KR100359229B1 - Method for Growing n-Type GaAs Monocrystal by Means of VFG - Google Patents

Method for Growing n-Type GaAs Monocrystal by Means of VFG Download PDF

Info

Publication number
KR100359229B1
KR100359229B1 KR1020000013028A KR20000013028A KR100359229B1 KR 100359229 B1 KR100359229 B1 KR 100359229B1 KR 1020000013028 A KR1020000013028 A KR 1020000013028A KR 20000013028 A KR20000013028 A KR 20000013028A KR 100359229 B1 KR100359229 B1 KR 100359229B1
Authority
KR
South Korea
Prior art keywords
single crystal
growth
crystal growth
type gaas
gaas single
Prior art date
Application number
KR1020000013028A
Other languages
Korean (ko)
Other versions
KR20010091385A (en
Inventor
오명환
Original Assignee
네오세미테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 네오세미테크 주식회사 filed Critical 네오세미테크 주식회사
Priority to KR1020000013028A priority Critical patent/KR100359229B1/en
Publication of KR20010091385A publication Critical patent/KR20010091385A/en
Application granted granted Critical
Publication of KR100359229B1 publication Critical patent/KR100359229B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/006Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/42Gallium arsenide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

본 발명은 수직 경사응고(Vertical Gradient Freeze: VGF)법에 의한 고품위 n-형 GaAs 단결정 성장방법에 관한 것으로, 보다 구체적으로는 Si를 3×1018-3이상 도우핑하여 에치피드밀도(EPD: etch pit density)≥500㎝-2의 고품위가 40% 이상 확보될 수 있는 고품위 n-형 GaAs 단결정 성장방법에 관한 것이다.The present invention relates to a high-quality n-type GaAs single crystal growth method by the vertical gradient freezing (VGF) method, more specifically doping Si 3 × 10 18 cm -3 or more etch feed density (EPD) The present invention relates to a high quality n-type GaAs single crystal growth method in which a high quality of etch pit density (≥500 cm -2 ) can be ensured by 40% or more.

본 발명은 Si을 (3∼5)×1018-3이상으로 도핑할 때 발생하는 고-액 계면의 불안정 요인을 해소하기 위하여 열적균형을 고려하여 결정성장조건을 적용하고, 성장이 진행함에 따라 잉곳트에 열처리 효과가 가해지도록 앰푸울 끝부위에서부터 평평한 온도대를 두어, 성장후 열응력이 크지 않도록 하며, 상온으로의 냉각시 냉각속도를 단단계로 제어하는 것으로 이루어지는 것을 특징으로 한다.The present invention applies crystal growth conditions in consideration of thermal balance in order to solve the instability factor of the solid-liquid interface generated when doping Si above (3 to 5) x 10 18 cm -3. Accordingly, by placing a flat temperature zone from the end of the ampoules so that the heat treatment effect is applied to the ingot, so that the thermal stress after growth is not large, characterized in that consisting of controlling the cooling rate in a single step when cooling to room temperature.

Description

VGF법에 의한 고품위 n-형 GaAs 단결정 성장방법{Method for Growing n-Type GaAs Monocrystal by Means of VFG}Method for Growing n-Type GaAs Monocrystal by Means of VFG}

본 발명은 수직 경사응고(Vertical Gradient Freeze: VGF)법에 의한 고품위 n-형 GaAs 단결정 성장방법에 관한 것으로, 보다 구체적으로는 Si를 3×1018-3이상 도우핑하여 에치피드밀도(EPD: etch pit density)≥500㎝-2의 고품위가 40% 이상 확보될 수 있는 고품위 n-형 GaAs 단결정 성장방법에 관한 것이다.The present invention relates to a high-quality n-type GaAs single crystal growth method by the vertical gradient freezing (VGF) method, more specifically doping Si 3 × 10 18 cm -3 or more etch feed density (EPD) The present invention relates to a high quality n-type GaAs single crystal growth method in which a high quality of etch pit density (≥500 cm -2 ) can be ensured by 40% or more.

