JPH11106297A - Growth of silicon carbide single crystal having low resistance - Google Patents

Growth of silicon carbide single crystal having low resistance

Info

Publication number
JPH11106297A
JPH11106297A JP26745297A JP26745297A JPH11106297A JP H11106297 A JPH11106297 A JP H11106297A JP 26745297 A JP26745297 A JP 26745297A JP 26745297 A JP26745297 A JP 26745297A JP H11106297 A JPH11106297 A JP H11106297A
Authority
JP
Japan
Prior art keywords
crystal
growth
raw material
sic
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26745297A
Other languages
Japanese (ja)
Other versions
JP3848446B2 (en
Inventor
Atsushi Takahashi
淳 高橋
Noboru Otani
昇 大谷
Masakazu Katsuno
正和 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26745297A priority Critical patent/JP3848446B2/en
Publication of JPH11106297A publication Critical patent/JPH11106297A/en
Application granted granted Critical
Publication of JP3848446B2 publication Critical patent/JP3848446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for growing a SiC single crystal having low resistance in a high yield. SOLUTION: This method for growing a SiC single crystal comprises arranging a seed crystal composed of a SiC single crystal and SiC raw material powder in a crucible made of graphite, heating and sublimating the raw material powder and recrystallizing the seed crystal kept at a temperature lower than the temperature of the raw material. In this case, a nitrogen gas is used as an atmosphere gas and a crystal plane substrate having an angle of inclination a in the [0001] direction from 11-20} plane in the range of -30 deg.<=α<=+30 deg. and an angle of rotation β around [0001] axis in the range of -10 deg.<=β<=+10 deg. is used as the seed crystal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低抵抗SiC単結
晶の育成方法に関する。
The present invention relates to a method for growing a low-resistance SiC single crystal.

【0002】[0002]

【従来の技術】SiC半導体は禁制帯幅がSi半導体な
どに比べ大きく、優れた電気的特性を有することから、
パワーデバイスや高温デバイス用材料としての応用が期
待されている。また、GaN結晶との格子不整と熱膨張
率差が小さいこと、熱伝導率が大きいこと、劈開整合性
が良好であることなどからGaN系薄膜デバイス用基板
材料として利用されている。
2. Description of the Related Art SiC semiconductors have a larger forbidden band width than Si semiconductors and the like, and have excellent electrical characteristics.
It is expected to be applied as a material for power devices and high-temperature devices. Further, it is used as a substrate material for GaN-based thin film devices because of its lattice mismatch with GaN crystal and small difference in thermal expansion coefficient, high thermal conductivity, and good cleavage matching.

【0003】SiCウェハは、J.Cryst.Gro
wth 43(1978)209−212、52(19
81)146−150に記載されている“改良レーリー
法”と呼ばれる昇華法によって育成したSiC単結晶イ
ンゴットから、切り出し得られる。改良レーリー法は、
不活性ガス雰囲気中においてSiC原料粉末を加熱昇華
させ、これより低い温度に保ったSiC単結晶の種結晶
基板上に再結晶化させる方法である。不活性ガスとして
は主にアルゴンガスが用いられ、原料SiC昇華ガスの
拡散輸送を制御するために導入されていた。また成長
中、窒素ガスを成長雰囲気不活性ガスに混入させること
により、ドナー不純物である窒素ドーピングを行い、育
成単結晶の抵抗率を制御していた。
[0003] SiC wafers are described in J. Cryst. Gro
wth 43 (1978) 209-212, 52 (19
81) It can be cut out from a SiC single crystal ingot grown by a sublimation method called “improved Rayleigh method” described in 146-150. The modified Rayleigh method is
In this method, a SiC raw material powder is heated and sublimated in an inert gas atmosphere, and recrystallized on a SiC single crystal seed crystal substrate kept at a lower temperature. Argon gas was mainly used as the inert gas, and was introduced to control the diffusion and transport of the raw material SiC sublimation gas. During growth, nitrogen gas is mixed with a growth atmosphere inert gas to perform nitrogen doping as a donor impurity, thereby controlling the resistivity of the grown single crystal.

【0004】現在、電極抵抗の低下などのデバイス応用
上の理由から、より低い抵抗率を有するSiCウェハが
求められている。Jpn.J.Appl.Phys.3
4(1995)4694−4698に記載されているよ
うに、窒素ガス流量を雰囲気不活性ガス流量に対し変化
させることにより、所望の抵抗率を有する結晶を育成す
ることができる。一般に、結晶に取り込まれる窒素量は
雰囲気ガス圧力中の窒素分圧に依存する。従って、低抵
抗結晶を育成するためには不活性ガスに対し非常に多量
の窒素ガスを導入する必要がある。しかし、成長雰囲気
中の窒素分圧を高くすると、成長中、育成結晶表面に方
位の異なる結晶グレインが発生し、単結晶成長が妨げら
れていた。この多結晶化によって、目的とする低抵抗の
単結晶ウェハの製造歩留まりが著しく低下した。
[0004] At present, SiC wafers having lower resistivity are required for reasons of device application such as reduction of electrode resistance. Jpn. J. Appl. Phys. 3
4 (1995) 4694-4698, a crystal having a desired resistivity can be grown by changing the nitrogen gas flow rate with respect to the atmosphere inert gas flow rate. Generally, the amount of nitrogen taken into the crystal depends on the nitrogen partial pressure in the atmospheric gas pressure. Therefore, in order to grow a low resistance crystal, it is necessary to introduce a very large amount of nitrogen gas with respect to the inert gas. However, when the partial pressure of nitrogen in the growth atmosphere is increased, crystal grains having different orientations are generated on the surface of the grown crystal during the growth, and single crystal growth is hindered. Due to this polycrystallization, the production yield of the target low-resistance single crystal wafer has been significantly reduced.

