JP2509477B2 - Crystal growth method and crystal growth apparatus - Google Patents

Crystal growth method and crystal growth apparatus

Info

Publication number
JP2509477B2
JP2509477B2 JP3115236A JP11523691A JP2509477B2 JP 2509477 B2 JP2509477 B2 JP 2509477B2 JP 3115236 A JP3115236 A JP 3115236A JP 11523691 A JP11523691 A JP 11523691A JP 2509477 B2 JP2509477 B2 JP 2509477B2
Authority
JP
Japan
Prior art keywords
crystal
pulling
melt
control plate
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3115236A
Other languages
Japanese (ja)
Other versions
JPH05279172A (en
Inventor
秋山信之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP3115236A priority Critical patent/JP2509477B2/en
Priority to PCT/JP1991/001450 priority patent/WO1992018672A1/en
Publication of JPH05279172A publication Critical patent/JPH05279172A/en
Application granted granted Critical
Publication of JP2509477B2 publication Critical patent/JP2509477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、引上げ法による結晶成
長技術、とくに半導体の単結晶引上げ技術に適用され、
るつぼ内に充填された素材融液の表面温度の半径方向の
温度分布を、融液表面上に温度制御板をもうけることに
より制御し、単結晶の引上げ速度と得られる結晶の品質
を向上させる技術に関する。
BACKGROUND OF THE INVENTION The present invention is applied to a crystal growth technique by a pulling method, particularly a semiconductor single crystal pulling technique,
A technology to control the temperature distribution in the radial direction of the surface temperature of the material melt filled in the crucible by placing a temperature control plate on the surface of the melt to improve the pulling speed of the single crystal and the quality of the obtained crystal. Regarding

【0002】[0002]

【従来の技術】従来、半導体の単結晶引上げ技術、とく
にチョクラルスキー(以下CZ)法によるシリコン単結
晶の引上げ技術においては、生産性の向上や、引上げ途
上における熱履歴の結晶への影響を制御するために、た
とえば、特公昭57-40119号や、特公平2−31040号公報に
開示されるような、引上げ結晶の周りに逆円錐状の一種
の熱輻射板のようなものを設けた技術がある。これら
は、るつぼを介して及んでくる加熱用ヒータからの熱
や、融液面からの輻射熱をさえぎるか又は反射すること
により、引上げ結晶の冷却速度を速めるものである。
2. Description of the Related Art Conventionally, in a semiconductor single crystal pulling technique, in particular, in a silicon single crystal pulling technique by the Czochralski (CZ) method, there has been an improvement in productivity and influence of thermal history on the crystal during pulling. For control, a kind of inverted conical heat radiation plate such as disclosed in Japanese Patent Publication No. 57-40119 and Japanese Patent Publication No. 231040 is provided around the pulled crystal. There is technology. These cut off or reflect the heat from the heater for heating and the radiant heat from the melt surface that reach through the crucible, thereby increasing the cooling rate of the pulled crystal.

【0003】[0003]

【発明が解決しようとする課題】しかし、これらの技術
では熱輻射板により輻射された熱で、融液表面が部分的
に過熱したり、このため融液全体の温度分布が正常でな
くなり、かえって結晶特性に悪影響がでたりすることも
あった。また、引上げ速度もさらに向上させることが、
生産性の上からも望まれている。
However, in these techniques, the surface of the melt is partially overheated by the heat radiated by the heat radiating plate, and the temperature distribution of the entire melt is not normal. In some cases, the crystal characteristics were adversely affected. Also, to further increase the pulling speed,
It is also desired in terms of productivity.

【0004】また、従来よりCZ法においては、融液面
の温度分布状態に関し、引上げを実際に行なうオペレー
タは、1本の単結晶引上げ途中でもそのパターンがかわ
ってくることをよく知っている。通常このパターンは、
単結晶のトップ側(引上げ初め)からテール側(引上げ
終わり)に進行するにしたがって、図4のXからZへ変
化していくが、Zのような状態になると単結晶の引上げ
が困難になり、途中で引上げを断念するようなこともあ
る。
Further, conventionally, in the CZ method, regarding the temperature distribution state of the melt surface, it is well known that the operator who actually pulls up the pattern changes even during pulling of one single crystal. Usually this pattern is
As it progresses from the top side (beginning of pulling) of the single crystal to the tail side (end of pulling), it changes from X to Z in Fig. 4, but when it becomes a state like Z, it becomes difficult to pull up the single crystal. , There are times when we give up on the way.

