the lower surface (lowest surface) of the silicon melt in the quartz crucible is L, and the seed crystal is based on this L. When the side is defined as +, the magnetic field application unit is moved up and down so that the magnetic field center position of the magnetic field application unit is located in + 1 / 2B + L to + 1 / 3B + L, and synchronized with the raising and lowering of the quartz crucible and the magnetic field application unit. based on the data obtained by heat transfer analysis of the surface and the quartz crucible wall in advance the silicon melt so as to maintain a uniform temperature of the silicon melt Based on the serial was a silicon melt in the quartz crucible is moved up and down the heater for heating matching the upper ends and the graphite crucible of the heater position, a position upper end of an upper side of the graphite crucible than an upper end of the heater There is provided a method for pulling a silicon single crystal characterized by causing the graphite crucible to follow an upper end of +20 mm or more and +100 mm or less when a certain case is set to the + side .

本発明によれば、横磁場印加CZ法の結晶後半において、磁場中心位置とヒータ位置とを同時にシリコン融液の表面より下げることで、シリコン単結晶の酸素濃度を高く維持しつつ、面内の酸素濃度を均一化できるシリコン単結晶引上げ装置及びシリコン単結晶引上げ方法を提供することができる。   According to the present invention, in the second half of the crystal in the lateral magnetic field application CZ method, the magnetic field center position and the heater position are simultaneously lowered from the surface of the silicon melt, thereby maintaining the oxygen concentration of the silicon single crystal high, It is possible to provide a silicon single crystal pulling apparatus and a silicon single crystal pulling method that can make the oxygen concentration uniform.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施の形態に限定されるわけではない。また、各実施の形態において、同様の構成については同じ符号を付し、改めて説明しない場合がある。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the following embodiment. Moreover, in each embodiment, the same code | symbol is attached | subjected about the same structure and it may not explain anew.

本発明の実施の形態において、石英ルツボ底からの酸素の溶け込みの不均一は石英ルツボ底の温度やシリコン融液と石英ルツボ底との摩擦の変化によって決まると思料して、石英ルツボ内の温度分布に着目し、シリコン融液及び石英ルツボ壁の温度の伝熱解析を行った。その結果、石英ルツボとシリコン融液との接触面の温度差が均一であるほど面内の酸素濃度分布が良化するという知見を得、本発明を創作するに至った。以下、図面を基に説明する。   In the embodiment of the present invention, it is assumed that the non-uniformity of oxygen penetration from the bottom of the quartz crucible is determined by the temperature of the bottom of the quartz crucible and the friction between the silicon melt and the bottom of the quartz crucible. Paying attention to the distribution, heat transfer analysis of the temperature of silicon melt and quartz crucible wall was conducted. As a result, the inventors have found that the more uniform the temperature difference at the contact surface between the quartz crucible and the silicon melt, the better the in-plane oxygen concentration distribution, and the present invention has been created. Hereinafter, description will be made based on the drawings.

図1は、本発明の実施の形態に係るシリコン単結晶の引上げ装置100を示す概略断面図である。図1に示すように、本発明の実施の形態に係るシリコン単結晶の引上げ装置100は、円筒形状のメインチャンバ121の上にプルチャンバ122を重ねて形成された炉体120と、炉体120内に設けられたルツボ130と、ルツボ130に装填されたシリコン融液116の温度を保持するヒータ142とを有している。ヒータ142の周囲には、ヒータ142の熱を効果的にルツボ130に与えるために、メインチャンバ121の内壁に沿って第1の保温部材145、第2の保温部材146及び第3の保温部材147が設けられている。なお、ルツボ130は二重構造であり、内側が石英ルツボ131、外側が黒鉛ルツボ132で構成されている。   FIG. 1 is a schematic sectional view showing a silicon single crystal pulling apparatus 100 according to an embodiment of the present invention. As shown in FIG. 1, a silicon single crystal pulling apparatus 100 according to an embodiment of the present invention includes a furnace body 120 formed by superposing a pull chamber 122 on a cylindrical main chamber 121, and a furnace body 120 interior. And a heater 142 for maintaining the temperature of the silicon melt 116 loaded in the crucible 130. Around the heater 142, a first heat retaining member 145, a second heat retaining member 146, and a third heat retaining member 147 are provided along the inner wall of the main chamber 121 in order to effectively apply the heat of the heater 142 to the crucible 130. Is provided. The crucible 130 has a double structure, and the inner side is constituted by a quartz crucible 131 and the outer side is constituted by a graphite crucible 132.

炉体120の上方には、シリコン単結晶115を巻き上げる巻上げ機構110が設けられている。この巻上げ機構110は、シリコン単結晶115を巻き上げるワイヤ113を巻取る巻取り部111と、内部にモータを有し、巻取り部111に対してワイヤ113の巻取りの駆動力を与えるワイヤ回転駆動部112と、この巻取り部111に巻き上げられる引上げワイヤ113とにより構成される。そして、ワイヤ113の先端に種結晶114が取り付けられ、シリコン単結晶115を育成しながら引上げるように配置されている。   Above the furnace body 120, a winding mechanism 110 for winding the silicon single crystal 115 is provided. The winding mechanism 110 includes a winding unit 111 that winds up the wire 113 that winds up the silicon single crystal 115, and a motor that has a motor therein, and a wire rotation drive that applies a driving force for winding the wire 113 to the winding unit 111. A portion 112 and a pulling wire 113 wound around the winding portion 111 are configured. A seed crystal 114 is attached to the tip of the wire 113 and is arranged to be pulled up while growing the silicon single crystal 115.

メインチャンバ121内において、ルツボ130の上方且つ近傍には、上部と下部が開口形成され、育成中のシリコン単結晶115にヒータ142からの余計な輻射熱を与えないようにするための輻射シールド144が設けられている。   In the main chamber 121, upper and lower portions are formed above and in the vicinity of the crucible 130, and a radiation shield 144 is provided to prevent the silicon single crystal 115 being grown from being given excessive radiant heat from the heater 142. Is provided.