【0005】[0005]

【発明が解決しようとする課題】本発明は、多結晶の発
生を完全に防止し、低抵抗SiC単結晶を育成する方法
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for completely preventing generation of polycrystals and growing a low-resistance SiC single crystal.

【0006】[0006]

【課題を解決するための手段】本発明は、(1)SiC
単結晶からなる種結晶とSiC原料粉末を黒鉛製の坩堝
内に配置し、前記原料粉末を加熱昇華させ、前記原料温
度よりも低い温度に保った種結晶上に再結晶化させる方
法において、雰囲気ガスとして窒素ガスを用い、前記種
結晶として{11−20}面から[0001]方向への
傾き角αが−30°≦α≦+30°の範囲にありかつ
[0001]軸の回りの回転角βが−10°≦β≦+1
0°の範囲にある結晶面基板を用いることを特徴とする
SiC単結晶育成方法、(2)種結晶として、{11−
20}面からの傾き角αが−10°≦α≦+10°の範
囲にありかつ[0001]軸の回りの回転角βが−5°
≦β≦+5°の範囲にある結晶面基板を用いる(1)記
載の育成方法、(3)種結晶として、{11−20}面
基板を用いる(1)記載の育成方法、(4)雰囲気ガス
の圧力を5〜40Torrとする(1)〜(3)記載の
育成方法、である。
The present invention provides (1) SiC
In a method in which a seed crystal made of a single crystal and a SiC raw material powder are placed in a graphite crucible, the raw material powder is heated and sublimated, and recrystallized on a seed crystal kept at a temperature lower than the raw material temperature. Nitrogen gas is used as the gas, and the inclination angle α from the {11-20} plane to the [0001] direction is in the range of −30 ° ≦ α ≦ + 30 ° and the rotation angle about the [0001] axis as the seed crystal. β is −10 ° ≦ β ≦ + 1
A method of growing a SiC single crystal, characterized by using a crystal plane substrate in the range of 0 °, (2) a seed crystal of {11-
The inclination angle α from the 20 ° plane is in the range of −10 ° ≦ α ≦ + 10 °, and the rotation angle β about the [0001] axis is −5 °
The growing method according to (1) using a crystal plane substrate in the range of ≦ β ≦ + 5 °, (3) the growing method according to (1) using a {11-20} plane substrate as a seed crystal, and (4) atmosphere The growing method according to (1) to (3), wherein the gas pressure is 5 to 40 Torr.

【0007】[0007]

【発明の実施の形態】本発明の内容を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The contents of the present invention will be described in detail.

【0008】従来の改良レーリー法では、アルゴンガス
などの不活性ガスを成長系内に導入しこの不活性ガス雰
囲気圧力を変えることによりにより、SiC原料ガスの
フラックスを制御し結晶成長速度を制御していた。ま
た、SiC結晶中で窒素原子はドナーとして働くため、
窒素ガスを成長中系内に適量導入することにより窒素ド
ープを行い、育成結晶の抵抗率制御を行っていたが、高
濃度ドープをするために雰囲気ガス中の窒素分圧を高め
ると、多結晶化が頻発し、低抵抗率のSiC単結晶を歩
留まり良く得ることはできなかった。
In the conventional improved Rayleigh method, an inert gas such as an argon gas is introduced into a growth system, and the inert gas atmosphere pressure is changed to control the flux of the SiC raw material gas to control the crystal growth rate. I was Also, since nitrogen atoms act as donors in the SiC crystal,
Nitrogen doping was performed by introducing an appropriate amount of nitrogen gas into the growing system, and the resistivity of the grown crystal was controlled.However, when the nitrogen partial pressure in the atmosphere gas was increased to perform high concentration doping, polycrystalline The occurrence of frequent occurrence has made it impossible to obtain a SiC single crystal having a low resistivity with a high yield.

【0009】図1 は、本発明のSiCバルク単結晶の育
成方法で用いられる装置の一例を示すものである。黒鉛
製の坩堝は、SiC原料粉末2を入れた有底の坩堝本体
1とSiC基板種結晶5の取り付け部4を有する前記坩
堝本体1の開口部を覆う坩堝蓋3とにより構成され、周
囲を黒鉛性フェルトの断熱材6により覆われており、さ
らに真空排気装置により高真空排気可能でかつ内部雰囲
気圧力を制御可能な容器に入れられている。外部におい
た窒素ボンベより流量計を通し所望の流量の窒素を導入
可能となっている。
FIG. 1 shows an example of an apparatus used in the method for growing a bulk SiC single crystal of the present invention. The graphite crucible is composed of a bottomed crucible body 1 containing a SiC raw material powder 2 and a crucible lid 3 covering an opening of the crucible body 1 having a mounting portion 4 for a SiC substrate seed crystal 5. It is covered with a heat insulating material 6 made of graphite felt, and is placed in a container that can be evacuated to a high vacuum by an evacuation device and that can control the internal atmospheric pressure. A desired flow rate of nitrogen can be introduced from a nitrogen cylinder placed outside through a flow meter.