【0005】より高速で単結晶を引き上げようとすれば
するほど、この温度分布のパターンは一層Y、Zの傾向
を帯びてくる。これはシリコンの凝固を速めるために、
ヒーターの発熱量を下げる必要があるものの、シリコン
の凝固熱(430cal/g)の単位時間当たりの発生量は増加
することから、るつぼ内壁面側の温度は下がり気味にな
らざるをえないことによる。CZ法では、融液のるつぼ
半径方向の温度を制御しなければならないにもかかわら
ず、その有効な技術がないため、従来これが行われてい
なかったもので、そのため従来は、上記の温度分布のパ
ターンがYからZになると、引上げ速度を低下させた
り、ヒーターへの電力を上げたりして、引上げができな
くなるのを逃げるのが普通であった。これは引上げられ
た単結晶の品質、生産性に極めて悪い影響を与えるもの
である。
The higher the speed of pulling the single crystal, the more the pattern of the temperature distribution becomes Y and Z. This is to accelerate the solidification of silicon,
Although it is necessary to lower the heating value of the heater, the amount of silicon solidification heat (430 cal / g) generated per unit time increases, so the temperature on the inner wall of the crucible has to be reduced. . In the CZ method, although the temperature of the melt in the radial direction of the crucible must be controlled, there is no effective technique therefor, and thus this has not been performed in the past. When the pattern changed from Y to Z, it was common to slow down the pulling speed or increase the electric power to the heater to escape the failure of pulling. This has a very bad influence on the quality and productivity of the pulled single crystal.

【0006】[0006]

【課題を解決するための手段】本発明は、こうした従来
技術の問題解決のために、融液の半径方向の温度分布制
御を可能にする新たな引上げ技術を提供するもので、る
つぼ内に充填されて、このるつぼを取り囲む外部加熱手
段としてのヒータにより溶融状態にされた素材融液に、
種結晶を浸漬して徐々にこれを引上げることにより、結
晶を成長させる技術において、融液面の上方であって、
引上げ結晶を取り囲む領域に温度制御板を設けること
で、融液表面の温度分布を、結晶の引上げ中、引上げ結
晶下の固液界面において最も低くなるように、同時に、
るつぼ内壁面に向かう方向に次第に高くなるように常に
維持する方法及びその装置にあることを特徴としてい
る。
In order to solve the problems of the prior art, the present invention provides a new pulling technique that enables control of the temperature distribution of the melt in the radial direction. The material melt melted by a heater as an external heating means surrounding the crucible is melted,
In the technique of growing a crystal by immersing a seed crystal and gradually pulling it up, it is above the melt surface,
By providing a temperature control plate in the region surrounding the pulling crystal, the temperature distribution of the melt surface during the pulling of the crystal, at the same time to the lowest at the solid-liquid interface under the pulling crystal, at the same time,
The present invention is characterized by a method and apparatus for always maintaining the height gradually increasing toward the inner wall surface of the crucible.

【0007】さらに、この温度制御板を、結晶引上げ
中、融液面からの距離が引上げ状況に応じて可変になる
よう移動させると、融液表面の温度分布を、前記の状態
に制御しやすくなる。
Further, when the temperature control plate is moved so that the distance from the melt surface can be varied according to the pulling state during pulling of the crystal, the temperature distribution on the melt surface can be easily controlled to the above-mentioned state. Become.

【0008】また、温度制御板は、結晶引上げ域に沿っ
た保持部と、その下端部分に設けた、外方向下向き又は
水平に開いてるつぼ内壁面付近に達する傘状部とを有し
ている。
Further, the temperature control plate has a holding portion along the crystal pulling region, and an umbrella-shaped portion provided at the lower end portion thereof which extends downward in the outward direction or horizontally and reaches the vicinity of the inner wall surface of the crucible. .

【0009】ここで、温度制御板の傘状部の傾きを、水
平面に対して15°以下に設定すると、融液表面の温度分
布の状態が良好になる。
Here, if the inclination of the umbrella-shaped portion of the temperature control plate is set to 15 ° or less with respect to the horizontal plane, the temperature distribution on the surface of the melt will be good.