輻射シールド144は、図示しないが昇降駆動部(昇降手段)によって、ワイヤ113(昇降手段)の巻き上げ巻き戻しに伴い上下移動可能に構成されている。即ち、シリコンの溶融時において、輻射シールド144は、ルツボ130の上方に配置され、シリコン単結晶115の引上げ時に伴い、その下端がルツボ130内に位置するよう引下げられる。なお、輻射シールド144は、第1の保温部材145の上に設けられた第2の保温部材146(支持手段)と、第2の保温部材146上に設けられた第3の保温部材147とが載置され支持される。ここで、輻射シールド144の下端とシリコン融液116の表面の距離はシリコンの結晶の特性にとって重要なパラメータであるため、シリコン融液116の減少に伴って輻射シールド144の下端とシリコン融液116の表面との距離を一定にするように、輻射シールド144及びルツボ130は昇降可能に配置される。   Although not shown, the radiation shield 144 is configured to be movable up and down by winding and unwinding the wire 113 (lifting means) by a lifting drive unit (lifting means). That is, when the silicon is melted, the radiation shield 144 is disposed above the crucible 130 and is pulled down so that the lower end thereof is positioned in the crucible 130 as the silicon single crystal 115 is pulled up. The radiation shield 144 includes a second heat retaining member 146 (supporting means) provided on the first heat retaining member 145 and a third heat retaining member 147 provided on the second heat retaining member 146. Mounted and supported. Here, since the distance between the lower end of the radiation shield 144 and the surface of the silicon melt 116 is an important parameter for the crystal characteristics of silicon, the lower end of the radiation shield 144 and the silicon melt 116 are reduced as the silicon melt 116 decreases. The radiation shield 144 and the crucible 130 are arranged so as to be able to be raised and lowered so that the distance from the surface is constant.

さらに、本発明の実施の形態に係るシリコン単結晶の引上げ装置100は磁場印加部140を有する。磁場印加部140は磁場駆動部141に接続され、磁場駆動部141が制御部160に接続される。そして、磁場駆動部141は、制御部160の制御により磁場印加部140の磁場中心位置がシリコン融液116の表面より下に位置するように磁場印加部140を昇降する。このように、磁場印加部140の磁場中心位置をシリコン融液116の表面より下に位置させることで石英ルツボ130底からの流れを活性化し、高酸素濃度の結晶が得やすくなる。   Furthermore, the silicon single crystal pulling apparatus 100 according to the embodiment of the present invention includes a magnetic field applying unit 140. The magnetic field application unit 140 is connected to the magnetic field driving unit 141, and the magnetic field driving unit 141 is connected to the control unit 160. The magnetic field driving unit 141 moves the magnetic field applying unit 140 up and down so that the magnetic field center position of the magnetic field applying unit 140 is located below the surface of the silicon melt 116 under the control of the control unit 160. In this way, by locating the magnetic field center position of the magnetic field application unit 140 below the surface of the silicon melt 116, the flow from the bottom of the quartz crucible 130 is activated, and crystals with a high oxygen concentration are easily obtained.

さらに、本発明の実施の形態に係るシリコン単結晶の引上げ装置100はヒータ142を有する。ヒータ142は、ヒータ駆動部143に接続され、ヒータ駆動部143が制御部160に接続される。そして、ヒータ142は、制御部160によって制御されたヒータ駆動部143によりシリコン単結晶115の育成段階に合わせて昇降可能とされている。ヒータ142は、石英ルツボ131内のシリコン融液116の温度を均一化するために配置されている。シリコン融液116の温度を均一化することで、面内の酸素濃度分布を均一化することができるからである。   Furthermore, the silicon single crystal pulling apparatus 100 according to the embodiment of the present invention includes a heater 142. The heater 142 is connected to the heater driving unit 143, and the heater driving unit 143 is connected to the control unit 160. The heater 142 can be moved up and down in accordance with the growth stage of the silicon single crystal 115 by the heater driving unit 143 controlled by the control unit 160. The heater 142 is arranged to make the temperature of the silicon melt 116 in the quartz crucible 131 uniform. This is because by making the temperature of the silicon melt 116 uniform, the in-plane oxygen concentration distribution can be made uniform.

さらに、本発明の実施の形態に係るシリコン単結晶の引上げ装置100はルツボ回転駆動部150を有する。ルツボ回転駆動部150はテーブル117及び回転軸118を備えている。ルツボ回転駆動部150はルツボ130を回転軸118の所定方向に回転及び昇降させるための駆動部である。   Furthermore, the silicon single crystal pulling apparatus 100 according to the embodiment of the present invention includes a crucible rotation driving unit 150. The crucible rotation drive unit 150 includes a table 117 and a rotation shaft 118. The crucible rotation drive unit 150 is a drive unit for rotating and raising and lowering the crucible 130 in a predetermined direction of the rotation shaft 118.

さらに、本発明の実施の形態に係るシリコン単結晶の引上げ装置100は制御部160を有する。制御部160は、上述した磁場駆動部141、ヒータ駆動部143及びルツボ回転駆動部150の昇降動作を制御する。そこで、制御部160による磁場駆動部141、ヒータ駆動部143及びルツボ回転駆動部150の昇降動作を適切に制御のために、石英ルツボ131内の温度分布に着目して、シリコン融液116及び石英ルツボ131壁の温度の伝熱解析を行った。本発明の実施の形態に係るシリコン単結晶の引上げ装置100においては、前述の伝熱解析の結果を制御部160に記憶させ、ルツボ回転駆動部150によるルツボ130の昇降に同期させて、磁場印加部140の磁場中心位置がシリコン融液116の表面から常に所定の位置に位置するように磁場駆動部141の駆動を制御して磁場印加部140を昇降させている。また同時に、シリコン融液116の温度が常に均一になるように伝熱解析によって得られたデータに基づいてヒータ駆動部143の駆動を制御してヒータ142を昇降させている。   Furthermore, the silicon single crystal pulling apparatus 100 according to the embodiment of the present invention includes a control unit 160. The control unit 160 controls the raising / lowering operations of the magnetic field driving unit 141, the heater driving unit 143, and the crucible rotation driving unit 150 described above. Therefore, in order to appropriately control the raising / lowering operations of the magnetic field driving unit 141, the heater driving unit 143, and the crucible rotation driving unit 150 by the control unit 160, paying attention to the temperature distribution in the quartz crucible 131, the silicon melt 116 and the quartz The heat transfer analysis of the temperature of the crucible 131 wall was performed. In the silicon single crystal pulling apparatus 100 according to the embodiment of the present invention, the result of the heat transfer analysis described above is stored in the control unit 160, and the magnetic field application is performed in synchronization with the raising and lowering of the crucible 130 by the crucible rotation driving unit 150. The magnetic field applying unit 140 is moved up and down by controlling the driving of the magnetic field driving unit 141 so that the magnetic field center position of the unit 140 is always located at a predetermined position from the surface of the silicon melt 116. At the same time, the heater 142 is moved up and down by controlling the driving of the heater driving unit 143 based on the data obtained by the heat transfer analysis so that the temperature of the silicon melt 116 is always uniform.