【0010】本発明は、不活性ガスを全く使用せず、窒
素ガスのみを導入し、窒素ガス雰囲気中で成長を行う。
窒素ガスは成長速度制御とドーパントの両方の作用
を有する。そして、窒素ガス雰囲気中の成長において、
種結晶としてSiC単結晶の{11−20}面を使用す
ると、多結晶発生を完全に抑制でき、より高いキャリア
濃度(1×1019/cm3 以上)、より低い抵抗率(2
×10-2Ωcm以下)を有する単結晶を育成することが
できる。
According to the present invention, growth is carried out in a nitrogen gas atmosphere without introducing any inert gas and introducing only nitrogen gas.
Nitrogen gas has both a growth rate control and a dopant action. And in the growth in the nitrogen gas atmosphere,
When the {11-20} plane of the SiC single crystal is used as a seed crystal, polycrystal generation can be completely suppressed, a higher carrier concentration (1 × 10 19 / cm 3 or more), a lower resistivity (2
× 10 −2 Ωcm or less).

【0011】図2は、本発明で使用する種結晶の結晶面
の説明図である。図中、斜線で示された面が六方晶Si
Cの(11−20)面に相当する。この(11−20)
面から[0001]方向への傾き角をαとし、[000
1]軸の回りの(11−20)面からの回転角をβとす
る。この(11−20)面に等価な指数面は6つ存在
し、これらを総称して{11−20}と表せる。本発明
では等価な指数面を全て含むものとする。これらの種結
晶基板は、例えば、改良レーリー法により育成したSi
C単結晶インゴットから、目的の結晶面を切り出し加工
したものを使用する。本発明で使用するSiC単結晶か
らなる種結晶としては、−30°≦α≦+30°かつ−
10°≦β≦+10°の範囲にある結晶面基板を用い
る。また、好ましくは、−10°≦α≦+10°かつ−
5°≦β≦+5°の範囲にある結晶面基板を用いる。さ
らに、より好ましくは(11−20)面基板を用いる。
FIG. 2 is an explanatory view of a crystal plane of a seed crystal used in the present invention. In the figure, the hatched surface is the hexagonal Si
This corresponds to the (11-20) plane of C. This (11-20)
The angle of inclination from the surface to the [0001] direction is α, and [000]
1] Let β be the rotation angle from the (11-20) plane around the axis. There are six index planes equivalent to this (11-20) plane, which can be generically expressed as {11-20}. In the present invention, it is assumed that all equivalent exponential planes are included. These seed crystal substrates are, for example, Si grown by the improved Rayleigh method.
A single crystal ingot obtained by cutting out a target crystal face from a C single crystal ingot is used. The seed crystal composed of the SiC single crystal used in the present invention includes −30 ° ≦ α ≦ + 30 ° and −30 ° ≦ α ≦ + 30 °.
A crystal plane substrate in a range of 10 ° ≦ β ≦ + 10 ° is used. Preferably, -10 ° ≦ α ≦ + 10 ° and −
A crystal plane substrate in the range of 5 ° ≦ β ≦ + 5 ° is used. More preferably, a (11-20) plane substrate is used.

【0012】種結晶として6H−SiCのいろいろな結
晶方位の基板面を用い、窒素雰囲気中で結晶成長を行
い、多結晶の発生率を統計的に調べた。図3aは(11
−20)面から[0001]方向に傾けた結晶面基板を
種結晶として用いた結果を、図3bは(11−20)面
から[0001]軸の回りに回転角を有する結晶面基板
を種結晶として用いた結果を示す。この実験では、育成
結晶中に種結晶と方位の異なる結晶グレインが1個でも
発生した場合は、多結晶化が起こったものとみなした。
Crystal growth was performed in a nitrogen atmosphere using substrate surfaces of various crystal orientations of 6H—SiC as seed crystals, and the occurrence rate of polycrystals was statistically examined. FIG. 3a shows (11
FIG. 3B shows the result of using a crystal plane substrate tilted in the [0001] direction from the (-20) plane as a seed crystal, and FIG. 3B shows a crystal plane substrate having a rotation angle around the [0001] axis from the (11-20) plane. The results used as crystals are shown. In this experiment, when at least one crystal grain having a different orientation from the seed crystal was generated in the grown crystal, it was considered that polycrystallization had occurred.

【0013】−30°≦α≦+30°かつ−10°≦β
≦+10°の範囲内では多結晶発生率は20%以下に抑
制された。また、−10°≦α≦+10°かつ−5°≦
β≦+5°範囲内では多結晶発生は全く観察されなかっ
た。
-30 ° ≦ α ≦ + 30 ° and -10 ° ≦ β
Within the range of ≦ + 10 °, the polycrystal generation rate was suppressed to 20% or less. Also, -10 ° ≦ α ≦ + 10 ° and -5 ° ≦
Within the range of β ≦ + 5 °, polycrystal generation was not observed at all.