【0010】[0010]

【作用】本発明においては、前記したようにヒータによ
り加熱溶融された素材融液の、結晶直下の部分から、る
つぼ内壁と接する部分までの表面の温度分布状態を、引
上げ途中のどの時点においても、結晶直下部分が最も低
温で、外側に向かうにつれ高温となるよう制御して、良
好な品質をもった結晶の高速引上げを実現しようとする
ものである。本発明がこうした作用を用いる理由は、I
C用の優れた品質の大径シリコン単結晶を得るには、た
とえばCZ法において、最も重視しなければならないの
が、結晶が融液から固化する位置A(図4)を中心にし
て、引上げられたシリコン単結晶の温度履歴を決定す
る、いわゆる縦方向の温度分布状態と、融液からの固化
状態を左右する、いわゆるるつぼ内壁に向かう融液表面
の横方向の温度分布状態とにあるからである。
In the present invention, as described above, the temperature distribution of the surface of the material melt heated and melted by the heater from the portion just below the crystal to the portion in contact with the inner wall of the crucible is changed at any point during the pulling. It is intended to realize high-speed pulling of a crystal having good quality by controlling so that the portion directly below the crystal has the lowest temperature and the temperature becomes higher toward the outside. The reason why the present invention uses such an action is I
In order to obtain an excellent-quality large-diameter silicon single crystal for C, for example, in the CZ method, the most important thing is to pull the crystal around the position A (FIG. 4) at which the crystal solidifies from the melt. It is in the so-called longitudinal temperature distribution state that determines the temperature history of the obtained silicon single crystal, and in the so-called lateral temperature distribution state of the melt surface toward the inner wall of the crucible that influences the solidification state from the melt. Is.

【0011】前者は、固化完了直後の高温状態(1350℃
以上)から、少し引上げが進んだやや上方の中温状態(13
00〜900℃)、さらに上方の低温状態(900〜450 ℃)への
推移による、単結晶内での固溶酸素の析出や、あるいは
またドナー化、さらに各種結晶欠陥の発生消滅等の、ド
ラマティックな生起を左右していると推定されている。
The former is a high temperature state (1350 ° C.) immediately after solidification is completed.
From the above), the medium temperature state (13
(00-900 ℃), and further transition to a low temperature state (900-450 ℃) above, precipitation of solute oxygen in the single crystal, or formation of donors, and the dramatic disappearance of various crystal defects. It is presumed that it affects the occurrence of the

【0012】一方後者は、こうした単結晶内での物理現
象にはかかわらず、いかに支障なく結晶が引上がるかど
うかを左右している。シリコン融液の適性温度は、原理
的には単にシリコン単結晶直下の融液の温度のみできま
ると考えられるが、工業的に製造するとなると、るつぼ
内融液全体、とりわけその表面の温度分布の制御が大切
になる。
On the other hand, the latter influences whether the crystal can be pulled up without any trouble regardless of the physical phenomenon in the single crystal. In principle, the suitable temperature of the silicon melt is considered to be only the temperature of the melt just below the silicon single crystal, but when it is industrially manufactured, the temperature of the entire melt in the crucible, especially the temperature distribution of its surface, Control is important.

【0013】外周からヒーターにより加熱する方式が一
般的なCZ法では、黒鉛るつぼ、石英るつぼ及びシリコ
ン融液等の被加熱体からは常に、伝導、輻射あるいは対
流により放熱が行なわれている。結果的に、望ましい横
方向の温度分布は図3に示したイのようになるが、もち
ろんヒーターへの電力を制御して、図4中の結晶直下
(符号Aの部分)の温度が、シリコンの凝固温度(1420
℃)に維持されるよう、通常自動制御はなされている。
これには、シリコン単結晶の直径を光学的に計測して制
御に用いる、いわゆる「光学式」と、シリコン単結晶の
直径の変動を重量で感知してこれを制御に用いる、いわ
ゆる「重量式」とがあるが、いづれの方式であっても、
融液を加熱しているヒーターの発熱量と、単結晶の引上
げ速度とを、同時に制御する手段が制御系に組み込まれ
ているのが一般的である。しかし、品質の良い結晶を得
るためには、引上げ速度にその制御の割合の多くを受け
もたせることは良くないとされ、したがってシリコン融
液への温度制御の割合を多くすることが望ましい。
In the general CZ method in which the heater is used to heat from the outer periphery, heat is always radiated by conduction, radiation or convection from a heated object such as a graphite crucible, a quartz crucible and a silicon melt. As a result, the desirable lateral temperature distribution is as shown in FIG. 3, but of course the electric power to the heater is controlled so that the temperature just below the crystal in FIG. Freezing temperature of (1420
Normally, automatic control is performed so that the temperature is maintained at (° C).
This includes the so-called "optical type", in which the diameter of the silicon single crystal is optically measured and used for control, and the so-called "weight type" in which the variation in the diameter of the silicon single crystal is sensed by weight and used for control. , "Whichever method is used,
It is general that a means for simultaneously controlling the heat generation amount of the heater heating the melt and the pulling rate of the single crystal is incorporated in the control system. However, in order to obtain a good quality crystal, it is not good to give the pulling rate a large proportion of the control, and therefore it is desirable to increase the proportion of the temperature control to the silicon melt.