磁場の印加においては、磁場印加部140の磁場中心位置をはじめに設定して、磁場中心位置を移動させないこともできるが、シリコン融液116の量が減少するに従ってルツボ130は相対的に上方に移動するため、磁場印加部140の磁場中心位置をシリコン融液116の表面の移動に追従してシリコン融液116の表面より下側の最適位置に移動させることが好適である。   In applying a magnetic field, it is possible to set the magnetic field center position of the magnetic field application unit 140 first and not move the magnetic field center position, but the crucible 130 moves relatively upward as the amount of the silicon melt 116 decreases. Therefore, it is preferable to move the magnetic field center position of the magnetic field application unit 140 to the optimum position below the surface of the silicon melt 116 following the movement of the surface of the silicon melt 116.

以上が、本発明の実施の形態に係るシリコン単結晶の引上げ装置100の構成である。以上説明したように、本発明の実施の形態に係るシリコン単結晶の引上げ装置100は、石英ルツボ131壁及びシリコン融液116の伝熱解析を行い、ヒータ142の位置を調整することによりシリコン融液116の温度を均一にして、横磁場をシリコン融液116に印加する際に生じる石英ルツボ131底の酸素の溶け込みの不均一を防止している。従って、シリコン単結晶115の酸素濃度を高く維持しつつ面内の酸素濃度分布を均一にできる。以上の効果は制御部160によって、磁場駆動部141、ヒータ駆動部143及びルツボ回転駆動部150の昇降を同期させて制御することで達成される。   The above is the configuration of the silicon single crystal pulling apparatus 100 according to the embodiment of the present invention. As described above, the silicon single crystal pulling apparatus 100 according to the embodiment of the present invention performs heat transfer analysis of the quartz crucible 131 wall and the silicon melt 116 and adjusts the position of the heater 142 to adjust the silicon melting point. The temperature of the liquid 116 is made uniform, and non-uniformity of oxygen dissolution at the bottom of the quartz crucible 131 that occurs when a transverse magnetic field is applied to the silicon melt 116 is prevented. Accordingly, the in-plane oxygen concentration distribution can be made uniform while keeping the oxygen concentration of the silicon single crystal 115 high. The above effect is achieved by controlling the movement of the magnetic field driving unit 141, the heater driving unit 143, and the crucible rotation driving unit 150 in synchronization with each other by the control unit 160.

次に、シリコン単結晶の引き上げ方法について図2を参照して説明する。図2は、図1に示したメインチャンバ121の拡大図である。図2において、磁場印加部140の破線は、結晶後半においてシリコン融液116の表面が減少した場合に、追従して磁場印加部140を引き下げた状態を示している。なお、図1と同様の構成については改めて説明しない場合がある。   Next, a method for pulling a silicon single crystal will be described with reference to FIG. FIG. 2 is an enlarged view of the main chamber 121 shown in FIG. In FIG. 2, the broken line of the magnetic field application unit 140 indicates a state in which the magnetic field application unit 140 is pulled down following the decrease in the surface of the silicon melt 116 in the second half of the crystal. Note that the same configuration as in FIG. 1 may not be described again.

本発明の実施の形態に係るシリコン単結晶の引き上げ方法においては、上述したように横磁場をかけつつルツボの回転を早くすると変形や多結晶化が起こるという不具合があるため、ルツボの回転はCZ法に比べて遅くしている。シリコン単結晶116の変形や多結晶化は、摩擦による酸素濃度の不均一に起因し、横磁場をかけると流体の粘性が増し、ルツボの回転を早くすると流体の動きが非定常的になり、流体中に不均一に分布していた酸素が結晶中に取り込まれることにより発生する。そこで本実施の形態ではルツボの回転を遅くしているので、回転(摩擦による不均一)の影響が比較的少ないものと考えられる。したがって、シリコン融液116の温度を均一化することで、面内の酸素濃度分布の均一化を図ることができる。そこで、シリコン融液116の温度が均一になるように計算された条件及びシリコン単結晶116の育成の段階に合わせてヒータ142を昇降させる。   In the method for pulling up a silicon single crystal according to the embodiment of the present invention, as described above, there is a problem that if the rotation of the crucible is accelerated while applying a transverse magnetic field, deformation or polycrystallization occurs. It is slower than the law. The deformation or polycrystallization of the silicon single crystal 116 is caused by non-uniform oxygen concentration due to friction. When a transverse magnetic field is applied, the viscosity of the fluid increases, and when the crucible rotates faster, the fluid movement becomes unsteady. Oxygen that was distributed unevenly in the fluid is generated by being taken into the crystal. Therefore, in this embodiment, since the rotation of the crucible is slowed, it is considered that the influence of rotation (nonuniformity due to friction) is relatively small. Therefore, by making the temperature of the silicon melt 116 uniform, the in-plane oxygen concentration distribution can be made uniform. Therefore, the heater 142 is moved up and down in accordance with the conditions calculated to make the temperature of the silicon melt 116 uniform and the stage of growing the silicon single crystal 116.