광소자용 재료로 각광받는 GaAs 재료는 현재 그것이 갖는 여러 가지 우수한 특성임에도 불구하고, Si처럼 범용되지 못하고 있다. 이는 n-형 GaAs 단결정 성장시, 고품위성을 확보하기 위해서는 Si 농도를 3×1018-3이상으로 해주어야 하는데, 기존의 HB(Horizontal Bridgeman) 방법에 의한 성장의 경우에는 온도구배가 낮기 때문에, 성장중 조성적 과냉(constitutional supercooling) 등이 야기되어 원하는 단결정을 얻기가 어렵기 때문이다.GaAs materials, which are spotlighted as materials for optical devices, are not universally used like Si, despite their many excellent properties. In the case of n-type GaAs single crystal growth, in order to secure high quality, the Si concentration should be 3 × 10 18 cm -3 or more. In the case of growth by the conventional HB (Horizontal Bridgeman) method, the temperature gradient is low, This is because constitutional supercooling is caused during growth, making it difficult to obtain a desired single crystal.

즉, GaAs의 열전도도는 Si보다 3.5배 낮고, 기계적 성질도 2배 이하이기 때문에 결정성장시 각종 결함 즉, 쌍정(twin)이나 다결정화(poly-crystal) 등이 쉽게 유발되어 원하는 단결정을 얻기가 어려운 문제가 있다.That is, the thermal conductivity of GaAs is 3.5 times lower than that of Si and the mechanical properties are also 2 times or less. Therefore, various defects during crystal growth, such as twin or poly-crystal, are easily induced to obtain a desired single crystal. There is a difficult problem.

따라서, 본 발명은 이러한 종래기술의 문제점을 해소시키기 위하여, 그 목적은 VGF법에 의해 Si를 3×1018-3이상 도우핑하여 에치피드밀도(EPD: etch pitdensity)≥500㎝-2의 고품위가 40% 이상 확보될 수 있는 고품위 n-형 GaAs 단결정 성장시에 결정 성장조건을 미시적인 측면에 이르기까지 정밀 제어하여 n-형 GaAs의 최적성장조건을 적용함으로써, 비교적 균질적이고 고수율의 고품위 n-형 GaAs 단결정 성장방법을 제공하는데 있다.Therefore, in order to solve the problems of the prior art, the object of the present invention is to dope Si of 3 × 10 18 cm -3 or more by VGF method to achieve etch pitdensity (EPD: ≧ 500 cm −2 ). When the high-quality n-type GaAs single crystal grows with a high quality of 40% or more, the crystal growth conditions are precisely controlled to the microscopic side, so that the optimum growth conditions of the n-type GaAs are applied. An n-type GaAs single crystal growth method is provided.

도 1a 및 도 1b는 본 발명에 따라 VGF법에 의해 n-형 GaAs 단결정 성장 시작전에 퍼니스의 개략 단면도 및 이를 이용한 GaAs 성장시 퍼니스의 위치와 온도의 관계를 보여주는 그래프,1A and 1B are schematic cross-sectional views of a furnace before the start of n-type GaAs single crystal growth by VGF method according to the present invention, and a graph showing the relationship between the position and temperature of the furnace during GaAs growth using the same;

도 2a 및 도 2b는 본 발명에 따라 n-형 GaAs 단결정 성장 진행중일 때 퍼니스의 개략 단면도 및 이때의 퍼니스의 위치와 온도의 관계를 보여주는 그래프,2a and 2b are graphs showing a schematic cross-sectional view of the furnace and the relationship between the position and temperature of the furnace at the time of n-type GaAs single crystal growth in accordance with the present invention,

도 3a 및 도 3b는 본 발명에 따라 n-형 GaAs 단결정 성장후의 퍼니스의 개략 단면도 및 이때의 퍼니스의 위치와 온도의 관계를 보여주는 그래프이다.3A and 3B are graphs showing a schematic cross-sectional view of the furnace after n-type GaAs single crystal growth and the relationship between the furnace position and temperature at this time.