【0014】すなわち、図1乃至図3に示した本発明に
係る技術を採用すると、温度制御板7、7’、7”の傘
状部9、9’、9”が、融液表面の放熱を抑えるととも
に、結晶周囲の保持部8、8’、8”は伝導により熱を
上方へと逃がし固液界面の冷却速度を速めることから、
融液表面の半径方向の温度分布状態が図4中のXの理想
的パターンを保ち、引上げ途中のあらゆる状況におい
て、YやZの状態に陥ることがないものと考えられる。
したがって、この温度制御板を融液面水準の変動に追従
するように可動にすると、この作用効果もさらに安定す
る。
That is, when the technique according to the present invention shown in FIGS. 1 to 3 is adopted, the umbrella-shaped portions 9, 9 ', 9 "of the temperature control plates 7, 7', 7" are radiated on the surface of the melt. In addition to suppressing the above, the holding portions 8, 8 ′, 8 ″ around the crystal allow heat to escape upward by conduction and accelerate the cooling rate of the solid-liquid interface,
It is considered that the radial temperature distribution state of the melt surface maintains the ideal pattern of X in FIG. 4 and does not fall into the Y or Z state in any situation during pulling.
Therefore, if the temperature control plate is made movable so as to follow the fluctuation of the melt surface level, this action and effect are further stabilized.

【0015】[0015]

【比較例】図5に示したCZ法による単結晶成長装置
の、黒鉛ルツボ1内に石英るつぼ(16インチ)2を入
れ、あらかじめセットされていた円筒状黒鉛ヒーター
(内径16インチ)3内に設置し、石英るつぼ中に素材
のシリコンナゲットを45kg装填した。装置内を真空引
きし、アルゴンガス置換を行い、黒鉛ヒーター3により
素材を加熱溶解して、融液としたのち、5mm×5mmの種
結晶4をこの融液表面に浸して、なじませた。種結晶を
徐々に引上げることで、単結晶5の製造を開始し、直径
6インチの太さまで成長させた。その後引上げスピード
が1.3mm/minになるように黒鉛ヒーターの発熱量を調
整し、さらに成長を続けた。単結晶の成長長さが、400m
m にさしかかると、るつぼの内壁6の一部からシリコン
融液の一部が島状に凝固始めた。その島はだんだん大き
くなり、るつぼの中心方向にのび、結晶長480mm のとこ
ろで結晶と島との接触の危険性がでてきたため、引上げ
を断念した。
[Comparative Example] In the single crystal growth apparatus by the CZ method shown in FIG. 5, a quartz crucible (16 inches) 2 was placed in a graphite crucible 1 and placed in a preset cylindrical graphite heater (inner diameter 16 inches) 3. It was installed and 45 kg of the raw material silicon nugget was loaded into the quartz crucible. The inside of the apparatus was evacuated, the atmosphere was replaced with argon gas, the raw material was heated and melted by the graphite heater 3 to form a melt, and then a seed crystal 4 of 5 mm × 5 mm was dipped in the surface of the melt to be familiar. The production of the single crystal 5 was started by gradually pulling up the seed crystal, and the single crystal 5 was grown to have a diameter of 6 inches. Thereafter, the calorific value of the graphite heater was adjusted so that the pulling speed was 1.3 mm / min, and the growth was further continued. Single crystal growth length is 400m
When approaching m 2, a part of the silicon melt began to solidify from a part of the inner wall 6 of the crucible into an island shape. The island gradually increased in size, extended toward the center of the crucible, and at the crystal length of 480 mm, there was a danger of contact between the crystal and the island, so we abandoned pulling.

【0016】[0016]