本発明の実施の形態に係るシリコン単結晶の引き上げ方法について説明する。まず、石英ルツボ内に充填されたシリコンを溶融してシリコン融液とする。次に、シリコン融液に磁場印加部140により横磁場を印加しながらシリコン単結晶115を引上げる。このとき、ルツボ回転駆動部150によりルツボ130を回転及び昇降させる。ルツボ130の回転及び昇降に同期させて、磁場駆動部141により磁場印加部140の磁場中心位置がシリコン融液116の表面から常に所定の位置に位置するように、磁場印加部140を昇降させる。ここで、磁場印加部140の磁場中心位置の所定の位置は、シリコン融液116の深さをBとし、石英ルツボ131内のシリコン融液116の下面(最低面)の垂直方向の位置をLとし、このLを基準とし種結晶側を+とした場合、磁場中心位置が+1/2B+L〜+1/3B+Lとしている。これによって、常に、磁場中心位置がシリコン融液116の深さBの中心またはシリコン融液116の深さBの1/3の位置を追従している。さらに、ルツボ130の回転及び昇降並びに磁場印加部140の昇降に同期させて、シリコン融液116の温度を均一に保持するように、予め伝熱解析を行って得たデータに基づいて、シリコン融液116を加熱するヒータ142の位置を昇降させる。ここで、伝熱解析によって得られたデータに基づくヒータ142の位置の調整は、ヒータ142の上端及び黒鉛ルツボ131の上端を一致させた位置を基準として、ヒータ142の上端よりも黒鉛ルツボ131の上端が上側の位置にある場合を+側とした場合に、黒鉛ルツボ131の上端が常に+20mm以上+100mm以下となるように追従させる。より好ましくは、ヒータ142の位置を、黒鉛ルツボ131の上端が常に+45mmとなるように追従させることである。なお、黒鉛ルツボ131の上端が+20mm未満だと、効果が得にくく、+100mmを超えると、シリコン単結晶がフリーズしてしまう可能性があるからである。このように、本発明の実施の形態においては、ルツボ130の位置、磁場印加部140の位置、ヒータ142の位置は同期して変動させている。   The silicon single crystal pulling method according to the embodiment of the present invention will be described. First, silicon filled in the quartz crucible is melted to obtain a silicon melt. Next, the silicon single crystal 115 is pulled up while applying a transverse magnetic field to the silicon melt by the magnetic field applying unit 140. At this time, the crucible 130 is rotated and moved up and down by the crucible rotation driving unit 150. In synchronization with the rotation and elevation of the crucible 130, the magnetic field driving unit 141 moves the magnetic field application unit 140 up and down so that the magnetic field center position of the magnetic field application unit 140 is always located at a predetermined position from the surface of the silicon melt 116. Here, the predetermined position of the magnetic field center position of the magnetic field application unit 140 is that the depth of the silicon melt 116 is B, and the vertical position of the lower surface (lowest surface) of the silicon melt 116 in the quartz crucible 131 is L. When the L is a reference and the seed crystal side is +, the magnetic field center position is + 1 / 2B + L to + 1 / 3B + L. Thereby, the magnetic field center position always follows the center of the depth B of the silicon melt 116 or the position 1/3 of the depth B of the silicon melt 116. Further, in synchronization with the rotation and elevation of the crucible 130 and the elevation of the magnetic field application unit 140, the silicon melt is obtained based on the data obtained by performing the heat transfer analysis in advance so as to keep the temperature of the silicon melt 116 uniform. The position of the heater 142 that heats the liquid 116 is raised and lowered. Here, the adjustment of the position of the heater 142 based on the data obtained by the heat transfer analysis is based on the position where the upper end of the heater 142 and the upper end of the graphite crucible 131 coincide with each other. When the upper end is positioned on the upper side, the upper side of the graphite crucible 131 is made to follow so that it is always +20 mm or more and +100 mm or less. More preferably, the position of the heater 142 is made to follow so that the upper end of the graphite crucible 131 is always +45 mm. This is because if the upper end of the graphite crucible 131 is less than +20 mm, the effect is difficult to obtain, and if it exceeds +100 mm, the silicon single crystal may freeze. Thus, in the embodiment of the present invention, the position of the crucible 130, the position of the magnetic field application unit 140, and the position of the heater 142 are varied in synchronization.

以上の本発明の実施の形態に係るシリコン単結晶引上げ方法をまとめると、シリコン単結晶116の引上げ時の石英ルツボ131の昇降に同期させて、磁場印加部140の磁場中心位置がシリコン融液116の表面から常に所定の位置に位置するように、磁場印加部140を昇降する。そしてさらに、石英ルツボ131及び磁場印加部140の昇降と同期させて、シリコン融液116の温度を均一に保持するように伝熱解析を行ったデータに基づいて、シリコン融液116を加熱するヒータを昇降する方法である。   The silicon single crystal pulling method according to the embodiment of the present invention is summarized as follows. In synchronism with the raising and lowering of the quartz crucible 131 when the silicon single crystal 116 is pulled, the magnetic field center position of the magnetic field applying unit 140 is the silicon melt 116. The magnetic field application unit 140 is moved up and down so that it is always located at a predetermined position from the surface of the magnetic field. Further, a heater for heating the silicon melt 116 based on data obtained by performing heat transfer analysis so as to keep the temperature of the silicon melt 116 in synchronization with the raising and lowering of the quartz crucible 131 and the magnetic field applying unit 140. Is a method of moving up and down.

以上説明したように、本発明の実施の形態に係るシリコン単結晶の引上げ方法は、石英ルツボ131壁及びシリコン融液116の伝熱解析を行い、ヒータ142の位置を調整することによりシリコン融液116の温度を均一にして、横磁場をシリコン融液116に印加する際に生じる石英ルツボ131底の酸素の溶け込みの不均一を防止している。従って、育成するシリコン単結晶115の酸素濃度を高く維持しつつ面内の酸素濃度分布を均一にできる。以上の効果は制御部160によって、磁場駆動部141、ヒータ駆動部143及びルツボ回転駆動部150の昇降を同期させて制御することで達成される。   As described above, the silicon single crystal pulling method according to the embodiment of the present invention performs the heat transfer analysis of the quartz crucible 131 wall and the silicon melt 116 and adjusts the position of the heater 142 to adjust the silicon melt. The temperature of 116 is made uniform to prevent non-uniformity of oxygen dissolution at the bottom of the quartz crucible 131 that occurs when a transverse magnetic field is applied to the silicon melt 116. Accordingly, the in-plane oxygen concentration distribution can be made uniform while maintaining a high oxygen concentration in the silicon single crystal 115 to be grown. The above effect is achieved by controlling the movement of the magnetic field driving unit 141, the heater driving unit 143, and the crucible rotation driving unit 150 in synchronization with each other by the control unit 160.

さらに、より好ましくは、不活性ガスの比流速を落として実施することである。周知のとおりシリコン融液116の表面から酸素が常に蒸発しており、シリコン融液116の表面付近に低酸素濃度領域が形成される。この低酸素濃度領域も、ごく小さな影響ながらシリコン融液116の流れに取り込まれ、酸素濃度の面内分布を悪化させる一つの要因となっている。そのため、比流速を落とし、蒸発を抑制した条件がより望ましい。比流速を落とした場合、高酸素化も同時に達成できる。   More preferably, the specific flow rate of the inert gas is reduced. As is well known, oxygen constantly evaporates from the surface of the silicon melt 116, and a low oxygen concentration region is formed near the surface of the silicon melt 116. This low oxygen concentration region is also taken into the flow of the silicon melt 116 with a very small effect, and is one factor that deteriorates the in-plane distribution of the oxygen concentration. Therefore, a condition where the specific flow rate is reduced and evaporation is suppressed is more desirable. When the specific flow rate is lowered, high oxygenation can be achieved at the same time.