【0014】多結晶の多くは一般にファセット上に発生
した。特に(0001)Si面や{1−100}プリズ
ム面上で方位の異なる結晶グレインの発生率が高くなっ
た。さらに、窒素雰囲気中の成長ではこれら以外の面上
にも多結晶発生が頻繁に起こった。{11−20}面
は、{0001}面や{1−100}面とそれぞれ90
°、30°傾いておりこれらの面の影響を受けにくいこ
と、また表面エネルギー密度が非常に大きいなど、他の
面と異なる特徴を有する。これらのことから、窒素ガス
雰囲気中の成長でも多結晶の発生を抑制する作用を有す
るものと推測される。
Many of the polycrystals generally occurred on facets. In particular, the incidence of crystal grains having different orientations on the (0001) Si plane and the {1-100} prism plane was increased. Further, in the growth in a nitrogen atmosphere, polycrystals frequently occurred on other surfaces. The {11-20} plane is 90 each with the {0001} plane and the {1-100} plane.
It has characteristics different from other surfaces, such as being tilted by 30 ° and 30 °, so that it is hardly affected by these surfaces, and having a very large surface energy density. From these facts, it is presumed that they have an effect of suppressing the generation of polycrystals even when grown in a nitrogen gas atmosphere.

【0015】また、特に本発明においては、成長容器内
の制御圧力、すなわち雰囲気圧力として1〜50Tor
r範囲が好ましい。これは、窒素ガスを不活性ガスの替
わりに成長速度制御ガスとして利用するため、この圧力
範囲において最適な温度条件、成長速度を実現でき、良
質の単結晶を育成できるためである。1Torr未満で
は成長を制御することが難しくなり、また50Torr
を越える圧力では十分な成長速度を実現するために成長
温度を上げる必要があり、結晶品質の劣化が起こる。
In the present invention, the control pressure in the growth vessel, that is, the atmospheric pressure is 1 to 50 Torr.
The r range is preferred. This is because nitrogen gas is used as a growth rate control gas instead of an inert gas, so that optimum temperature conditions and growth rates can be realized in this pressure range, and high-quality single crystals can be grown. If it is less than 1 Torr, it is difficult to control the growth, and 50 Torr.
If the pressure exceeds, it is necessary to raise the growth temperature in order to realize a sufficient growth rate, and the crystal quality is degraded.

【0016】次に、本発明について、具体的な育成方法
の一つを例示する。
Next, the present invention will be exemplified by one of the specific growing methods.

【0017】加熱は、例えば高周波誘導コイルで行う。
坩堝の温度計測は、例えば坩堝下部の断熱材に光路7を
設け、ここから光を取り出し二色温度計などを用いて行
う。この温度を原料温度とみなす。同様に、坩堝上部の
光路により測定した温度を種結晶温度とみなす。
The heating is performed by, for example, a high frequency induction coil.
The temperature of the crucible is measured, for example, by providing an optical path 7 in a heat insulating material below the crucible, extracting light from the optical path 7, and using a two-color thermometer or the like. This temperature is regarded as the raw material temperature. Similarly, the temperature measured by the optical path above the crucible is regarded as the seed crystal temperature.

【0018】容器内を真空とし、原料温度を約1800
℃まで上げる。その後、窒素ガスを容器に導入し約60
0Torrに保ち、原料温度を上昇させる。その後、1
0〜90分かけて減圧を行い、雰囲気圧力を1〜50T
orr、より好ましくは5〜40Torrとする。ま
た、原料温度は2100〜2500℃、より好ましくは
2200〜2400℃、種結晶温度は原料温度より40
〜120℃、より好ましくは50〜80℃低く、温度勾
配は5〜25℃/cm、より好ましくは10〜20℃/
cmと設定することが望ましい。さらに、温度と圧力の
関係は、結晶成長速度が0.2〜1.6mm/h、より
好ましくは0.5〜1.3mm/hとなるように設定す
ることが好ましい。これより高速では結晶品質の低下を
示すため適当ではなく、これより低速では生産性が良く
ない。一般に、原料温度が高いほど、温度勾配が大きい
ほど、また窒素ガス雰囲気圧力が高いほど、結晶成長速
度は大きくなる。成長温度は育成結晶品質に影響を及ぼ
す原料ガス中のSi/C比を決める要素となり、上記の
原料温度、種結晶温度、温度勾配、雰囲気圧力は良質な
結晶を効率よく育成するために適した温度・圧力の範囲
である。このような温度・圧力の範囲のもとで、一定時
間保持することによって単結晶育成を行う。
The inside of the container is evacuated, and the raw material temperature is set to about 1800.
Increase to ° C. After that, nitrogen gas is introduced into the container and about 60
Keep the pressure at 0 Torr and raise the raw material temperature. Then 1
The pressure is reduced over 0 to 90 minutes, and the atmospheric pressure is 1 to 50 T
orr, more preferably 5 to 40 Torr. The raw material temperature is 2100 to 2500 ° C, more preferably 2200 to 2400 ° C, and the seed crystal temperature is 40 ° C or lower than the raw material temperature.
~ 120C, more preferably 50-80C lower, the temperature gradient is 5-25C / cm, more preferably 10-20C / cm.
cm. Further, the relationship between the temperature and the pressure is preferably set so that the crystal growth rate is 0.2 to 1.6 mm / h, more preferably 0.5 to 1.3 mm / h. If the speed is higher than this, the crystal quality is deteriorated, which is not suitable. If the speed is lower than this, productivity is not good. In general, the higher the raw material temperature, the larger the temperature gradient, and the higher the nitrogen gas atmosphere pressure, the higher the crystal growth rate. The growth temperature is an element that determines the Si / C ratio in the source gas that affects the quality of the grown crystal, and the above-mentioned source temperature, seed crystal temperature, temperature gradient, and atmospheric pressure are suitable for efficiently growing a good-quality crystal. It is the range of temperature and pressure. The single crystal is grown by maintaining the temperature and pressure in such a range for a certain period of time.