【実施例】実施例1 比較例と全く同一装置をつかい、素材シリコンを全溶解
後、図1に示したように、引上装置内に温度制御板7を
装填した。温度制御板7は、円筒状の保持部8と傘状部
9とを有しており、保持部8は、引上げ予定の単結晶の
周囲を取り囲む。さらに、保持部8の中間高さには、温
度制御板を支えるための支承部14が設けられ、単結晶
成長装置の断熱筒15の上部に固定される。また、傘状
部9の外縁10は、石英るつぼ内壁の融液との境界面付
近に達している。保持部の内径は229mmφ、傘状部の
水平面に成す角度αは5°、融液面からの最短距離は25
mm、外縁10と石英るつぼ2との間隔は25mmである。傘
状部9は、融液面の保温を、保持部は伝導により固液界
面の放熱をはかる。
EXAMPLE 1 The same apparatus as in Comparative Example was used to completely melt the raw material silicon, and then the temperature control plate 7 was loaded in the pulling apparatus as shown in FIG. The temperature control plate 7 has a cylindrical holding portion 8 and an umbrella-shaped portion 9, and the holding portion 8 surrounds the periphery of the single crystal to be pulled. Further, a supporting portion 14 for supporting the temperature control plate is provided at an intermediate height of the holding portion 8 and is fixed to an upper portion of a heat insulating cylinder 15 of the single crystal growth apparatus. Further, the outer edge 10 of the umbrella-shaped portion 9 reaches near the boundary surface between the inner wall of the quartz crucible and the melt. The inner diameter of the holding part is 229 mmφ, the angle α formed by the horizontal plane of the umbrella-shaped part is 5 °, and the shortest distance from the melt surface is 25
mm, and the distance between the outer edge 10 and the quartz crucible 2 is 25 mm. The umbrella-shaped portion 9 keeps the temperature of the melt surface warm, and the holding portion conducts heat at the solid-liquid interface by conduction.

【0017】比較例と同様の操作を行ない、引上げ速度
1.3mm/min.で、直径6インチの単結晶引上げを開始
した。結晶長400mm になってもるつぼ内壁からの凝固島
は現われず、最後まで同一引上げ速度を維持し、最終的
に640mm長のシリコン単結晶を得た。
The same operation as in the comparative example was performed, and the pulling speed was 1.3 mm / min. Then, the pulling of a single crystal having a diameter of 6 inches was started. Even when the crystal length was 400 mm, solidified islands did not appear from the inner wall of the crucible, the same pulling rate was maintained until the end, and finally a 640 mm long silicon single crystal was obtained.

【0018】本実施例のように、傘状部に若干の傾斜を
もたせると、るつぼ内壁面と融液表面の円周状接点領域
を固液界面部分より効果的に保温することができるが、
傾斜を水平面から15°を越えて設定しても、その効果に
はとくに顕著さは生じないことが判明した。
When the umbrella-shaped portion is slightly inclined as in this embodiment, the circumferential contact area between the inner wall surface of the crucible and the melt surface can be more effectively kept warm than the solid-liquid interface.
It was found that even if the inclination was set more than 15 ° from the horizontal plane, the effect was not particularly remarkable.

【0019】実施例2 単結晶の成長長さ300mm までは、温度制御板7の融液面
からの最短距離(Hとする)を100mmにセットし、その
後、400mmのところではH=50mm、600mmのところでは、
H=25mmにするよう徐々にZを変化させた点を除けば、
他の条件等は実施例1と同様にしてシリコン単結晶の引
上げを行なった。引上げ速度は、1.3mm/min.の一定
で最後まで島の発生はなかった。最終的に642mm長の
シリコン単結晶を得た。
Example 2 Up to a single crystal growth length of 300 mm, the shortest distance from the melt surface of the temperature control plate 7 (set to H) was set to 100 mm, and then at 400 mm, H = 50 mm and 600 mm. By the way,
Except for the point that Z was gradually changed so that H = 25 mm,
The silicon single crystal was pulled up in the same manner as in Example 1 except for other conditions. The pulling speed was constant at 1.3 mm / min., And no island was generated until the end. Finally, a 642 mm long silicon single crystal was obtained.

【0020】温度制御板7’は、図2に示したように保
持部8’上端に固定された軸11が、引上装置チャンバ
ー内壁12に設けられてチャンバー外からの駆動源(図
示せず)により回転する歯車13、に連動して上下方向
に動く。
As shown in FIG. 2, the temperature control plate 7'is provided with a shaft 11 fixed to the upper end of the holder 8'on the inner wall 12 of the chamber of the pulling device, and a driving source (not shown) from outside the chamber. ), It moves up and down in conjunction with the rotating gear 13.

【0021】実施例3 実施例1と全く同じようにしたが、温度制御板7”の形
状を図3のようにした。本実施例に採用した温度制御板
の形状は、傘状部9”が水平に設定されており、かつ保
持部8”は、厚みを持たせてある。融液表面は、傘状部
9”の反射保温作用により高温に保たれ、固液界面付近
は、逆に肉厚の保持部8”の伝導作用により効果的に放
熱されて、低温に維持される。加熱源は、るつぼ外にあ
るから、るつぼ中央から外側に向かって上昇する融液面
の理想的温度勾配パターンが形成される。
Example 3 The same procedure as in Example 1 was carried out, but the shape of the temperature control plate 7 "was changed to that shown in FIG. 3. The shape of the temperature control plate used in this example was an umbrella-shaped portion 9". Is set horizontally, and the holding portion 8 "has a thickness. The surface of the melt is kept at a high temperature by the reflection heat-retaining action of the umbrella-shaped portion 9", and the vicinity of the solid-liquid interface is reversed. The heat is effectively dissipated by the conductive action of the thick holding portion 8 "and is maintained at a low temperature. Since the heating source is outside the crucible, the ideal temperature of the melt surface rising from the center of the crucible to the outside A gradient pattern is formed.