( 도면의 주요 부분에 대한 부호의 설명 )(Explanation of symbols for the main parts of the drawing)

1 : GaAs 용융액 2 : GaAs 시이드1: GaAs melt 2: GaAs seed

3 : 앰푸울 4 : 밀봉부3: ampoules 4: sealing

5 : 앰푸울 끝부위 6 : GaAs 단결정5: end of ampoules 6: GaAs single crystal

7 : 쇼울더부 8 : 보디부7: shoulder portion 8: body portion

GL: 액체부 온도구배 GS: 고체부 온도구배G L : Temperature gradient of liquid part G S : Temperature gradient of solid part

상기한 목적을 달성하기 위하여, 본 발명은 Si을 (3∼5)×1018-3이상으로 도핑할 때 발생하는 고-액 계면의 불안정 요인을 해소하기 위하여 열적균형을 고려하여 결정성장조건을 적용하고, 성장이 진행함에 따라 잉곳트에 열처리 효과가 가해지도록 앰푸울 끝부위에서부터 평평한 온도대를 두어, 성장후 열응력이 크지 않도록 하며, 상온으로의 냉각시 냉각속도를 온도에 따라 단단계로 제어하는 것으로 이루어지는 VGF법에 의한 고품위 n-형 GaAs 단결정 성장방법을 제공한다.In order to achieve the above object, the present invention provides crystal growth conditions in consideration of thermal balance in order to solve the instability factor of the solid-liquid interface generated when doping Si to (3 to 5) x 10 18 cm -3 or more. After the growth, place a flat temperature zone from the end of the ampoules so that the heat treatment effect is applied to the ingot as the growth progresses, so that the thermal stress after growth is not large, and the cooling rate when cooling to room temperature is a simple step according to the temperature. Provided is a high quality n-type GaAs single crystal growth method by the VGF method, which is controlled by the method.

여기서, 상기 결정성장조건을 온도구배 5℃/㎝, 성장속도 3∼5㎜/hr로 가변적으로 제어되고, 상기 평평한 온도대는 1080∼1150℃인 것을 특징으로 한다.Herein, the crystal growth conditions are variably controlled at a temperature gradient of 5 ° C./cm and a growth rate of 3 to 5 mm / hr, and the flat temperature range is 1080 to 1150 ° C.

또한, 상기의 냉각속도는 1200∼1000℃ 사이의 온도일 때 1℃/분, 1000∼800℃ 사이의 온도일 때 2℃/분, 800℃ 이하일 때 10℃/분으로 설정된다.The cooling rate is set at 1 ° C / min at temperatures between 1200 and 1000 ° C, 2 ° C / minutes at temperatures between 1000 and 800 ° C, and 10 ° C / minutes at 800 ° C and below.

상기한 바와같이 본 발명에서는 고품위 n-형 GaAs 단결정 성장시에 결정 성장조건을 미시적인 측면에 이르기까지 정밀 제어하여 n-형 GaAs의 최적성장조건을 적용함으로써, 비교적 균질적이고 고수율의 고품위 n-형 GaAs 단결정을 성장시킬 수 있다.As described above, in the present invention, by precisely controlling the crystal growth conditions to the microscopic side during the growth of high-quality n-type GaAs single crystals, the optimum growth conditions of the n-type GaAs are applied, thereby providing a relatively homogeneous, high-quality, high-quality n- The type GaAs single crystal can be grown.

(실시예)(Example)

이하 본 발명을 첨부도면을 참고하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 있어서는 성장시 온도구배가 고-액 계면의 고체부가 5℃/㎝, 액체부에 1℃/㎝ 이하로 두어, 성장시 잠열방출이 원활하게 해 주었다. 특히, 이 경우 고체부와 액체부의 열적 균형을 고려하면 아래의 수학식 1이 성립하며, 이를 GaAs 단결정(6)의 성장속도(R)에 따라 정리하면 아래의 수학식 2가 얻어진다.In the present invention, the temperature gradient during growth was set at 5 ° C./cm in the solid part of the solid-liquid interface and 1 ° C./cm or less in the liquid part, thereby facilitating latent heat release during growth. In particular, in this case, considering the thermal balance of the solid portion and the liquid portion, the following Equation 1 is established, and when the arrangement is made according to the growth rate R of the GaAs single crystal 6, the following Equation 2 is obtained.

KsGs = KLGL+ RLρKsGs = K L G L + RLρ

여기서 R : GaAs 단결정 성장속도(cm/hr)Where R: GaAs single crystal growth rate (cm / hr)

Ks : GaAs 고체의 열전도도Ks: Thermal Conductivity of GaAs Solids

KL: GaAs 액체의 열전도도GS: 고체부 온도구배GL: 액체부 온도구배K L : Thermal conductivity of GaAs liquid G S : Temperature gradient of solid part G L : Temperature gradient of liquid part

L : GaAs 응고잠열L: GaAs coagulation latent heat

ρ: 단위부피당의 GaAs 몰(mole)수ρ: number of moles of GaAs per unit volume

즉, 열적 균형을 고려하여 상기 수학식 2에 따른 단결정 성장속도(R)에 근거한 성장 속도를 주는 것이 필요하다.That is, it is necessary to give a growth rate based on the single crystal growth rate R according to Equation 2 in consideration of the thermal balance.