【0019】育成結晶の電気特性評価は、例えばホール
効果測定により行う。育成結晶8から所望の面を出し切
断することにより、所望のSiCウェハが得られる。さ
らに{0001}ウェハから正方形のサンプルを切り出
し、四隅にオーミック電極を取り付け、ファンデルポー
法に従って測定する。これにより、結晶の抵抗率、キャ
リア濃度、移動度が求められる。
The electrical characteristics of the grown crystal are evaluated, for example, by measuring the Hall effect. A desired surface is cut out from the grown crystal 8 to obtain a desired SiC wafer. Further, a square sample is cut out from the {0001} wafer, and ohmic electrodes are attached at four corners, and measurement is performed according to the van der Pauw method. Thereby, the resistivity, the carrier concentration, and the mobility of the crystal are obtained.

【0020】一方、方位の異なる結晶グレインの評価、
即ち多結晶化の評価としては、育成結晶を直接観察す
る方法、切り出したウェハを偏光顕微鏡で観察する方
法、溶融KOHエッチングを行い表面を観察する方法
などによって容易に評価可能である。
On the other hand, evaluation of crystal grains having different orientations,
That is, polycrystallization can be easily evaluated by a method of directly observing a grown crystal, a method of observing a cut wafer with a polarizing microscope, a method of observing the surface by performing molten KOH etching, and the like.

【0021】[0021]

【実施例】実施例1 種結晶として6H−SiCの(11−20)基板ウェハ
を使用し、原料温度を2340℃、種結晶温度を228
0℃、窒素雰囲気圧力を10Torrとして単結晶育成
を行った。育成結晶表面を観察したところ、方位の異な
る結晶グレインは全く見られなかった。また、インゴッ
トを切断し内部を偏光顕微鏡やエッチング法により調べ
ても方位の異なる結晶グレインは全く観測されなかっ
た。このことから、多結晶化が起こらず完全な単結晶成
長が行われたと結論できる。育成結晶は完全な6H形で
あり、ホール効果測定により調べたキャリア濃度は1.
2×1019/cm3 と非常に高く、また抵抗率は1.1
×10-2Ωcmと非常に低い値を示した。同じ成長を1
0回行っても多結晶化は全く見られず、同様の結果が得
られた。
EXAMPLE 1 A 6H-SiC (11-20) substrate wafer was used as a seed crystal, the raw material temperature was 2340 ° C., and the seed crystal temperature was 228.
Single crystals were grown at 0 ° C. and a nitrogen atmosphere pressure of 10 Torr. Observation of the grown crystal surface revealed no crystal grains having different orientations. Further, when the ingot was cut and the inside thereof was examined by a polarizing microscope or an etching method, no crystal grains having different orientations were observed. From this, it can be concluded that complete single crystal growth was performed without polycrystallization. The grown crystal was a perfect 6H form, and the carrier concentration determined by Hall effect measurement was 1.
Very high 2 × 10 19 / cm 3 and resistivity 1.1
It was a very low value of × 10 -2 Ωcm. Same growth 1
No polycrystallization was observed at all even after performing 0 times, and similar results were obtained.

【0022】実施例2 種結晶として4H−SiCの(11−20)基板ウェハ
を使用し、原料温度を2340℃、種結晶温度を228
0℃、窒素雰囲気圧力を10Torrとして単結晶育成
を行った。育成結晶表面を観察したところ、方位の異な
る結晶グレインは全く見られなかった。また、インゴッ
トを切断し内部を偏光顕微鏡やエッチング法により調べ
ても方位の異なる結晶グレインは全く観察されなかっ
た。このことから、多結晶化が起こらず完全な単結晶成
長が行われたと結論できる。育成結晶は完全な4H形で
あり、ホール効果測定により調べたキャリア濃度は1.
5×1019/cm3 と非常に高く、また抵抗率は8.9
×10-3Ωcmと非常に低い値を示した。同じ成長を1
0回行っても多結晶化は全く見られず、同様の結果が得
られた。
Example 2 A 4H-SiC (11-20) substrate wafer was used as a seed crystal, the raw material temperature was 2340 ° C., and the seed crystal temperature was 228.
Single crystals were grown at 0 ° C. and a nitrogen atmosphere pressure of 10 Torr. Observation of the grown crystal surface revealed no crystal grains having different orientations. Further, when the ingot was cut and the inside thereof was examined with a polarizing microscope or an etching method, no crystal grains having different orientations were observed. From this, it can be concluded that complete single crystal growth was performed without polycrystallization. The grown crystal was a perfect 4H form, and the carrier concentration determined by Hall effect measurement was 1.
It is as high as 5 × 10 19 / cm 3 and has a resistivity of 8.9.
It showed a very low value of × 10 −3 Ωcm. Same growth 1
No polycrystallization was observed at all even after performing 0 times, and similar results were obtained.