【0022】本実施例によっても略同じ効果が見られ、
結晶長644mm、直径6インチのシリコン単結晶を得る
ことができた。
The same effect can be seen in this embodiment as well.
A silicon single crystal having a crystal length of 644 mm and a diameter of 6 inches could be obtained.

【0023】なお、実施例1乃至3により得られた単結
晶につき、その物性を調べたが、従来法により製造した
ものとの大きな差異は認められなかった。
The physical properties of the single crystals obtained in Examples 1 to 3 were examined, but no significant difference from those produced by the conventional method was observed.

【0024】いずれの実施例においても、温度制御板の
材質にはグラファイトを用いたが、もちろんこれ以外に
も、モリブデン等の金属材料が用いられる。また、多層
構造にしても良い。
In each of the embodiments, graphite was used as the material of the temperature control plate, but of course, other than this, a metal material such as molybdenum may be used. Alternatively, a multi-layer structure may be used.

【0025】[0025]

【発明の効果】本発明によれば、融液表面のるつぼ半径
方向の温度分布のパターンを、引上げ開始から終了まで
のどのような段階においても、固液界面部分からるつぼ
内壁面に向かって次第に上昇するように維持することが
でき、このため単結晶の引上げ速度を上げても、るつぼ
側の融液温度が下がることはない。したがって、従来で
は、融液上に凝固島を生じて引上げが不可能になってい
たような速度での結晶の引上げが可能になり、生産性の
向上をはかることがきる。
According to the present invention, the temperature distribution pattern of the melt surface in the radial direction of the crucible is gradually increased from the solid-liquid interface portion toward the inner wall surface of the crucible at any stage from the start to the end of pulling. It can be maintained so as to rise, so that even if the pulling speed of the single crystal is increased, the melt temperature on the crucible side does not decrease. Therefore, the crystal can be pulled up at such a rate that solidification islands have been formed on the melt to make the pulling impossible, and thus the productivity can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示した単結晶成長装置の縦
断面図。
FIG. 1 is a vertical cross-sectional view of a single crystal growth apparatus showing an embodiment of the present invention.

【図2】本発明の異なる実施例を示した単結晶成長装置
の縦断面図。
FIG. 2 is a vertical sectional view of a single crystal growth apparatus showing a different embodiment of the present invention.

【図3】本発明のさらに異なる実施例を示した単結晶成
長装置の縦断面図。
FIG. 3 is a vertical sectional view of a single crystal growth apparatus showing still another embodiment of the present invention.

【図4】融液面の温度分布状態を示した模式図。FIG. 4 is a schematic diagram showing a temperature distribution state on the melt surface.

【図5】従来の単結晶成長装置の縦断面図。FIG. 5 is a vertical sectional view of a conventional single crystal growth apparatus.

【符号の説明】[Explanation of symbols]

1 黒鉛るつぼ 2 石英るつぼ 3 黒鉛ヒーター 4 種結晶 5 単結晶 6 るつぼ内壁 7,7’,7” 温度制御板 8,8’,8” 保持部 9,9’,9” 傘状部 10 外縁 11 軸 12 チャンバー内壁 13 歯車 14 支承部 15 断熱筒 1 Graphite crucible 2 Quartz crucible 3 Graphite heater 4 Seed crystal 5 Single crystal 6 Crucible inner wall 7, 7 ', 7 "Temperature control plate 8, 8', 8" Holding part 9, 9 ', 9 "Umbrella part 10 Outer edge 11 Shaft 12 Chamber inner wall 13 Gear 14 Bearing 15 Heat insulation tube