次に、本発明の実施の形態に係る実施例及び比較例について説明する。   Next, examples and comparative examples according to the embodiment of the present invention will be described.

本実施例は、HMCZ法によりシリコン単結晶を引上げる方法において、シリコン単結晶115の径を200mmとして育成するために、石英ルツボ131を22インチ(558.8mm)として、チャージ量を100kgとした例である。本実施例においては、シリコン単結晶115の径を200mmとして育成したが、本発明の実施の形態に係るシリコン単結晶の引上げ方法はこれに限定されず、例えばシリコン単結晶115の径を300mm以上の大口径として育成することもできる。   In this example, in the method of pulling up the silicon single crystal by the HMCZ method, the quartz crucible 131 was 22 inches (558.8 mm) and the charge amount was 100 kg in order to grow the silicon single crystal 115 with a diameter of 200 mm. It is an example. In this example, the silicon single crystal 115 was grown with a diameter of 200 mm, but the silicon single crystal pulling method according to the embodiment of the present invention is not limited to this. For example, the diameter of the silicon single crystal 115 is 300 mm or more. It can also be cultivated as a large diameter.

本実施例においては、磁場中心位置を常にシリコン融液の表面から−100mmの位置で、FEMAG(総合伝熱解析ソフト)により伝熱解析を行い、この伝熱解析結果に基づいて石英ルツボ131内の温度が均一になるようヒータ142の位置を調整した。ここで、伝熱解析に基づくヒータ142の位置の調整は、ヒータ142の上端及び黒鉛ルツボ131の上端を一致させた位置を基準として、ヒータ142の上端よりも黒鉛ルツボ131の上端が上側の位置にある場合を+側とした場合に、黒鉛ルツボ131の上端が+45mmとなるように追従させる。   In this embodiment, the heat transfer analysis is performed by FEMAG (total heat transfer analysis software) at the position of the magnetic field center always at a position of −100 mm from the surface of the silicon melt, and the quartz crucible 131 is placed on the basis of the heat transfer analysis result. The position of the heater 142 was adjusted so that the temperature of the heater was uniform. Here, the adjustment of the position of the heater 142 based on the heat transfer analysis is based on the position where the upper end of the heater 142 and the upper end of the graphite crucible 131 coincide with each other. When the case is in the + side, the upper end of the graphite crucible 131 is made to follow +45 mm.

本実施例により育成したシリコン単結晶の面内の酸素濃度分布及び結晶長での酸素濃度(1979年ASTM)を測定した結果を図3の201、図4(a)及び図5に示す。図3は結晶長(mmL)における酸素濃度(E18atoms/cm)を示す図であり、横軸に結晶長(mmL)を示し、縦軸に酸素濃度(E18atoms/cm)を示す。図4(a)はシリコン単結晶の面内の酸素濃度分布を示す図であり、横軸に酸素濃度(E18atoms/cm)を示し、縦軸に試験片上の距離(mm)を示す。ここで、試験片上の距離とは成長したシリコン単結晶の成長方向の距離に相当する。また、試験片とは結晶直胴70cm〜75cm部分を縦切りし、結晶軸中心部から、厚さ0.775mm、幅10mmとして切り出したものをいう。図5は結晶長(mmL)における面内の酸素濃度を示す図であり、横軸に結晶長(mmL)を示し、縦軸にΔ[Oi](%)を示す。ここで、Δ[Oi](%)とは面内の酸素濃度の((MAX−MIN)/MIN×100)である。 The results of measuring the in-plane oxygen concentration distribution and the oxygen concentration at the crystal length (1979 ASTM) of the silicon single crystal grown according to this example are shown in 201 of FIG. 3, FIG. 4A, and FIG. FIG. 3 is a graph showing the oxygen concentration (E18 atoms / cm 3 ) at the crystal length (mmL), where the horizontal axis shows the crystal length (mmL) and the vertical axis shows the oxygen concentration (E18 atoms / cm 3 ). FIG. 4A is a diagram showing the in-plane oxygen concentration distribution of the silicon single crystal, where the horizontal axis indicates the oxygen concentration (E18 atoms / cm 3 ), and the vertical axis indicates the distance (mm) on the test piece. Here, the distance on the test piece corresponds to the distance in the growth direction of the grown silicon single crystal. Moreover, a test piece means what cut | disconnected a 70-75-cm part of crystal straight cylinders longitudinally, and cut out from the center part of a crystal axis as thickness 0.775mm and width 10mm. FIG. 5 is a diagram showing the in-plane oxygen concentration in the crystal length (mmL), where the horizontal axis indicates the crystal length (mmL) and the vertical axis indicates Δ [Oi] (%). Here, Δ [Oi] (%) is the in-plane oxygen concentration ((MAX−MIN) / MIN × 100).

図3から把握されるように、本実施例において、シリコン単結晶の酸素濃度は、酸素濃度の狙い値である1.2(E18atoms/cm)〜1.4(E18atoms/cm)の間にあり、かつ変動幅が小さく安定した酸素濃度である。 As can be seen from FIG. 3, in this example, the oxygen concentration of the silicon single crystal is between 1.2 (E18 atoms / cm 3 ) and 1.4 (E18 atoms / cm 3 ), which is the target value of the oxygen concentration. The oxygen concentration is stable with a small fluctuation range.

図4(a)から把握されるように、本実施例において、面内の酸素濃度分布がほぼ均一である。   As can be understood from FIG. 4A, in this embodiment, the in-plane oxygen concentration distribution is substantially uniform.

また、図5から把握されるように、本実施例において、面内の酸素濃度の変動幅が小さくかつ酸素濃度が安定している。
[比較例1]
上述した実施例の効果を検証するために、以下に説明する比較例1及び2について測定した。
Further, as can be seen from FIG. 5, in this embodiment, the fluctuation range of the in-plane oxygen concentration is small and the oxygen concentration is stable.
[Comparative Example 1]
In order to verify the effects of the above-described embodiment, Comparative Examples 1 and 2 described below were measured.

比較例1及び比較例2は、HMCZ法によりシリコン単結晶を引上げる方法において、シリコン単結晶115の径を200mmとして育成するために、石英ルツボ131を22インチ(558.8mm)として、チャージ量を100kgとした例である。   In Comparative Example 1 and Comparative Example 2, in the method of pulling up the silicon single crystal by the HMCZ method, the quartz crucible 131 is 22 inches (558.8 mm) in order to grow the silicon single crystal 115 with a diameter of 200 mm, and the charge amount Is 100 kg.

比較例1は、磁場中心位置をシリコン融液の表面から±0の位置で、かつ、ヒータ位置の調整を行ないでシリコン単結晶の育成を行った例である。   Comparative Example 1 is an example in which a silicon single crystal is grown by adjusting the position of the magnetic field at a position of ± 0 from the surface of the silicon melt and adjusting the heater position.

育成したシリコン単結晶における結晶長での酸素濃度を測定した結果を図3の202に示す。図3から把握されるように、シリコン単結晶の酸素濃度は、シリコン単結晶の育成初期段階から育成中期段階にかけては酸素濃度の狙い値である1.2(E18atoms/cm)〜1.4(E18atoms/cm)の間にあるが、結晶後半にかけて低い酸素濃度になって狙い値をはずれ、また、変動幅が大きくかつ酸素濃度が不安定である。 The result of measuring the oxygen concentration at the crystal length in the grown silicon single crystal is shown at 202 in FIG. As understood from FIG. 3, the oxygen concentration of the silicon single crystal is 1.2 (E18 atoms / cm 3 ) to 1.4, which is the target value of the oxygen concentration from the initial stage of growth of the silicon single crystal to the middle stage of growth. Although it is between (E18 atoms / cm 3 ), the oxygen concentration becomes lower in the latter half of the crystal and deviates from the target value, and the fluctuation range is large and the oxygen concentration is unstable.

次に、比較例2として、磁場中心位置を昇降させ、一方ヒータの調整は行わない例について説明する。   Next, as Comparative Example 2, an example in which the magnetic field center position is raised and lowered while the heater is not adjusted will be described.

比較例2は、磁場中心位置を常にシリコン融液の表面から−100mmの位置で、シリコン単結晶の育成を行った。   In Comparative Example 2, a silicon single crystal was grown at a magnetic field center position that was always −100 mm from the surface of the silicon melt.

育成したシリコン単結晶の面内の酸素濃度分布及び結晶長での酸素濃度を測定した結果を図3の203、図4(b)及び図5に示す。なお、図3、図4(b)及び図5の縦軸及び横軸の単位は上述した実施例と同様であるため説明は省略する。   The results of measuring the oxygen concentration distribution in the plane of the grown silicon single crystal and the oxygen concentration at the crystal length are shown in 203 of FIG. 3, FIG. 4B, and FIG. Since the units of the vertical axis and the horizontal axis in FIGS. 3, 4B and 5 are the same as those in the above-described embodiment, description thereof will be omitted.

図3から把握されるように、比較例2は、シリコン単結晶の酸素濃度は、酸素濃度の狙い値である1.2(E18atoms/cm)〜1.4(E18atoms/cm)の間にあり、比較例1よりは改善はされているものの、変動幅が実施例より大きくかつ酸素濃度が不安定であることが把握される。 As understood from FIG. 3, in Comparative Example 2, the oxygen concentration of the silicon single crystal is between 1.2 (E18 atoms / cm 3 ) and 1.4 (E18 atoms / cm 3 ), which is the target value of the oxygen concentration. Although it is improved compared with the comparative example 1, it is grasped | ascertained that the fluctuation range is larger than an Example and oxygen concentration is unstable.

また、図4(b)から把握されるように、比較例2においては、面内の酸素濃度分布が不均一である。   Further, as can be seen from FIG. 4B, in the comparative example 2, the in-plane oxygen concentration distribution is not uniform.

さらに、図5から把握されるように、比較例2において、面内の酸素濃度の変動幅が実施例より大きく、酸素濃度が不安定である。   Further, as understood from FIG. 5, in Comparative Example 2, the fluctuation range of the in-plane oxygen concentration is larger than that of the example, and the oxygen concentration is unstable.

以上説明したように、実施例と比較例1及び比較例2とを比較すると、磁場中心位置を下げ、シリコン融液の表面及び石英ルツボ壁の温度分布を調整した本実施例がシリコン単結晶を高酸素濃度に維持しつつ、面内の酸素濃度分布の均一化が達成されていることが理解される。一方、比較例1の磁場中心位置を下げず、かつ、温度分布未調整の場合では、結晶長における酸素濃度が結晶後半にかけて低い酸素濃度になり、変動幅が大きくかつ酸素濃度が不安定であることがわかる。したがって、均一した高酸素濃度のシリコン単結晶が得られない。また、比較例2の磁場中心位置を下げ、温度分布未調整の場合では、比較例1よりは改善されているものの面内の酸素濃度分布が不均一であることがわかる。したがって、面内の酸素濃度分布が均一であるシリコン単結晶が得られない。   As described above, when Example is compared with Comparative Example 1 and Comparative Example 2, the present example, in which the magnetic field center position is lowered and the temperature distribution of the surface of the silicon melt and the quartz crucible wall is adjusted, is a silicon single crystal. It is understood that the in-plane oxygen concentration distribution is made uniform while maintaining a high oxygen concentration. On the other hand, in the case where the magnetic field center position of Comparative Example 1 is not lowered and the temperature distribution is not adjusted, the oxygen concentration in the crystal length becomes a low oxygen concentration in the latter half of the crystal, the fluctuation range is large, and the oxygen concentration is unstable. I understand that. Therefore, a uniform high oxygen concentration silicon single crystal cannot be obtained. Further, in the case where the magnetic field center position of Comparative Example 2 is lowered and the temperature distribution is not adjusted, it can be seen that the in-plane oxygen concentration distribution is non-uniform although it is improved over Comparative Example 1. Therefore, a silicon single crystal having a uniform in-plane oxygen concentration distribution cannot be obtained.