따라서, 본 발명의 단결정 성장방법은 고품위 n-형 GaAs 단결정(6) 성장을위하여 Si을 (3∼5)×1018-3정도 도핑하는 경우에, 성장시 유발되는 GaAs 고-액 계면의 불안정성 요인을 인위적으로 제어하기 위하여 하기와 같은 3가지 사항을 적용하였다.Therefore, the single crystal growth method of the present invention is characterized by the GaAs solid-liquid interface induced during growth when doping Si (3 to 5) x 10 18 cm -3 for high quality n-type GaAs single crystal (6) growth. In order to artificially control the instability factor, the following three points were applied.

첫째, 열적균형을 고려한 성장조건을 적용하였다.First, growth conditions considering thermal balance were applied.

둘째, 성장이 진행됨에 따라 잉곳트에 열처리 효과가 가해지도록 앰푸울 끝부위에서부터 비교적 평평한 온도대를 1080∼1150℃정도로 두어 성장 후 열응력이 크기 않도록 하였다. 이는 도 2b와 도 3b의 성장전과 성장후의 퍼니스의 위치와 온도의 관계를 보여주는 그래프를 비교하여 보면 알 수 있다.Second, as the growth progressed, a relatively flat temperature zone was set at 1080 to 1150 ° C. from the end of the ampoules so that the heat treatment effect was applied to the ingot so that the thermal stress was not large after growth. This can be seen by comparing the graphs showing the relationship between the temperature and the position of the furnace before and after growth of FIGS. 2B and 3B.

셋째, 상온으로의 냉각속도를 제어하여 고품위성이 재현성 있게 확보되도록 하였다.Third, the cooling rate to room temperature was controlled to ensure reproducibility of high quality.

본 발명은 고품위 재현성을 확보하기 위하여 이러한 열적 균형을 가장 중요한 변수로 감안하여, 도 1에 도시된 바와 같이,GaAs 용융부는 1240∼1250℃의 온도 영역을 갖게 하고, 앰푸울 끝부위(5)는 1100∼1050℃가 되게 하여, 고-액 계면의 고체부의 온도구배가 1230∼1240℃ 사이에서 5℃/㎝, 1240℃∼1250℃ 사이에서는 1℃/㎝ 이하로 되게 설정한다.The present invention considers such a thermal balance as the most important variable in order to ensure high quality reproducibility, as shown in Figure 1, the GaAs melting portion has a temperature range of 1240 ~ 1250 ℃, the ampoules end 5 It becomes 1100-1050 degreeC, and the temperature gradient of the solid part of a solid-liquid interface is set to 5 degrees C / cm between 1230-1240 degreeC, and 1 degrees C / cm or less between 1240 degreeC and 1250 degreeC.

또한, 성장속도는 시이드부(2)는 3㎜/시간, 쇼율더부(7)는 5㎜/시간, 잉곳트 보디부(8)는 4㎜/hr로 효율적으로 제어하며, 냉각속도를 1200∼1000℃까지는 1℃/분, 1000∼800℃까지는 2℃/분, 800℃ 이하에서는 10℃/분 정도로 제어함으로써 Si농도가 (3∼5)×1018-3만큼 도핑된 경우, 양질의 n-형 잉곳트가 얻어지며, 조업 재현성도 75% 이상이 되게 된다.In addition, the growth rate is efficiently controlled at 3 mm / hour for the seed part 2, 5 mm / hour for the show rate part 7, and 4 mm / hr for the ingot body part 8, and the cooling rate is 1200 to 1200. If the Si concentration is doped by (3 to 5) x 10 18 cm -3 by controlling it to 1 ° C / min up to 1000 ° C, 2 ° C / min up to 1000-800 ° C, and 10 ° C / min below 800 ° C, An n-type ingot is obtained, and operation reproducibility becomes more than 75%.