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 容器内に充填され、外部加熱手段により
溶融状態とした素材融液中に、種結晶を浸漬して徐々に
これを引上げることにより、結晶を成長させる方法にお
いて、融液充填域上方の結晶引上げ域を取り囲む領域に
温度制御板を設けることにより、融液表面の温度分布
を、結晶引上げ中引上げ結晶下の固液界面において最も
低く、容器内壁面に向かう方向に次第に高く常時維持す
ることを特徴とする結晶成長方法。
1. A method of growing a crystal by immersing a seed crystal in a material melt, which is filled in a container and made into a molten state by an external heating means, and gradually pulls it up By providing a temperature control plate in the region surrounding the crystal pulling region above the region, the temperature distribution on the melt surface is the lowest at the solid-liquid interface under the pulling crystal during the crystal pulling, and is gradually higher toward the inner wall surface of the container. A method for growing a crystal characterized by maintaining.
【請求項2】 結晶引上げ中、温度制御板の位置を融液
面の変位に応じて変動させることにより、融液表面の温
度分布を、結晶引上げ中引上げ結晶下の固液界面におい
て最も低く維持し、容器内壁面に向かう方向に次第に高
く維持することを特徴とする請求項1記載の結晶成長方
法。
2. The temperature distribution on the surface of the melt is kept at the lowest level at the solid-liquid interface under the pulling crystal during pulling the crystal by changing the position of the temperature control plate according to the displacement of the melt surface during pulling the crystal. The crystal growth method according to claim 1, wherein the crystal growth method maintains the temperature gradually higher toward the inner wall surface of the container.
【請求項3】 容器内に充填され、外部加熱手段により
溶融状態とした素材融液中に、種結晶を浸漬して徐々に
これを引上げることにより、結晶を成長させるものにお
いて、融液充填域上方の結晶引上げ域を取り囲む領域に
温度制御板を設けたことを特徴とする結晶成長装置。
3. A method of growing a crystal by immersing a seed crystal in a material melt filled in a container and made into a molten state by an external heating means and gradually pulling it up A crystal growth apparatus characterized in that a temperature control plate is provided in a region surrounding a crystal pulling region above the region.
【請求項4】 温度制御板が、結晶引上げ域に沿った保
持部と、その下端部分に設けた、外方向下向き又は水平
に開いて容器内壁面近傍に達する傘状部とを有すること
を特徴とする請求項3記載の結晶成長装置。
4. The temperature control plate has a holding portion along the crystal pulling region, and an umbrella-like portion provided at a lower end portion of the holding portion that opens downward downward or horizontally and reaches the vicinity of the inner wall surface of the container. The crystal growth apparatus according to claim 3.
【請求項5】 温度制御板の傘状部の傾きが、水平面に
対して15°以下であることを特徴とする請求項4記載の
結晶成長装置。
5. The crystal growth apparatus according to claim 4, wherein the inclination of the umbrella-shaped portion of the temperature control plate is 15 ° or less with respect to the horizontal plane.
【請求項6】 温度制御板が上下可動に構成されている
ことを特徴とする請求項3乃至5のいずれか一項に記載
の結晶成長装置。
6. The crystal growth apparatus according to claim 3, wherein the temperature control plate is vertically movable.
JP3115236A 1991-04-20 1991-04-20 Crystal growth method and crystal growth apparatus Expired - Lifetime JP2509477B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3115236A JP2509477B2 (en) 1991-04-20 1991-04-20 Crystal growth method and crystal growth apparatus
PCT/JP1991/001450 WO1992018672A1 (en) 1991-04-20 1991-10-23 Device and method for growing crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3115236A JP2509477B2 (en) 1991-04-20 1991-04-20 Crystal growth method and crystal growth apparatus

Publications (2)

Publication Number Publication Date
JPH05279172A JPH05279172A (en) 1993-10-26
JP2509477B2 true JP2509477B2 (en) 1996-06-19

Family

ID=14657715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3115236A Expired - Lifetime JP2509477B2 (en) 1991-04-20 1991-04-20 Crystal growth method and crystal growth apparatus

Country Status (2)