なお、本発明の実施の形態に係るシリコン単結晶の引上げ装置100は、上述した例に限定されず変形実施例が可能である。例えば、第1の変形例としては、シリコン単結晶の引上げ装置100のヒータの形状を変更してもよい。一例としてルツボの形状と同様の形状である。ただし、ヒータはシリコン融液及び石英ルツボ壁の温度を均一にすることができればその形状は特に限定されない。   Note that the silicon single crystal pulling apparatus 100 according to the embodiment of the present invention is not limited to the above-described example, and can be modified. For example, as a first modification, the shape of the heater of the silicon single crystal pulling apparatus 100 may be changed. As an example, the shape is similar to the shape of the crucible. However, the shape of the heater is not particularly limited as long as the temperature of the silicon melt and the quartz crucible wall can be made uniform.

第2の変形例としては、シリコン単結晶の引上げ装置100のルツボの下部にボトムヒータを設けてもよい。ボトムヒータは石英ルツボ下部の温度を均一に保つために用いることができる。さらに、ボトムヒータをルツボ下部に設けることにより、シリコン単結晶の酸素濃度をさらに、高くすることができる。また、シリコン融液の減少に伴い昇降するルツボに合わせてボトムヒータを追従させてもよい。   As a second modification, a bottom heater may be provided below the crucible of the silicon single crystal pulling apparatus 100. The bottom heater can be used to keep the temperature below the quartz crucible uniform. Furthermore, the oxygen concentration of the silicon single crystal can be further increased by providing the bottom heater at the lower part of the crucible. Moreover, you may make a bottom heater track according to the crucible which goes up and down with the reduction | decrease of a silicon melt.

本発明の実施の形態に係るシリコン単結晶の引上げ装置を示す概略断面図である。It is a schematic sectional drawing which shows the pulling apparatus of the silicon single crystal which concerns on embodiment of this invention. 本発明の実施の形態に係る図1に示すシリコン単結晶の引上げ装置のメインチャンバを示す概略拡大断面図である。It is a general | schematic expanded sectional view which shows the main chamber of the pulling apparatus of the silicon single crystal shown in FIG. 1 which concerns on embodiment of this invention. 本発明の実施の形態に係るシリコン単結晶の結晶全長の酸素濃度を示す図である。It is a figure which shows the oxygen concentration of the crystal | crystallization full length of the silicon single crystal which concerns on embodiment of this invention. (a)は、本発明の実施例に係るシリコン単結晶の面内の酸素濃度分布を示す図であり、(b)は比較例に係るシリコン単結晶の面内の酸素濃度分布を示す図である。(A) is a figure which shows oxygen concentration distribution in the surface of the silicon single crystal which concerns on the Example of this invention, (b) is a figure which shows oxygen concentration distribution in the surface of the silicon single crystal which concerns on a comparative example. is there. 本発明の実施の形態に係るシリコン単結晶の面内の酸素濃度を示す図である。It is a figure which shows the oxygen concentration in the surface of the silicon single crystal which concerns on embodiment of this invention.

符号の説明Explanation of symbols

100:シリコン単結晶の引上げ装置、110:巻き上げ機構、111:巻取り部、112:ワイヤ回転駆動部、113:ワイヤ、114:種結晶、115:シリコン単結晶、116:シリコン融液、117:テーブル、118:回転軸、120:炉体、121:メインチャンバ、122:プルチャンバ、130:ルツボ、131:石英ルツボ、132:黒鉛ルツボ、140:磁場印加部、141:磁場駆動部、142:ヒータ、143:ヒータ駆動部、144:輻射シールド、145:第1の保温部材、146:第2の保温部材、147:第3の保温部材、150:ルツボ回転駆動部、160:制御部   100: Silicon single crystal pulling device, 110: Winding mechanism, 111: Winding unit, 112: Wire rotation driving unit, 113: Wire, 114: Seed crystal, 115: Silicon single crystal, 116: Silicon melt, 117: Table: 118: Rotating shaft, 120: Furnace body, 121: Main chamber, 122: Pull chamber, 130: Crucible, 131: Quartz crucible, 132: Graphite crucible, 140: Magnetic field applying unit, 141: Magnetic field driving unit, 142: Heater 143: heater driving unit, 144: radiation shield, 145: first heat retaining member, 146: second heat retaining member, 147: third heat retaining member, 150: crucible rotation driving unit, 160: control unit

Claims (2)