실시예 1Example 1

2″ 및 2.5″원형 웨이퍼를 얻기 위하여 <100> 방위의 사이드를 사용하여 상기의 성장조건과 냉각조건에서 시험한 결과 (1∼5)×1018-3의 Si를 도핑하였을 때, 5 내지 3 ×1018-3의 전자농도를 갖는 500≤EPD≤2000㎝-2정도의 재현성이 있는 GaAs 단결정을 얻을 수 있다.Tested under the above growth and cooling conditions using sides of the <100> orientation to obtain 2 ″ and 2.5 ″ circular wafers, when doped with Si of (1-5) × 10 18 cm −3 , 3 × 10 18 500≤EPD≤2000㎝ having an electron concentration of ㎝ -3 can be obtained a single-crystal GaAs with a reproducibility of about -2.

상기한 바와같이 본 발명에서는 고품위 n-형 GaAs 단결정 성장시에 결정 성장조건을 미시적인 측면에 이르기까지 정밀 제어하여 n-형 GaAs의 최적성장조건을 적용함으로써, 비교적 균질적이고 고수율의 고품위 n-형 GaAs 단결정을 성장시킬 수 있다.As described above, in the present invention, by precisely controlling the crystal growth conditions to the microscopic side during the growth of high-quality n-type GaAs single crystals, the optimum growth conditions of the n-type GaAs are applied, thereby providing a relatively homogeneous, high-quality, high-quality n- The type GaAs single crystal can be grown.

이상에서는 본 발명을 특정의 바람직한 실시예를 예를들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments and is not limited to the spirit of the present invention. Various changes and modifications can be made by those who have

Claims (4)

GaAs 단결정의 성장시에 Si을 (3∼5)×1018-3이상으로 도핑할 때 발생하는 고-액 계면의 불안정 요인을 해소하기 위하여 열적균형을 고려하여 GaAs 단결정의 성장속도(R)를 하기 수학식 1과 같이 적용하고, 성장이 진행함에 따라 잉곳트에 열처리 효과가 가해지도록 앰푸울 끝부위에서부터 평평한 온도대를 두어, 성장후 열응력이 크지 않도록 하며, 상온으로의 냉각시 냉각속도를 온도에 따라 단단계로 제어하는 것을 특징으로 하는 VGF법에 의한 고품위 n-형 GaAs 단결정 성장방법.Growth rate (R) of GaAs single crystals in consideration of thermal equilibrium in order to solve the instability of the solid-liquid interface generated when doping Si above (3 to 5) x 10 18 cm -3 during the growth of GaAs single crystals As shown in Equation 1 below, and put a flat temperature zone from the end of the ampoules so that the heat treatment effect is applied to the ingot as the growth progresses, so that the thermal stress after the growth is not large, cooling rate at room temperature The high quality n-type GaAs single crystal growth method by the VGF method, characterized in that the control step in accordance with the temperature. (수학식 1)(Equation 1) 여기서 R : GaAs 단결정 성장속도(cm/hr)Where R: GaAs single crystal growth rate (cm / hr) Ks : GaAs 고체의 열전도도Ks: Thermal Conductivity of GaAs Solids KL: GaAs 액체의 열전도도K L : Thermal conductivity of GaAs liquid GL: 액체부 온도구배G L : liquid temperature gradient GS: 고체부 온도구배G S : Solid part temperature gradient L : GaAs 응고잠열L: GaAs coagulation latent heat ρ: 단위부피당의 GaAs 몰(mole)수ρ: number of moles of GaAs per unit volume 제1항에 있어서, 상기 고-액 계면의 고체부에 온도구배 5℃/㎝, 성장속도 3∼5㎜/hr로 가변적으로 제어하는 것을 특징으로 하는 VGF법에 의한 고품위 n-형 GaAs 단결정 성장방법.The high quality n-type GaAs single crystal growth by VGF method according to claim 1, wherein the solid portion of the solid-liquid interface is controlled at a temperature gradient of 5 ° C./cm and a growth rate of 3 to 5 mm / hr. Way. 제1항에 있어서, 상기의 평평한 온도대는 1080∼1150℃인 것을 특징으로 하는 VGF법에 의한 고품위 n-형 GaAs 단결정 성장방법.The high-quality n-type GaAs single crystal growth method according to claim 1, wherein the flat temperature range is 1080 to 1150 캜. 제1항에 있어서, 상기의 냉각속도는 1200∼1000℃ 사이의 온도일 때 1℃/분, 1000∼800℃ 사이의 온도일 때 2℃/분, 800℃ 이하일 때 10℃/분으로 설정되는 것을 특징으로 하는 VGF법에 의한 고품위 n-형 GaAs 단결정 성장방법.The cooling rate of claim 1, wherein the cooling rate is set at 1 ° C / min at a temperature between 1200 and 1000 ° C, 2 ° C / min at a temperature between 1000 and 800 ° C, and 10 ° C / min at 800 ° C or less. A high quality n-type GaAs single crystal growth method by VGF method, characterized in that.
KR1020000013028A 2000-03-15 2000-03-15 Method for Growing n-Type GaAs Monocrystal by Means of VFG KR100359229B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000013028A KR100359229B1 (en) 2000-03-15 2000-03-15 Method for Growing n-Type GaAs Monocrystal by Means of VFG