Country Link
JP (1) JP2509477B2 (en)
WO (1) WO1992018672A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3285111B2 (en) * 1994-12-05 2002-05-27 信越半導体株式会社 Method for producing silicon single crystal with few crystal defects
US5824152A (en) * 1996-07-09 1998-10-20 Komatsu Electronic Metals Co., Ltd. Semiconductor single-crystal pulling apparatus
DE19711922A1 (en) * 1997-03-21 1998-09-24 Wacker Siltronic Halbleitermat Device and method for pulling a single crystal
JPH1179889A (en) * 1997-07-09 1999-03-23 Shin Etsu Handotai Co Ltd Production of and production unit for silicon single crystal with few crystal defect, and silicon single crystal and silicon wafer produced thereby
DE19756613A1 (en) * 1997-12-18 1999-07-01 Wacker Siltronic Halbleitermat Method and device for producing a single crystal
JP3943717B2 (en) * 1998-06-11 2007-07-11 信越半導体株式会社 Silicon single crystal wafer and manufacturing method thereof
JP4736401B2 (en) * 2004-11-02 2011-07-27 住友金属工業株式会社 Method for producing silicon carbide single crystal
JP4844127B2 (en) * 2006-01-11 2011-12-28 株式会社Sumco Single crystal manufacturing apparatus and manufacturing method
CN106048723A (en) * 2016-08-01 2016-10-26 中国电子科技集团公司第四十六研究所 Solid-liquid interface control method for growing gallium oxide crystal by utilization of pulling method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538375A (en) * 1976-07-12 1978-01-25 Sony Corp Method and apparatus for pulling up single crystal
JPS5740119A (en) * 1980-07-18 1982-03-05 Skf Kugellagerfabriken Gmbh Thin bearing bush made by pressdrawing
JPS581080A (en) * 1981-06-16 1983-01-06 ノルクス・ヒドロ・アクシエセルスカ−ブ Water electrolytic cell diaphragm
JPS6168389A (en) * 1984-09-06 1986-04-08 Sony Corp Apparatus for growing single crystal
JPH0231040A (en) * 1988-07-20 1990-02-01 Tokico Ltd Hydraulic buffer
JPH02157180A (en) * 1988-12-12 1990-06-15 Shin Etsu Handotai Co Ltd Pulling up device for single crystal rod

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733307B2 (en) * 1986-08-18 1995-04-12 ソニー株式会社 Single crystal growth equipment
JPS6461383A (en) * 1987-08-31 1989-03-08 Nippon Steel Corp Method for pulling up single crystal rod and apparatus therefor
JPH0639351B2 (en) * 1987-09-05 1994-05-25 信越半導体株式会社 Apparatus and method for manufacturing single crystal ingot
JP2705809B2 (en) * 1988-10-05 1998-01-28 三菱マテリアル株式会社 Single crystal pulling device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538375A (en) * 1976-07-12 1978-01-25 Sony Corp Method and apparatus for pulling up single crystal
JPS5740119A (en) * 1980-07-18 1982-03-05 Skf Kugellagerfabriken Gmbh Thin bearing bush made by pressdrawing
JPS581080A (en) * 1981-06-16 1983-01-06 ノルクス・ヒドロ・アクシエセルスカ−ブ Water electrolytic cell diaphragm
JPS6168389A (en) * 1984-09-06 1986-04-08 Sony Corp Apparatus for growing single crystal
JPH0231040A (en) * 1988-07-20 1990-02-01 Tokico Ltd Hydraulic buffer
JPH02157180A (en) * 1988-12-12 1990-06-15 Shin Etsu Handotai Co Ltd Pulling up device for single crystal rod

Also Published As

Publication number Publication date
WO1992018672A1 (en) 1992-10-29
JPH05279172A (en) 1993-10-26

Similar Documents

Publication Publication Date Title
US6053974A (en) Heat shield for crystal puller
US5714004A (en) Process for producing polycrystalline semiconductors
US3798007A (en) Method and apparatus for producing large diameter monocrystals
JP2509477B2 (en) Crystal growth method and crystal growth apparatus
KR101563221B1 (en) Single crystal manufacturing apparatus and manufacturing method
KR20020026379A (en) Process for preparing single crystal silicon having uniform thermal history
KR101596550B1 (en) Apparutus and Method for Growing Ingot
JPH09221380A (en) Device for producing crystal by czochralski method, production of crystal and crystal produced thereby
JP4272449B2 (en) Single crystal pulling method
JPH0524969A (en) Crystal growing device
JP3079991B2 (en) Single crystal manufacturing apparatus and manufacturing method
JPH0315550Y2 (en)
US20240158952A1 (en) Apparatus and Method for Regulating Hot Zone for Single Crystal Growth
JP7115592B1 (en) Single crystal manufacturing equipment
JPH08133886A (en) Production of single crystal
JPH08325090A (en) Device for pulling up single crystal
JP2814796B2 (en) Method and apparatus for producing single crystal
JP2939603B2 (en) Manufacturing method of semiconductor single crystal
JPH05294784A (en) Single crystal growth device
JPH05319973A (en) Single crystal production unit
JPH0250077B2 (en)
JPH0782084A (en) Single crystal growing method and single crystal growing apparatus
JPH08319190A (en) Thermal shielding body
JPH08259371A (en) Method for growing single crystal excellent in sr uniformization
JPH0881298A (en) Production of single crystal and device for producing single crystal