シリコンを溶融してシリコン融液とする石英ルツボ及び黒鉛ルツボからなるルツボと、
前記ルツボを回転させながら昇降させるルツボ回転駆動部と、
前記シリコンを溶融するための熱発生源であるヒータと、
前記ヒータを昇降させるヒータ駆動部と、
前記シリコン融液に対して磁場を印加する磁場印加部と、
前記磁場印加部を昇降させる磁場駆動部と、
前記ルツボ回転駆動部、前記ヒータ駆動部及び前記磁場駆動部に接続され、前記ルツボ回転駆動部、前記ヒータ駆動部及び前記磁場駆動部の駆動を制御する制御部と、を有し、
前記制御部は、前記ルツボ回転駆動部による前記ルツボの昇降に同期させて、前記シリコン融液の深さをBとし、前記石英ルツボ内の前記シリコン融液の下面(最低面)の垂直方向の位置をLとし、このLを基準とし種結晶側を+とした場合、前記磁場印加部の磁場中心位置が+1/2B+L〜+1/3B+Lに位置するように前記磁場駆動部の駆動を制御して前記磁場印加部を昇降させ、同時に、前記シリコン融液の温度が常に均一になるように記ヒータ駆動部の駆動を制御して前記ヒータを昇降させ前記ヒータの上端及び前記黒鉛ルツボの上端を一致させた位置を基準として、前記ヒータの上端よりも前記黒鉛ルツボの上端が上側の位置にある場合を+側とした場合に、前記黒鉛ルツボの上端が+20mm以上+100mm以下となるように追従させることを特徴とするシリコン単結晶引上げ装置。
A crucible composed of a quartz crucible and a graphite crucible that melts silicon into a silicon melt; and
A crucible rotation drive unit that moves up and down while rotating the crucible;
A heater that is a heat generation source for melting the silicon;
A heater drive for raising and lowering the heater;
A magnetic field application unit for applying a magnetic field to the silicon melt;
A magnetic field drive unit for moving the magnetic field application unit up and down;
A controller that is connected to the crucible rotation driving unit, the heater driving unit, and the magnetic field driving unit, and controls the driving of the crucible rotation driving unit, the heater driving unit, and the magnetic field driving unit;
The control unit synchronizes with the raising and lowering of the crucible by the crucible rotation driving unit, and sets the depth of the silicon melt to B, and the vertical direction of the lower surface (lowest surface) of the silicon melt in the quartz crucible When the position is L and the seed crystal side is + with reference to L, the drive of the magnetic field drive unit is controlled so that the magnetic field center position of the magnetic field application unit is located in + 1 / 2B + L to + 1 / 3B + L. raises and lowers the magnetic field application unit, at the same time, the upper ends and the graphite crucible of the silicon melt by controlling the drive of the pre-Symbol heater driving unit so that the temperature is always uniform raising and lowering the heater the heater The upper end of the graphite crucible becomes +20 mm or more and +100 mm or less when the upper end of the graphite crucible is located on the upper side of the upper end of the heater with respect to the matched position. The silicon single crystal pulling apparatus according to claim Rukoto is urchin follow.
磁場印加部によって横磁場を印加しながら石英ルツボ内のシリコン融液からシリコン単結晶を引き上げるシリコン単結晶引上げ方法において、
シリコン単結晶の引上げに伴って前記石英ルツボを回転させながら昇降させると共に前記シリコン融液の深さをBとし、前記石英ルツボ内の前記シリコン融液の下面(最低面)の垂直方向の位置をLとし、このLを基準とし種結晶側を+とした場合、前記磁場印加部の磁場中心位置が+1/2B+L〜+1/3B+Lに位置するように前記磁場印加部を昇降し、
前記石英ルツボ及び前記磁場印加部の昇降と同期させて、前記シリコン融液の温度を均一に保持するように前記石英ルツボ内のシリコン融液を加熱するヒータを昇降させ前記ヒータの上端及び前記黒鉛ルツボの上端を一致させた位置を基準として、前記ヒータの上端よりも前記黒鉛ルツボの上端が上側の位置にある場合を+側とした場合に、前記黒鉛ルツボの上端が+20mm以上+100mm以下となるように追従させることを特徴とするシリコン単結晶の引上げ方法。
In the silicon single crystal pulling method of pulling up the silicon single crystal from the silicon melt in the quartz crucible while applying a transverse magnetic field by the magnetic field applying unit,
As the silicon single crystal is pulled up, the quartz crucible is raised and lowered while rotating, and the depth of the silicon melt is set to B, and the vertical position of the lower surface (lowest surface) of the silicon melt in the quartz crucible is set. When L is used as a reference and the seed crystal side is +, the magnetic field application unit is moved up and down so that the magnetic field center position of the magnetic field application unit is located in + 1 / 2B + L to + 1 / 3B + L.
In synchronism with the raising and lowering of the quartz crucible and the magnetic field application unit, the heater for heating the silicon melt in the quartz crucible is raised and lowered so as to keep the temperature of the silicon melt uniform, and the upper end of the heater and the graphite The upper end of the graphite crucible is +20 mm or more and +100 mm or less when the upper end of the graphite crucible is located on the upper side of the upper end of the heater with respect to the position where the upper ends of the crucibles are matched. A method for pulling a silicon single crystal, which is characterized in that the following is performed .
JP2008233153A 2008-09-11 2008-09-11 Silicon single crystal pulling apparatus and silicon single crystal pulling method Active JP5145176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008233153A JP5145176B2 (en) 2008-09-11 2008-09-11 Silicon single crystal pulling apparatus and silicon single crystal pulling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008233153A JP5145176B2 (en) 2008-09-11 2008-09-11 Silicon single crystal pulling apparatus and silicon single crystal pulling method

Publications (2)

Publication Number Publication Date
JP2010064928A JP2010064928A (en) 2010-03-25
JP5145176B2 true JP5145176B2 (en) 2013-02-13

Family

ID=42190840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008233153A Active JP5145176B2 (en) 2008-09-11 2008-09-11 Silicon single crystal pulling apparatus and silicon single crystal pulling method

Country Status (1)

Country Link
JP (1) JP5145176B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552891B2 (en) * 2010-05-12 2014-07-16 信越半導体株式会社 Single crystal manufacturing apparatus and single crystal manufacturing method
KR101540567B1 (en) * 2013-11-05 2015-07-31 주식회사 엘지실트론 Single crystalline ingots, method and apparatus for manufacturing the ingots

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572070B2 (en) * 1987-07-20 1997-01-16 東芝セラミツクス株式会社 Single crystal manufacturing method
JP3520883B2 (en) * 1995-12-29 2004-04-19 信越半導体株式会社 Single crystal manufacturing method
JP4457584B2 (en) * 2003-06-27 2010-04-28 信越半導体株式会社 Method for producing single crystal and single crystal

Also Published As

Publication number Publication date
JP2010064928A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
KR100906284B1 (en) Semiconductor single crystal growth method improved in oxygen concentration characteristics
EP1734157B1 (en) Production process of silicon single crystal
JP5131170B2 (en) Upper heater for single crystal production, single crystal production apparatus and single crystal production method
US20090293804A1 (en) Method of shoulder formation in growing silicon single crystals
JP4209325B2 (en) Single crystal semiconductor manufacturing apparatus and manufacturing method
JP5228671B2 (en) Method for growing silicon single crystal
CN107208307A (en) The control system and control method of single crystal rod diameter
JP5782323B2 (en) Single crystal pulling method
JP5145176B2 (en) Silicon single crystal pulling apparatus and silicon single crystal pulling method
KR101105475B1 (en) Method for manufacturing single crystal minimizing process-deviation
KR101105547B1 (en) Heater used for manufacturing single crystal, Apparatus and Method of manufacturing single crystal using the same
JP2020114802A (en) Method for manufacturing silicon single crystal
JP2008214118A (en) Method for manufacturing semiconductor single crystal
JP5051033B2 (en) Method for producing silicon single crystal
JP2004196569A (en) Silicon single crystal pulling method
JP4314974B2 (en) Silicon single crystal manufacturing method and silicon single crystal
KR20150089717A (en) Apparatus and method for growing ingot
JP6304125B2 (en) A method for controlling resistivity in the axial direction of silicon single crystal
JP5552891B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP6658421B2 (en) Method for producing silicon single crystal
KR100869940B1 (en) Method of manufacturing silicon single crystal ingot
JP2018043904A (en) Method for manufacturing silicon single crystal
JP5077299B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2008019128A (en) Apparatus for producing single crystal, method for producing single crystal, and single crystal
JP2008019129A (en) Apparatus for producing single crystal, method for producing single crystal, and single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5145176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250