【0023】実施例3 種結晶として(11−20)面から傾き角α=30°か
つ回転角β=10°の結晶面を有する6H−SiC基板
ウェハを使用し、原料温度を2340℃、種結晶温度を
2280℃、窒素雰囲気圧力を10Torrとして単結
晶育成を行った。育成結晶表面を観察したところ、方位
の異なる結晶グレインは全く見られなかった。また、イ
ンゴットを切断し内部を偏光顕微鏡やエッチング法によ
り調べても方位の異なる結晶グレインは全く観測されな
かった。このことから、多結晶化が起こらず完全な単結
晶成長が行われたと結論できる。育成結晶は完全な6H
形であり、ホール効果測定により調べたキャリア濃度は
1.2×1019/cm3 と非常に高く、また抵抗率は
1.1×10-2Ωcmと低い値を示した。同じ成長を1
0回行ったところ、方位の異なる結晶グレインの発生、
即ち多結晶化が2回観察されたものの、抵抗率はすべて
低い値を示した。
Example 3 A 6H-SiC substrate wafer having a crystal plane having an inclination angle α = 30 ° and a rotation angle β = 10 ° from the (11-20) plane was used as a seed crystal at a raw material temperature of 2340 ° C. A single crystal was grown at a crystal temperature of 2280 ° C. and a nitrogen atmosphere pressure of 10 Torr. Observation of the grown crystal surface revealed no crystal grains having different orientations. Further, when the ingot was cut and the inside thereof was examined by a polarizing microscope or an etching method, no crystal grains having different orientations were observed. From this, it can be concluded that complete single crystal growth was performed without polycrystallization. The grown crystal is complete 6H
The carrier concentration measured by the Hall effect measurement was as high as 1.2 × 10 19 / cm 3, and the resistivity was as low as 1.1 × 10 -2 Ωcm. Same growth 1
0 times, the generation of crystal grains with different orientations,
That is, although polycrystallization was observed twice, all the resistivity values were low.

【0024】比較例1 種結晶として6H−SiCの(0001)基板ウェハを
使用し、原料温度を2340℃、種結晶温度を2280
℃、窒素雰囲気圧力を10Torrとして単結晶育成を
行った。育成結晶表面は方位の異なる結晶グレインに覆
われていた。切り出したウェハを偏光顕微鏡により観察
すると方位の異なる結晶グレインが異なった干渉色で現
れ多結晶化していることが示された。また、溶融KOH
エッチングによっても、各グレインの界面が明瞭に現れ
多結晶を含んでいることが示された。この多結晶はいろ
いろな種類のポリタイプから構成されていた。同じ成長
を10回行ったところ、方位の異なる結晶グレインの発
生、即ち多結晶化がすべてに観察された。
COMPARATIVE EXAMPLE 1 A (0001) substrate wafer of 6H-SiC was used as a seed crystal, the raw material temperature was 2340 ° C., and the seed crystal temperature was 2280.
A single crystal was grown at a temperature of 10 ° C. and a nitrogen atmosphere pressure of 10 Torr. The grown crystal surface was covered with crystal grains having different orientations. Observation of the cut wafer with a polarizing microscope showed that crystal grains having different directions appeared in different interference colors and were polycrystallized. In addition, molten KOH
It was also shown that the interface of each grain clearly appeared by etching and contained polycrystal. This polycrystal was composed of various types of polytypes. When the same growth was performed 10 times, generation of crystal grains having different orientations, that is, polycrystallization was observed in all cases.

【0025】比較例2 従来の改良レーリー法に従い成長雰囲気をアルゴンガス
とし、窒素ガスをアルゴン流量の1/20の割合で導入
した。種結晶として6H−SiCの(0001)基板ウ
ェハを使用し、原料温度を2340℃、種結晶温度を2
280℃、雰囲気圧力を10Torrとして単結晶育成
を行った。育成結晶表面には明確な(0001)ファセ
ットが現れ、方位の異なる結晶グレインは観察されなか
った。また、結晶内部にも方位の異なる結晶グレインは
発生しておらず、完全な単結晶成長が行われたことが示
された。しかし、ホール効果測定により調べたキャリア
濃度は6.5×1017/cm3 と低く、抵抗率は8.0
×10-2Ωcmと高い値を示した。
Comparative Example 2 In accordance with the conventional modified Rayleigh method, the growth atmosphere was argon gas, and nitrogen gas was introduced at a rate of 1/20 of the argon flow rate. Using a (0001) substrate wafer of 6H—SiC as a seed crystal, the raw material temperature is 2340 ° C., and the seed crystal temperature is 2
Single crystals were grown at 280 ° C. and an atmospheric pressure of 10 Torr. Clear (0001) facets appeared on the grown crystal surface, and no crystal grains having different orientations were observed. Also, no crystal grains having different orientations were generated inside the crystal, indicating that complete single crystal growth was performed. However, the carrier concentration measured by the Hall effect measurement was as low as 6.5 × 10 17 / cm 3, and the resistivity was 8.0.
The value was as high as × 10 -2 Ωcm.

【0026】比較例3 従来の改良レーリー法に従い成長雰囲気をアルゴンガス
とし、窒素ガスをアルゴン流量の1/20の割合で導入
した。種結晶として6H−SiCの(11−20)基板
ウェハを使用し、原料温度を2340℃、種結晶温度を
2280℃、雰囲気圧力を10Torrとして単結晶育
成を行った。育成結晶表面には方位の異なる結晶グレイ
ンは観察されず、また、結晶内部にも方位の異なる結晶
グレインは発生しておらず、完全な単結晶成長が行われ
たことが示された。しかし、ホール効果測定により調べ
たキャリア濃度は2.0×1018/cm3 と低く、抵抗
率は3.2×10-2Ωcmと高い値を示した。
Comparative Example 3 According to the conventional modified Rayleigh method, the growth atmosphere was argon gas, and nitrogen gas was introduced at a rate of 1/20 of the argon flow rate. A 6H-SiC (11-20) substrate wafer was used as a seed crystal, and a single crystal was grown at a raw material temperature of 2340 ° C, a seed crystal temperature of 2280 ° C, and an atmospheric pressure of 10 Torr. No crystal grains with different directions were observed on the grown crystal surface, and no crystal grains with different directions were generated inside the crystal, indicating that complete single crystal growth was performed. However, the carrier concentration measured by the Hall effect measurement was as low as 2.0 × 10 18 / cm 3, and the resistivity was as high as 3.2 × 10 -2 Ωcm.

【0027】[0027]

【発明の効果】本発明を用いることにより、多結晶の発
生を完全に抑制し、高い歩留まりで低抵抗のSiC単結
晶を育成し、低抵抗SiCウェハの供給を可能とする。
According to the present invention, the generation of polycrystals is completely suppressed, a low-resistance SiC single crystal is grown at a high yield, and a low-resistance SiC wafer can be supplied.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明のSiC単結晶育成に用いられる成
長装置の一例を模式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing one example of a growth apparatus used for growing a SiC single crystal of the present invention.

【図2】は、種結晶の面方位の説明図である。FIG. 2 is an explanatory diagram of a plane orientation of a seed crystal.

【図3】は、窒素雰囲気中の成長における多結晶発生率
の種結晶基板面方位依存性を示す図である。
FIG. 3 is a diagram showing the dependence of the polycrystal generation rate on the seed crystal substrate plane orientation during growth in a nitrogen atmosphere.

【符号の説明】 1…坩堝本体 2…SiC原料粉末 3…坩堝蓋 4…種結晶取り付け部 5…種結晶基板 6…断熱材 7…光路 8…SiC単結晶[Description of Signs] 1 ... Crucible body 2 ... SiC raw material powder 3 ... Crucible lid 4 ... Seed crystal mounting part 5 ... Seed crystal substrate 6 ... Heat insulation 7 ... Optical path 8 ... SiC single crystal

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 SiC単結晶からなる種結晶とSiC原
料粉末を黒鉛製の坩堝内に配置し、前記原料粉末を加熱
昇華させ、前記原料温度よりも低い温度に保った種結晶
上に再結晶化させる方法において、雰囲気ガスとして窒
素ガスを使用し、前記種結晶として{11−20}面か
ら[0001]方向への傾き角αが−30°≦α≦+3
0°の範囲にありかつ[0001]軸の回りの回転角β
が−10°≦β≦+10°の範囲にある結晶面基板を用
いることを特徴とするSiC単結晶育成方法。
1. A seed crystal made of a SiC single crystal and a SiC raw material powder are placed in a graphite crucible, and the raw material powder is heated and sublimated, and recrystallized on a seed crystal kept at a temperature lower than the raw material temperature. Nitrogen gas is used as an atmosphere gas, and the inclination angle α from the {11-20} plane to the [0001] direction is −30 ° ≦ α ≦ + 3 as the seed crystal.
Rotation angle β in the range of 0 ° and about the [0001] axis
Characterized by using a crystal plane substrate having a range of −10 ° ≦ β ≦ + 10 °.
【請求項2】 種結晶として、{11−20}面から
[0001]方向への傾き角αが−10°≦α≦+10
°の範囲にありかつ[0001]軸の回りの回転角βが
−5°≦β≦+5°の範囲にある結晶面基板を用いる請
求項1に記載の育成方法。
2. As a seed crystal, an inclination angle α from a {11-20} plane to a [0001] direction is −10 ° ≦ α ≦ + 10
The growth method according to claim 1, wherein a crystal plane substrate having a rotation angle β around the [0001] axis in a range of -5 ° ≦ β ≦ + 5 ° is used.
【請求項3】 種結晶として、{11−20}面基板を
用いる請求項1に記載の育成方法。
3. The method according to claim 1, wherein a {11-20} plane substrate is used as the seed crystal.
【請求項4】 雰囲気ガスの圧力を1〜50Torrと
する請求項1〜3項に記載の育成方法。
4. The method according to claim 1, wherein the pressure of the atmosphere gas is 1 to 50 Torr.
JP26745297A 1997-09-30 1997-09-30 Method for growing low resistance SiC single crystal Expired - Lifetime JP3848446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26745297A JP3848446B2 (en) 1997-09-30 1997-09-30 Method for growing low resistance SiC single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26745297A JP3848446B2 (en) 1997-09-30 1997-09-30 Method for growing low resistance SiC single crystal

Publications (2)

Publication Number Publication Date
JPH11106297A true JPH11106297A (en) 1999-04-20
JP3848446B2 JP3848446B2 (en) 2006-11-22

Family

ID=17445051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26745297A Expired - Lifetime JP3848446B2 (en) 1997-09-30 1997-09-30 Method for growing low resistance SiC single crystal

Country Status (1)

Country Link
JP (1) JP3848446B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294499A (en) * 2000-04-06 2001-10-23 Nippon Steel Corp Small silicon carbide single crystal wafer having mosaic property
WO2003085175A1 (en) * 2002-04-04 2003-10-16 Nippon Steel Corporation Seed crystal of silicon carbide single crystal and method for producing ingot using same
JP2007230823A (en) * 2006-03-01 2007-09-13 Nippon Steel Corp Method for manufacturing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
DE10247017B4 (en) * 2001-10-12 2009-06-10 Denso Corp., Kariya-shi SiC single crystal, a method of producing a SiC single crystal, SiC wafers with an epitaxial film, and a method of producing a SiC wafer having an epitaxial film
JP2011016721A (en) * 2010-10-08 2011-01-27 Nippon Steel Corp Method for producing small silicon carbide single crystal wafer having mosaic property
JP2011178622A (en) * 2010-03-02 2011-09-15 Sumitomo Electric Ind Ltd Silicon carbide crystal, and method and apparatus for producing the same, and crucible
JP2013095632A (en) * 2011-10-31 2013-05-20 Toyota Central R&D Labs Inc SiC SINGLE CRYSTAL, METHOD FOR PRODUCING THE SAME, SiC WAFER, SEMICONDUCTOR DEVICE, AND RAW MATERIAL FOR PRODUCING SiC SINGLE CRYSTAL
CN105525350A (en) * 2015-12-22 2016-04-27 中国电子科技集团公司第二研究所 Method for growing large-size and low-defect silicon carbide monocrystal and wafer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294499A (en) * 2000-04-06 2001-10-23 Nippon Steel Corp Small silicon carbide single crystal wafer having mosaic property
JP4664464B2 (en) * 2000-04-06 2011-04-06 新日本製鐵株式会社 Silicon carbide single crystal wafer with small mosaic
DE10247017B4 (en) * 2001-10-12 2009-06-10 Denso Corp., Kariya-shi SiC single crystal, a method of producing a SiC single crystal, SiC wafers with an epitaxial film, and a method of producing a SiC wafer having an epitaxial film
WO2003085175A1 (en) * 2002-04-04 2003-10-16 Nippon Steel Corporation Seed crystal of silicon carbide single crystal and method for producing ingot using same
US20100089311A1 (en) * 2002-04-04 2010-04-15 Nippon Steel Corporation Seed crystal consisting of silicon carbide single crystal and method for producing ingot using the same
JP2007230823A (en) * 2006-03-01 2007-09-13 Nippon Steel Corp Method for manufacturing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP2011178622A (en) * 2010-03-02 2011-09-15 Sumitomo Electric Ind Ltd Silicon carbide crystal, and method and apparatus for producing the same, and crucible
JP2011016721A (en) * 2010-10-08 2011-01-27 Nippon Steel Corp Method for producing small silicon carbide single crystal wafer having mosaic property
JP2013095632A (en) * 2011-10-31 2013-05-20 Toyota Central R&D Labs Inc SiC SINGLE CRYSTAL, METHOD FOR PRODUCING THE SAME, SiC WAFER, SEMICONDUCTOR DEVICE, AND RAW MATERIAL FOR PRODUCING SiC SINGLE CRYSTAL
CN105525350A (en) * 2015-12-22 2016-04-27 中国电子科技集团公司第二研究所 Method for growing large-size and low-defect silicon carbide monocrystal and wafer

Also Published As

Publication number Publication date
JP3848446B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
Powell et al. SiC materials-progress, status, and potential roadblocks
EP2230332B1 (en) Silicon carbide single crystal ingot, and substrate and epitaxial wafer obtained from the silicon carbide single crystal ingot
JP5706823B2 (en) SiC single crystal wafer and manufacturing method thereof
CN102203330B (en) Manufacturing method for silicon carbide monocrystals
JP2804860B2 (en) SiC single crystal and growth method thereof
JP4603386B2 (en) Method for producing silicon carbide single crystal
JP2010095397A (en) Silicon carbide single crystal and silicon carbide single crystal wafer
KR100845946B1 (en) Method for forming sic single crystal
US20050183657A1 (en) Silicon carbide single crystal and a method for its production
WO2003085175A1 (en) Seed crystal of silicon carbide single crystal and method for producing ingot using same
JP4442366B2 (en) Epitaxial SiC film, manufacturing method thereof, and SiC semiconductor device
CN111315923B (en) Method for producing silicon carbide single crystal
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
US6187279B1 (en) Single crystal SIC and method of producing the same
JP4253974B2 (en) SiC single crystal and growth method thereof
Bockowski Growth and doping of GaN and AlN single crystals under high nitrogen pressure
JP3848446B2 (en) Method for growing low resistance SiC single crystal
JPH1045499A (en) Production of silicon carbide single crystal and seed crystal used therefor
JP3662694B2 (en) Method for producing single crystal silicon carbide ingot
JPH08143396A (en) Method for growing silicon carbide single crystal
JP4304783B2 (en) SiC single crystal and growth method thereof
JP4157326B2 (en) 4H type silicon carbide single crystal ingot and wafer
EP1122341A1 (en) Single crystal SiC
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JPH09157092A (en) Production of silicon carbide single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term