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000013028A KR100359229B1 (en) 2000-03-15 2000-03-15 Method for Growing n-Type GaAs Monocrystal by Means of VFG

Publications (2)

Publication Number Publication Date
KR20010091385A KR20010091385A (en) 2001-10-23
KR100359229B1 true KR100359229B1 (en) 2002-11-04

Family

ID=19655374

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000013028A KR100359229B1 (en) 2000-03-15 2000-03-15 Method for Growing n-Type GaAs Monocrystal by Means of VFG

Country Status (1)

Country Link
KR (1) KR100359229B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279198A (en) * 1993-03-24 1994-10-04 Asahi Glass Co Ltd Production of semi-insulating gallium arsenide semiconductor single crystal
JPH08319189A (en) * 1995-05-23 1996-12-03 Japan Energy Corp Production of single crystal and device therefor
JPH1087392A (en) * 1996-07-18 1998-04-07 Japan Energy Corp Production of compound semiconductor single crystal
JP2000143397A (en) * 1997-03-31 2000-05-23 Dowa Mining Co Ltd Gallium arsenic single crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06279198A (en) * 1993-03-24 1994-10-04 Asahi Glass Co Ltd Production of semi-insulating gallium arsenide semiconductor single crystal
JPH08319189A (en) * 1995-05-23 1996-12-03 Japan Energy Corp Production of single crystal and device therefor
JPH1087392A (en) * 1996-07-18 1998-04-07 Japan Energy Corp Production of compound semiconductor single crystal
JP2000143397A (en) * 1997-03-31 2000-05-23 Dowa Mining Co Ltd Gallium arsenic single crystal

Also Published As

Publication number Publication date
KR20010091385A (en) 2001-10-23

Similar Documents

Publication Publication Date Title
US20070101924A1 (en) Indium phosphide substrate and indium phosphide monocrystal and method of manufacturing thereof
KR101083855B1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
CN111315923B (en) Method for producing silicon carbide single crystal
EP0969499A3 (en) Crystal growth process for a semiconductor device
JP3343615B2 (en) Bulk crystal growth method
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
EP1122341A1 (en) Single crystal SiC
JP3806791B2 (en) Method for producing compound semiconductor single crystal
KR100359229B1 (en) Method for Growing n-Type GaAs Monocrystal by Means of VFG
EP0266227B1 (en) Method for growing compound semiconductor crystals
JPH11106297A (en) Growth of silicon carbide single crystal having low resistance
JPH10218699A (en) Growth of compound semiconductor single crystal
JPH11268998A (en) Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same
JP4184622B2 (en) Method for producing silicon carbide single crystal ingot
KR950000645B1 (en) High quality n-type gasa single crystal growing method by horizontal bridgeman
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JP2612897B2 (en) Single crystal growing equipment
KR940009282B1 (en) P-type gaas single crystal growing method by zn doping
KR100709798B1 (en) High quality single crystal growing method
KR920007340B1 (en) Manufacturing method of 3-4 compound material semiconductor crystal
JP2781857B2 (en) Single crystal manufacturing method
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JPH06279198A (en) Production of semi-insulating gallium arsenide semiconductor single crystal
JPH03193689A (en) Production of compound semiconductor crystal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111118

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee