JPH09157092A - Production of silicon carbide single crystal - Google Patents

Production of silicon carbide single crystal

Info

Publication number
JPH09157092A
JPH09157092A JP32450895A JP32450895A JPH09157092A JP H09157092 A JPH09157092 A JP H09157092A JP 32450895 A JP32450895 A JP 32450895A JP 32450895 A JP32450895 A JP 32450895A JP H09157092 A JPH09157092 A JP H09157092A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
crystal
carbide single
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32450895A
Other languages
Japanese (ja)
Inventor
Noboru Otani
昇 大谷
Kozo Onoe
浩三 尾上
Atsushi Takahashi
淳 高橋
Masakazu Katsuno
正和 勝野
Hirokatsu Yashiro
弘克 矢代
Masatoshi Kanetani
正敏 金谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32450895A priority Critical patent/JPH09157092A/en
Publication of JPH09157092A publication Critical patent/JPH09157092A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To decrease micropipe-like defects when a silicon carbide single crystal is grown by sublimation recrystallization method with using a seed crystal, by incorporating impurity elements in the growing atmosphere to supply a large amt. of impurities in the growing crystal. SOLUTION: A substrate 1 comprising silicon carbide is prepared as a seed crystal and attached to the inner face of a lid 4 of a crucible 3. After a source material 2 comprising a silicon carbide powder is supplied in the crucible 3, the crucible 3 is disposed in a double quartz tube 5. After the quartz tube 5 is evacuated, a work coil 8 is energized to heat the source material 2 to about 2000 deg.C. Then an atmosphere gas containing impurity atoms such as nitrogen in an amt. preferably >=10<19> cm<-3> is introduced into the tube 5 to grow a silicon carbide single crystal by sublimation recrystallization method, while a large amt. of impurities is introduced into the growing surface and the growing crystal. Thereby, micropipe-like defects can be decreased and the obtd. silicon carbide single crystal can be used as a light-emitting element for blue colors having excellent optical characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化珪素単結晶の
製造方法に係わり、特に、青色発光ダイオードや電子デ
バイスなどの基板ウェハとなる良質で大型の単結晶イン
ゴットの成長方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon carbide single crystal, and more particularly to a method for growing a large-sized single crystal ingot of good quality which is used as a substrate wafer for blue light emitting diodes, electronic devices and the like.

【0002】[0002]

【従来の技術】炭化珪素(SiC)は耐熱性及び機械的
強度も優れ、放射線に強いなどの物理的、化学的性質か
ら耐環境性半導体材料として注目されている。特に6H
型の炭化珪素結晶は室温で約3eVの禁制帯幅を持ち、
青色発光ダイオード材料として用いられている。
2. Description of the Related Art Silicon carbide (SiC) has attracted attention as an environment-resistant semiconductor material due to its physical and chemical properties such as excellent heat resistance and mechanical strength and resistance to radiation. Especially 6H
Type silicon carbide crystal has a forbidden band width of about 3 eV at room temperature,
Used as a blue light emitting diode material.

【0003】しかしながら、大面積を有する高品質の炭
化珪素単結晶を、工業的規模で安定に供給し得る結晶成
長技術は、いまだ確立されていない。それゆえ、炭化珪
素は、上述のような多くの利点及び可能性を有する半導
体材料にもかかわらず、その実用化が阻まれていた。
However, a crystal growth technique capable of stably supplying a high-quality silicon carbide single crystal having a large area on an industrial scale has not yet been established. Therefore, silicon carbide has been hampered in practical use despite the semiconductor material having many advantages and possibilities as described above.

【0004】従来、研究室程度の規模では、例えば昇華
再結晶法(レーリー法)で炭化珪素単結晶を成長させ、
半導体素子の作製が可能なサイズの炭化珪素単結晶を得
ていた。しかしながら、この方法では、得られた単結晶
の面積が小さく、その寸法及び形状を高精度に制御する
ことは困難である。また、炭化珪素が有する結晶多形及
び不純物キャリア濃度の制御も容易ではない。
Conventionally, on a laboratory scale, for example, a silicon carbide single crystal is grown by a sublimation recrystallization method (Rayleigh method),
Thus, a silicon carbide single crystal having a size capable of manufacturing a semiconductor element has been obtained. However, in this method, the area of the obtained single crystal is small, and it is difficult to control the size and shape with high precision. Further, it is not easy to control the crystal polymorphism and impurity carrier concentration of silicon carbide.

【0005】また、化学気相成長法(CVD法)を用い
て珪素(Si)等などの異種基板上にヘテロエピタキシ
ャル成長させることにより立方晶の炭化珪素単結晶を成
長させることも行われている。この方法では、大面積の
単結晶は得られるが、基板との格子不整合が約20%も
あること等により多くの欠陥を含む(〜107cm-2
炭化珪素単結晶しか成長させることができず、高品質の
炭化珪素単結晶を得ることは容易でない。
In addition, a cubic silicon carbide single crystal is also grown by heteroepitaxial growth on a heterogeneous substrate such as silicon (Si) using a chemical vapor deposition method (CVD method). Although a large area single crystal can be obtained by this method, many defects are included due to the lattice mismatch with the substrate of about 20% (-10 7 cm -2 ).
Only a silicon carbide single crystal can be grown, and it is not easy to obtain a high quality silicon carbide single crystal.

【0006】これらの問題点を解決するために、種結晶
を用いて昇華再結晶を行う改良型のレーリー法が提案さ
れている(Yu.M. Tairov and V.F. Tsvetkov, Journal
of Crystal Growth vol.52 (1981) pp.146-150)。この
方法では、種結晶を用いているため結晶の核形成過程の
制御が可能であり、また不活性ガスにより雰囲気圧力を
数Torrから100Torr程度に制御することによ
り結晶の成長速度等を再現性良くコントロールできる。
さらに、結晶の抵抗率、すなわち結晶中の不純物量は、
不活性ガスからなる雰囲気中に不純物ガスを添加する、
あるいは炭化珪素原料粉末中に不純物元素あるいはその
化合物を混合することにより、制御可能である。この
際、古賀 和幸、半導体研究第39巻 p.151に開示されて
いるように、結晶の抵抗率は、結晶に窒素、アルミニウ
ム、あるいはホウ素原子を1016〜1019cm-3導入す
ることにより、0.04〜200Ωcmの範囲で制御さ
れていた。
In order to solve these problems, an improved Rayleigh method of sublimation recrystallization using a seed crystal has been proposed (Yu.M. Tairov and VF Tsvetkov, Journal.
of Crystal Growth vol.52 (1981) pp.146-150). In this method, since the seed crystal is used, it is possible to control the nucleation process of the crystal, and by controlling the atmospheric pressure from several Torr to 100 Torr with an inert gas, the crystal growth rate and the like can be reproduced with good reproducibility. You can control.
Furthermore, the crystal resistivity, that is, the amount of impurities in the crystal is
Add an impurity gas to the atmosphere consisting of an inert gas,
Alternatively, it can be controlled by mixing an impurity element or its compound into the silicon carbide raw material powder. At this time, as disclosed in Kazuyuki Koga, Semiconductor Research Vol. 39, p. 151, the resistivity of the crystal is determined by introducing nitrogen, aluminum, or boron atoms into the crystal at 10 16 to 10 19 cm -3. , Was controlled in the range of 0.04 to 200 Ωcm.

【0007】このように、種結晶を用いた昇華再結晶法
を用いれば、結晶多形(ポリタイプ)、形状及び抵抗率
を制御しながら、大型の炭化珪素単結晶を再現性良く成
長させることができる。
As described above, by using the sublimation recrystallization method using a seed crystal, a large-sized silicon carbide single crystal can be grown with good reproducibility while controlling the crystal polymorphism (polytype), shape and resistivity. You can

【0008】[0008]

【発明が解決しようとする課題】上記従来方法で炭化珪
素単結晶を成長した場合、マイクロパイプ欠陥と呼ばれ
る結晶を成長方向に貫通する直径数ミクロンのピンホー
ルが102〜103cm-2程度成長結晶に含まれていた。
P.G. Neudeck et al., IEEE Electron Device Letters
vol.15 (1994) pp.63-65に記載されているように、これ
らの欠陥は素子を作製した際に、漏れ電流等を引き起こ
し、その低減は炭化珪素単結晶のデバイス応用における
最重要課題とされている。
When a silicon carbide single crystal is grown by the above-mentioned conventional method, a pinhole having a diameter of several microns penetrating the crystal called a micropipe defect in the growth direction is about 10 2 to 10 3 cm -2. It was contained in the grown crystal.
PG Neudeck et al., IEEE Electron Device Letters
As described in vol.15 (1994) pp.63-65, these defects cause leakage currents in the fabrication of devices, and their reduction is the most important issue in device application of silicon carbide single crystals. It is said that.

【0009】このマイクロパイプ欠陥は、J. Takahashi
et al., Journal of Crystal Growth vol.135 (1994)
pp.61-70に示されているように、炭化珪素単結晶におい
て代表的な成長モードである渦巻成長に伴って発生して
いる。
This micropipe defect is caused by J. Takahashi.
et al., Journal of Crystal Growth vol. 135 (1994)
As shown in pp.61-70, it occurs along with spiral growth which is a typical growth mode in a silicon carbide single crystal.

【0010】本発明は上記事情に鑑みてなされたもので
あり、大型のウェハを切り出せる、欠陥が少なく良質の
単結晶インゴットを再現性良く製造し得る炭化珪素単結
晶の製造方法を提供するものである。
The present invention has been made in view of the above circumstances, and provides a method for producing a silicon carbide single crystal capable of cutting a large-sized wafer and producing a good quality single crystal ingot with few defects with good reproducibility. Is.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
の本発明は、次のように構成されている。
The present invention for achieving the above object has the following construction.

【0012】請求項1に記載の発明は、種結晶を用いた
昇華再結晶法で炭化珪素単結晶を成長させる方法におい
て、成長雰囲気中に不純物元素を含有させ、成長表面お
よび成長結晶中に多量の不純物を供給し、マイクロパイ
プ欠陥の少ない炭化珪素単結晶を成長させる方法であ
る。
According to a first aspect of the present invention, in a method of growing a silicon carbide single crystal by a sublimation recrystallization method using a seed crystal, an impurity element is contained in a growth atmosphere, and a large amount is contained in a growth surface and a growth crystal. Is a method for growing a silicon carbide single crystal with few micropipe defects.

【0013】請求項2に記載の発明は、前記成長雰囲気
中の不純物として窒素、アルミニウム、あるいはホウ素
原子を高濃度に含有させ、その結果、炭化珪素単結晶中
に窒素、アルミニウム、あるいはホウ素原子を1019cm-3
以上含有させることにより、マイクロパイプ欠陥の少な
い炭化珪素単結晶を成長することを特徴とする請求項1
記載の単結晶炭化珪素の製造方法である。
According to a second aspect of the present invention, nitrogen, aluminum or boron atoms are contained at high concentration as impurities in the growth atmosphere, and as a result, nitrogen, aluminum or boron atoms are contained in the silicon carbide single crystal. 10 19 cm -3
A silicon carbide single crystal having few micropipe defects is grown by containing the above elements.
The method for producing a single crystal silicon carbide described above.

【0014】本発明の単結晶炭化珪素の製造方法は、炭
化珪素からなる原材料を加熱昇華させ、炭化珪素単結晶
からなる種結晶上に供給し、この種結晶上に炭化珪素単
結晶を成長する方法において、成長雰囲気中に不純物を
高濃度に含有させることにより、成長表面に多量の不純
物を供給し、結晶中の不純物濃度が1019cm-3以上の
炭化珪素単結晶を成長する。
In the method for producing single crystal silicon carbide according to the present invention, a raw material made of silicon carbide is heated and sublimated, and the raw material is supplied onto a seed crystal made of a silicon carbide single crystal, and the silicon carbide single crystal is grown on the seed crystal. In the method, a high concentration of impurities is contained in the growth atmosphere to supply a large amount of impurities to the growth surface to grow a silicon carbide single crystal having an impurity concentration in the crystal of 10 19 cm -3 or more.

【0015】[0015]

【発明の実施の形態】本発明の製造方法では、成長雰囲
気中に高濃度で不純物を含有させ、成長表面に多量の不
純物を供給することによって炭化珪素単結晶の代表的な
成長モードである渦巻成長を抑制し、マイクロパイプの
発生を防止しようとするものである。渦巻成長は、成長
に寄与する分子種が表面上を充分拡散した後、螺旋転位
によって表面に形成されたステップに到達し、結晶格子
に取り込まれることによって起こる。これは、通常ステ
ップフローモードと呼ばれる結晶成長様式に相当する。
発明者らは、表面に多量の不純物が存在する場合には、
成長に寄与する分子種の表面拡散が阻害され、さらには
不純物が効果的な二次元核形成の種となるために、この
ステップフローモードが起こり難く、マイクロパイプ発
生が抑制されることを見出した。これは、成長に寄与す
る分子種がステップに到達せず、表面で二次元核形成を
起こした場合には、螺旋転位によって表面に形成された
ステップは渦を巻くことなく、そのままの形状で引き継
がれ、結果として渦巻成長が抑制されるためである。
BEST MODE FOR CARRYING OUT THE INVENTION In the manufacturing method of the present invention, a high-concentration impurity is contained in a growth atmosphere, and a large amount of impurities are supplied to the growth surface to form a spiral mode which is a typical growth mode of a silicon carbide single crystal. It is intended to suppress the growth and prevent the generation of micropipes. Spiral growth occurs when molecular species that contribute to growth sufficiently diffuse on the surface and then reach a step formed on the surface by a screw dislocation and are taken into a crystal lattice. This corresponds to a crystal growth mode usually called a step flow mode.
The inventors have found that when a large amount of impurities are present on the surface,
We found that the step flow mode is difficult to occur and the generation of micropipes is suppressed because surface diffusion of molecular species that contribute to growth is hindered and impurities become effective seeds for two-dimensional nucleation. . This is because when the molecular species that contribute to growth do not reach the step and two-dimensional nucleation occurs on the surface, the step formed on the surface by the screw dislocation does not swirl and is succeeded in its original shape. This is because the spiral growth is suppressed as a result.

【0016】また、改良レーリー法による炭化珪素成長
中に、不純物を多量に表面に供給した結果、炭化珪素は
高濃度の不純物(1019cm-3以上)を含有することに
なり、その表面エネルギーは増加する。Frank(F.C. Fr
ank, Acta Cryst. vol. 4 (1951) pp. 497-501)によれ
ば、表面エネルギーの大きい物質ではマイクロパイプ径
が小さくなる。従って、本発明によれば、マイクロパイ
プの発生を抑制できるだけでなく、発生したマイクロパ
イプの径を小さくし、デバイスへの影響を低減すること
も可能である。
Further, as a result of supplying a large amount of impurities to the surface during the growth of silicon carbide by the modified Rayleigh method, the silicon carbide contains a high concentration of impurities (10 19 cm −3 or more), and the surface energy thereof is increased. Will increase. Frank (FC Fr
According to ank, Acta Cryst. vol. 4 (1951) pp. 497-501), the micropipe diameter becomes smaller for substances with high surface energy. Therefore, according to the present invention, not only the generation of micropipes can be suppressed, but also the diameter of the generated micropipes can be reduced and the influence on the device can be reduced.

【0017】成長雰囲気中に不純物を高濃度に含有させ
る方法としては、ガスとして不活性ガスと共に反応槽に
導入する方法と、炭化珪素粉末原料中に予め含有させて
おく方法の二つが考えられる。また従来、このような炭
化珪素単結晶への不純物の導入は結晶の電気的特性(伝
導型、抵抗率)を変化させる目的で、通常1016cm-3
から1019cm-3以下の範囲で行われていたが、本発明の
ように結晶欠陥の制御を目的として1019cm-3以上の
範囲で用いられたことはない。
As a method for containing a high concentration of impurities in the growth atmosphere, two methods are considered: a method of introducing it as a gas together with an inert gas into a reaction tank, and a method of preliminarily containing it in a silicon carbide powder raw material. Conventionally, the introduction of impurities into such a silicon carbide single crystal is usually 10 16 cm -3 for the purpose of changing the electrical characteristics (conductivity type, resistivity) of the crystal.
From was done in the range of 10 19 cm -3 or less, but not be used in 10 19 cm -3 or more ranges for the purpose of controlling the crystal defects as in the present invention.

【0018】[0018]

【実施例1】図1は、種結晶を用いた改良型レーリー法
によって単結晶炭化珪素を成長させる本発明に用いられ
る製造装置の一例である。
Example 1 FIG. 1 shows an example of a production apparatus used in the present invention for growing single crystal silicon carbide by an improved Rayleigh method using a seed crystal.

【0019】まず、この単結晶成長装置について簡単に
説明する。結晶成長は、種結晶として用いた炭化珪素単
結晶基板1の上に、原料である炭化珪素粉末2を昇華再
結晶させることにより行われる。種結晶の炭化珪素結晶
基板1は、黒鉛製坩堝3の蓋4の内面に取り付けられ
る。原料の炭化珪素粉末2は、黒鉛製坩堝3の内部に充
填されている。このような黒鉛製坩堝3は、二重石英管
5の内部に、黒鉛の支持棒6により設置される。黒鉛製
坩堝3の周囲には、熱シールドのための黒鉛製フェルト
7が設置されている。二重石英管5は、真空排気装置に
より高真空排気(10-5Torr以下)でき、かつ内部
雰囲気をArとドーパントガスの混合ガスにより圧力制
御することができる。また、二重石英管5の外周には、
ワークコイル8が設置されており、高周波電流を流すこ
とにより黒鉛製坩堝3を加熱し、原料及び種結晶を所望
の温度に加熱することができる。坩堝温度の計測は、坩
堝上部及び下部を覆うフェルトの中央部に直径2〜4m
mの光路を設け坩堝上部及び下部からの光を取りだし、
二色温度計を用いて行う。坩堝下部の温度を原料温度、
坩堝上部の温度を種温度とする。
First, the single crystal growth apparatus will be briefly described. Crystal growth is performed by sublimating and recrystallizing silicon carbide powder 2 as a raw material on silicon carbide single crystal substrate 1 used as a seed crystal. Seed silicon carbide crystal substrate 1 is attached to the inner surface of lid 4 of crucible 3 made of graphite. Silicon carbide powder 2 as a raw material is filled in a crucible 3 made of graphite. Such a graphite crucible 3 is installed inside a double quartz tube 5 by a graphite support rod 6. Around the graphite crucible 3, a graphite felt 7 for heat shielding is provided. The double quartz tube 5 can be evacuated to a high vacuum (10 -5 Torr or less) by a vacuum exhaust device, and the internal atmosphere can be pressure-controlled by a mixed gas of Ar and a dopant gas. In addition, on the outer circumference of the double quartz tube 5,
The work coil 8 is installed, and the graphite crucible 3 can be heated by passing a high frequency current to heat the raw material and the seed crystal to a desired temperature. The crucible temperature is measured at the center of the felt that covers the upper and lower parts of the crucible with a diameter of 2 to 4 m.
An optical path of m is provided to take out light from the upper and lower parts of the crucible,
Perform using a two-color thermometer. The temperature of the lower part of the crucible is the raw material temperature,
The temperature at the top of the crucible is the seed temperature.

【0020】次に、この結晶成長装置を用いた炭化珪素
単結晶の製造について実施例を説明する。
Next, an embodiment of the production of a silicon carbide single crystal using this crystal growth apparatus will be described.

【0021】まず、種結晶として、成長面方位が<00
01>方向である六方晶系の炭化珪素からなる基板1を
用意した。そして、この基板1を黒鉛製坩堝3の蓋4の
内面に取り付けた。また、黒鉛製坩堝3の内部には、原
料2を充填した。次いで、原料を充填した黒鉛製坩堝3
を、種結晶を取り付けた蓋4で閉じ、黒鉛製フェルト7
で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管
5の内部に設置した。そして、石英管の内部を真空排気
した後、ワークコイルに電流を流し原料温度を摂氏20
00度まで上げた。その後、雰囲気ガスとしてArガス
に窒素ガスを75%含んだ混合ガスを流入させ、石英管
内圧力を約600Torrに保ちながら、原料温度を目
標温度である摂氏2400度まで上昇させた。成長圧力
である20Torrには約30分かけて減圧し、その後
約20時間成長を続けた。この際の成長速度は約1mm
毎時であった。成長中の窒素ガスの割合はArガス等の
不活性ガスに対し、10〜100%の範囲に設定する必
要がある。これより低濃度では、表面へのドーパントの
供給が不十分であり成長に寄与する分子種の拡散防止効
果が期待できず、単結晶中の窒素濃度も1019cm-3
上にはならない。また、窒素の反応槽内の分圧が40T
orr以上になると、成長表面上の窒素が結晶性に悪影
響を及ぼすようになる。すなわち、多結晶化等が起こる
ようになる。
First, as a seed crystal, the growth plane orientation is <00.
A substrate 1 made of hexagonal silicon carbide having a 01> direction was prepared. Then, the substrate 1 was attached to the inner surface of the lid 4 of the graphite crucible 3. The raw material 2 was filled in the graphite crucible 3. Next, graphite crucible 3 filled with raw material
Is closed with a lid 4 fitted with a seed crystal, and a graphite felt 7 is attached.
After being coated with, it was placed on a graphite support rod 6 and placed inside the double quartz tube 5. Then, after evacuating the inside of the quartz tube, an electric current is applied to the work coil to adjust the raw material temperature to 20 degrees Celsius.
I raised it to 00 degrees. After that, a mixed gas containing 75% of nitrogen gas in Ar gas was introduced as an atmospheric gas, and the raw material temperature was raised to a target temperature of 2400 degrees Celsius while maintaining the internal pressure of the quartz tube at about 600 Torr. The pressure was reduced to 20 Torr, which is the growth pressure, over about 30 minutes, and then the growth was continued for about 20 hours. The growth rate at this time is about 1 mm
It was every hour. The proportion of nitrogen gas during growth needs to be set within a range of 10 to 100% with respect to an inert gas such as Ar gas. If the concentration is lower than this, the supply of the dopant to the surface is insufficient, the effect of preventing the diffusion of molecular species that contributes to growth cannot be expected, and the nitrogen concentration in the single crystal does not exceed 10 19 cm -3 . Also, the partial pressure of nitrogen in the reaction tank is 40T.
Above orr, nitrogen on the growth surface adversely affects the crystallinity. That is, polycrystallization or the like occurs.

【0022】こうして得られた炭化珪素単結晶をX線回
折及びラマン散乱により分析したところ、六方晶系の炭
化珪素単結晶が成長したことを確認できた。成長した結
晶は種結晶上より成長最表面まで均一で、また炭素に関
する異常物も非常に少なく、高品質の炭化珪素単結晶で
あった。さらに、二次イオン質量分析法により結晶中の
窒素濃度を調べたところ、2×1020cm-3であった。
The silicon carbide single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, and it was confirmed that a hexagonal system silicon carbide single crystal had grown. The grown crystal was a high-quality silicon carbide single crystal in which the seed crystal was more uniform than the growth outermost surface and there were very few abnormalities related to carbon. Furthermore, when the nitrogen concentration in the crystal was examined by secondary ion mass spectrometry, it was 2 × 10 20 cm −3 .

【0023】また、マイクロパイプ欠陥を評価する目的
で、成長した単結晶インゴットを切断、研磨することに
より{0001}面ウェハとした。その後、摂氏約53
0度の溶融KOHでウェハ表面をエッチングし、顕微鏡
によりマイクロパイプ欠陥に対応する大型の正六角形エ
ッチピットの数を調べたところ、Arのみを雰囲気ガス
として用いた場合に比べ、マイクロパイプ欠陥が半減し
ていることがわかった。また、発生したマイクロパイプ
の径が減少しているのがエッチング前表面の顕微鏡観察
により確認できた。
For the purpose of evaluating micropipe defects, the grown single crystal ingot was cut and polished to obtain a {0001} plane wafer. Then about 53 degrees Celsius
When the number of large regular hexagonal etch pits corresponding to micropipe defects was examined with a microscope after etching the wafer surface with 0 degree molten KOH, micropipe defects were halved compared to when Ar alone was used as the atmospheric gas. I found out that It was also confirmed by microscopic observation of the surface before etching that the diameter of the generated micropipe was reduced.

【0024】[0024]

【実施例2】実施例1と同じく、種結晶として、成長面
方位が<0001>方向である六方晶系の炭化珪素から
なる基板1を用意し、種結晶を黒鉛製坩堝3の蓋4の内
面に取り付けた。次に、黒鉛製坩堝3の内部に、原料2
を充填したが、この際、炭化珪素原料中にP型の不純物
である硼素の炭化物(B4C)を0.25重量%混合さ
せた。一般的に、ドーパント原子の炭化珪素原料への混
合の仕方としては、(1)ドーパント元素そのものを炭
化珪素原料に混合する、(2)(1)の混合物をさらに
焼結したものを原料に用いる、(3)ドーパント元素を
含む化合物を混合する(この実施例に相当)、(4)予
めドーパント元素をドープした炭化珪素原料を用いる、
の4つの方法が考えられる。
EXAMPLE 2 As in Example 1, a substrate 1 made of hexagonal silicon carbide having a <0001> direction as a seed crystal was prepared as a seed crystal, and the seed crystal was covered with a lid 4 of a graphite crucible 3. It was attached to the inside. Next, the raw material 2 is placed inside the graphite crucible 3.
At this time, 0.25 wt% of boron carbide (B 4 C), which is a P-type impurity, was mixed in the silicon carbide raw material. Generally, as a method of mixing dopant atoms into a silicon carbide raw material, (1) a dopant element itself is mixed with a silicon carbide raw material, (2) a mixture obtained by further sintering the mixture of (1) is used as a raw material. (3) mixing a compound containing a dopant element (corresponding to this example), (4) using a silicon carbide raw material previously doped with a dopant element,
There are four possible methods.

【0025】原料充填以後の真空排気、温度制御、圧力
制御等は実施例1とほぼ同様に行った。ただし、雰囲気
ガスはAr100%とした。炭化珪素原料中のB4Cの
仕込み量としては、0.1〜1%の範囲に設定する必要
がある。これより低濃度では、表面へのドーパントの供
給が不十分であり成長に寄与する分子種の拡散防止効果
が期待できず、またこれより高濃度では良質な単結晶成
長が実現できない。
Vacuum evacuation, temperature control, pressure control, etc., after filling the raw materials were carried out in substantially the same manner as in Example 1. However, the atmosphere gas was 100% Ar. The amount of B 4 C charged in the silicon carbide raw material needs to be set in the range of 0.1 to 1%. If the concentration is lower than this, the supply of the dopant to the surface is insufficient and the effect of preventing diffusion of molecular species that contributes to growth cannot be expected, and if the concentration is higher than this, good quality single crystal growth cannot be realized.

【0026】こうして得られた炭化珪素単結晶をX線回
折及びラマン散乱により分析したところ、六方晶系の炭
化珪素単結晶が成長したことを確認できた。成長した結
晶は種結晶上より成長最表面まで均一で、また炭素に関
する異常物も非常に少なく、高品質の炭化珪素単結晶で
あった。さらに、二次イオン質量分析法により結晶中の
ホウ素濃度を調べたところ、3×1019cm-3であっ
た。
The silicon carbide single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, and it was confirmed that a hexagonal system silicon carbide single crystal had grown. The grown crystal was a high-quality silicon carbide single crystal in which the seed crystal was more uniform than the growth outermost surface and there were very few abnormalities related to carbon. Furthermore, when the boron concentration in the crystal was examined by secondary ion mass spectrometry, it was 3 × 10 19 cm −3 .

【0027】また、マイクロパイプ欠陥を評価する目的
で、成長した単結晶インゴットを切断、研磨することに
より{0001}面ウェハとした。その後、摂氏約53
0度の溶融KOHでウェハ表面をエッチングし、顕微鏡
によりマイクロパイプ欠陥に対応する大型の正六角形エ
ッチピットの数を調べたところ、Arのみを雰囲気ガス
として用いた場合に比べ、マイクロパイプ欠陥が30〜
40%減少していることがわかった。また、発生したマ
イクロパイプの径が減少しているのをエッチング前表面
の顕微鏡観察により確認した。
For the purpose of evaluating micropipe defects, the grown single crystal ingot was cut and polished to obtain a {0001} plane wafer. Then about 53 degrees Celsius
When the wafer surface was etched with 0 degree molten KOH and the number of large regular hexagonal etch pits corresponding to the micropipe defects was examined with a microscope, it was found that the micropipe defects were 30 compared with the case where only Ar was used as the atmosphere gas. ~
It was found to have decreased by 40%. Further, it was confirmed by microscopic observation of the surface before etching that the diameter of the generated micropipe was reduced.

【0028】[0028]

【発明の効果】以上説明したように、請求項1および請
求項2に記載の発明によれば、種結晶を用いた改良型レ
ーリー法において、渦巻成長を抑制し、これらが原因と
なって発生するマイクロパイプが少ない良質の炭化珪素
単結晶を再現性、及び均質性良く成長させることができ
る。
As described above, according to the first and second aspects of the present invention, in the improved Rayleigh method using a seed crystal, the spiral growth is suppressed, and these are caused. It is possible to grow a high-quality silicon carbide single crystal with a small amount of micropipes, which has good reproducibility and homogeneity.

【0029】このような炭化珪素単結晶を成長用基板と
して用い、気相エピタキシャル成長法により、この基板
上に炭化珪素単結晶薄膜を成長させれば、光学的特性の
優れた青色発光素子、電気的特性の優れた高耐圧・耐環
境性電子デバイスを製作することができる。
When such a silicon carbide single crystal is used as a growth substrate and a silicon carbide single crystal thin film is grown on this substrate by a vapor phase epitaxial growth method, a blue light emitting element having excellent optical characteristics and an electrical property can be obtained. It is possible to manufacture high voltage and environment resistant electronic devices with excellent characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の製造方法に用いられる単結晶成長装
置の一例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of a single crystal growth apparatus used in a manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1…炭化珪素単結晶基板(種結晶)、 2…炭化珪素粉末原料、 3…黒鉛製坩堝、 4…黒鉛製坩堝蓋、 5…二重石英管、 6…支持棒、 7…黒鉛製フェルト、 8…ワークコイル、 9…Arガス配管、 10…Arガス用マスフローコントローラ、 11…不純物ガス配管、 12…不純物ガス用マスフローコントローラ、 13…真空排気装置。 DESCRIPTION OF SYMBOLS 1 ... Silicon carbide single crystal substrate (seed crystal), 2 ... Silicon carbide powder raw material, 3 ... Graphite crucible, 4 ... Graphite crucible lid, 5 ... Double quartz tube, 6 ... Support rod, 7 ... Graphite felt, 8 ... Work coil, 9 ... Ar gas pipe, 10 ... Ar gas mass flow controller, 11 ... Impurity gas pipe, 12 ... Impurity gas mass flow controller, 13 ... Vacuum exhaust device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 勝野 正和 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社技術開発本部内 (72)発明者 矢代 弘克 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社技術開発本部内 (72)発明者 金谷 正敏 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Masakazu Katsuno Masakazu Katsuno 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Co., Ltd. Technology Development Division (72) Hirokatsu Yashiro 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Address Nippon Steel Co., Ltd. Technology Development Headquarters (72) Inventor Masatoshi Kanaya 1618 Ida, Nakahara-ku, Kawasaki City, Kanagawa Prefecture Nippon Steel Co., Ltd. Technology Development Headquarters

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 種結晶を用いた昇華再結晶法で炭化珪素
単結晶を成長させる方法において、成長雰囲気中に不純
物元素を含有させ、成長表面および成長結晶中に多量の
不純物を供給し、マイクロパイプ欠陥の少ない炭化珪素
単結晶を成長させる方法。
1. A method for growing a silicon carbide single crystal by a sublimation recrystallization method using a seed crystal, wherein an impurity element is contained in a growth atmosphere, and a large amount of impurities are supplied to a growth surface and a growth crystal to form a micro crystal. A method for growing a silicon carbide single crystal with few pipe defects.
【請求項2】 前記成長雰囲気中の不純物として窒素、
アルミニウム、あるいはホウ素原子を高濃度に含有さ
せ、その結果、炭化珪素単結晶中に窒素、アルミニウ
ム、あるいはホウ素原子を1019cm-3以上含有させること
により、マイクロパイプ欠陥の少ない炭化珪素単結晶を
成長することを特徴とする請求項1記載の単結晶炭化珪
素の製造方法。
2. Nitrogen as an impurity in the growth atmosphere,
By containing a high concentration of aluminum or boron atoms, and as a result, by containing nitrogen, aluminum, or boron atoms of 10 19 cm -3 or more in the silicon carbide single crystal, a silicon carbide single crystal with few micropipe defects can be obtained. The method for producing single crystal silicon carbide according to claim 1, wherein the single crystal silicon carbide is grown.
JP32450895A 1995-12-13 1995-12-13 Production of silicon carbide single crystal Withdrawn JPH09157092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32450895A JPH09157092A (en) 1995-12-13 1995-12-13 Production of silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32450895A JPH09157092A (en) 1995-12-13 1995-12-13 Production of silicon carbide single crystal

Publications (1)

Publication Number Publication Date
JPH09157092A true JPH09157092A (en) 1997-06-17

Family

ID=18166590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32450895A Withdrawn JPH09157092A (en) 1995-12-13 1995-12-13 Production of silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JPH09157092A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0967304A1 (en) * 1998-05-29 1999-12-29 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for manufacturing single crystal of silicon carbide
JP2007230823A (en) * 2006-03-01 2007-09-13 Nippon Steel Corp Method for manufacturing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP2007320790A (en) * 2006-05-30 2007-12-13 Nippon Steel Corp Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
US7399994B2 (en) 2005-02-07 2008-07-15 Showa Denka K.K. Transparent electrode
US7455730B2 (en) 2003-06-16 2008-11-25 Showa Denko K.K. Method for growth of silicon carbide single crystal, silicon carbide seed crystal, and silicon carbide single crystal
WO2009091067A1 (en) * 2008-01-15 2009-07-23 Nippon Steel Corporation Silicon carbide single crystal ingot, and substrate and epitaxial wafer obtained from the silicon carbide single crystal ingot
JP2010053035A (en) * 2009-12-08 2010-03-11 Nippon Steel Corp Silicon carbide single crystal ingot, substrate obtained from the same, and epitaxial wafer
JP2011102206A (en) * 2009-11-10 2011-05-26 Toyota Motor Corp METHOD FOR MANUFACTURING N-TYPE SiC SINGLE CRYSTAL, N-TYPE SiC SINGLE CRYSTAL OBTAINED BY THE METHOD, AND APPLICATION OF THE CRYSTAL
DE102015118504B4 (en) 2014-10-31 2018-09-27 Toyota Jidosha Kabushiki Kaisha Process for producing a SiC single crystal
CN114520143A (en) * 2022-04-20 2022-05-20 浙江大学杭州国际科创中心 Silicon carbide film epitaxy method for inhibiting bipolar degradation and silicon carbide epitaxial wafer
CN115261977A (en) * 2022-08-04 2022-11-01 福建北电新材料科技有限公司 Silicon carbide pretreatment method and device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214108B1 (en) 1998-05-19 2001-04-10 Kabushiki Kaisha Toyota Chuo Kenkyusho Method of manufacturing silicon carbide single crystal and silicon carbide single crystal manufactured by the same
EP0967304A1 (en) * 1998-05-29 1999-12-29 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for manufacturing single crystal of silicon carbide
US7455730B2 (en) 2003-06-16 2008-11-25 Showa Denko K.K. Method for growth of silicon carbide single crystal, silicon carbide seed crystal, and silicon carbide single crystal
US7399994B2 (en) 2005-02-07 2008-07-15 Showa Denka K.K. Transparent electrode
JP2007230823A (en) * 2006-03-01 2007-09-13 Nippon Steel Corp Method for manufacturing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP2007320790A (en) * 2006-05-30 2007-12-13 Nippon Steel Corp Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
EP2230332A1 (en) * 2008-01-15 2010-09-22 Nippon Steel Corporation Silicon carbide single crystal ingot, and substrate and epitaxial wafer obtained from the silicon carbide single crystal ingot
WO2009091067A1 (en) * 2008-01-15 2009-07-23 Nippon Steel Corporation Silicon carbide single crystal ingot, and substrate and epitaxial wafer obtained from the silicon carbide single crystal ingot
US7972704B2 (en) 2008-01-15 2011-07-05 Nippon Steel Corporation Single-crystal silicon carbide ingot, and substrate and epitaxial wafer obtained therefrom
EP2230332A4 (en) * 2008-01-15 2011-09-07 Nippon Steel Corp Silicon carbide single crystal ingot, and substrate and epitaxial wafer obtained from the silicon carbide single crystal ingot
KR101247476B1 (en) * 2008-01-15 2013-03-29 신닛테츠스미킨 카부시키카이샤 Silicon carbide single crystal ingot, and substrate and epitaxial wafer obtained from the silicon carbide single crystal ingot
JP2011102206A (en) * 2009-11-10 2011-05-26 Toyota Motor Corp METHOD FOR MANUFACTURING N-TYPE SiC SINGLE CRYSTAL, N-TYPE SiC SINGLE CRYSTAL OBTAINED BY THE METHOD, AND APPLICATION OF THE CRYSTAL
JP2010053035A (en) * 2009-12-08 2010-03-11 Nippon Steel Corp Silicon carbide single crystal ingot, substrate obtained from the same, and epitaxial wafer
DE102015118504B4 (en) 2014-10-31 2018-09-27 Toyota Jidosha Kabushiki Kaisha Process for producing a SiC single crystal
CN114520143A (en) * 2022-04-20 2022-05-20 浙江大学杭州国际科创中心 Silicon carbide film epitaxy method for inhibiting bipolar degradation and silicon carbide epitaxial wafer
CN115261977A (en) * 2022-08-04 2022-11-01 福建北电新材料科技有限公司 Silicon carbide pretreatment method and device

Similar Documents

Publication Publication Date Title
US4623425A (en) Method of fabricating single-crystal substrates of silicon carbide
US6136093A (en) Method of making GaN single crystal and apparatus for making GaN single crystal
JP4926556B2 (en) Method for manufacturing silicon carbide single crystal ingot and silicon carbide single crystal substrate
US11781245B2 (en) Silicon carbide substrate and method of growing SiC single crystal boules
JP4818754B2 (en) Method for producing silicon carbide single crystal ingot
JP4585359B2 (en) Method for producing silicon carbide single crystal
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
JP5031651B2 (en) Method for producing silicon carbide single crystal ingot
JP3637157B2 (en) Method for producing silicon carbide single crystal and seed crystal used therefor
JPH09157092A (en) Production of silicon carbide single crystal
JP3590485B2 (en) Single crystal silicon carbide ingot and method for producing the same
JP3662694B2 (en) Method for producing single crystal silicon carbide ingot
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JP2003226600A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot, and methods of producing them
JPH04292499A (en) Production of silicon carbide single crystal
JP2002274994A (en) Method and apparatus of manufacturing silicon carbide single crystal and silicon carbide single crystal ingot
JPH0977594A (en) Production of low resistance single crystal silicon carbide
JP4224195B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal
JPH11209198A (en) Synthesis of silicon carbide single crystal
JP4157326B2 (en) 4H type silicon carbide single crystal ingot and wafer
JP3848446B2 (en) Method for growing low resistance SiC single crystal
JP4585137B2 (en) Method for producing silicon carbide single crystal ingot
JPH06219898A (en) Production of n-type silicon carbide single crystal
JPH05178698A (en) Apparatus and process for production of silicon carbide bulk single crystal
JPH08208380A (en) Production of single-crystalline silicon carbide

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030304