JP2007230823A - Method for manufacturing silicon carbide single crystal ingot, and silicon carbide single crystal ingot - Google Patents

Method for manufacturing silicon carbide single crystal ingot, and silicon carbide single crystal ingot Download PDF

Info

Publication number
JP2007230823A
JP2007230823A JP2006054420A JP2006054420A JP2007230823A JP 2007230823 A JP2007230823 A JP 2007230823A JP 2006054420 A JP2006054420 A JP 2006054420A JP 2006054420 A JP2006054420 A JP 2006054420A JP 2007230823 A JP2007230823 A JP 2007230823A
Authority
JP
Japan
Prior art keywords
single crystal
silicon carbide
carbide single
crystal
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006054420A
Other languages
Japanese (ja)
Other versions
JP4818754B2 (en
Inventor
Noboru Otani
昇 大谷
Masakazu Katsuno
正和 勝野
Hiroshi Tsuge
弘志 柘植
Masashi Nakabayashi
正史 中林
Tatsuo Fujimoto
辰雄 藤本
Hirokatsu Yashiro
弘克 矢代
Mitsuru Sawamura
充 澤村
Takashi Aigo
崇 藍郷
Taizo Hoshino
泰三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006054420A priority Critical patent/JP4818754B2/en
Publication of JP2007230823A publication Critical patent/JP2007230823A/en
Application granted granted Critical
Publication of JP4818754B2 publication Critical patent/JP4818754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an SiC single crystal ingot from which large-diameter, good-quality face ä0001} wafers almost free from dislocation defects can inexpensively be obtained with good reproducibility. <P>SOLUTION: A part or the whole of silicon carbide single crystal 12 is grown using a seed crystal 1 by a sublimation-recrystallization method in such a state as to increase the electron concentration of the growing single crystal 12 to ≥1×10<SP>19</SP>cm<SP>-3</SP>but ≤6×10<SP>20</SP>cm<SP>-3</SP>. Thereby, the dislocation defect is reduced to obtain the high-quality, large-diameter silicon carbide single crystal ingot 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炭化珪素単結晶インゴット及びその製造方法に係わり、特に、電子デバイスの基板ウェハとなる良質で大型の単結晶インゴット及びその製造方法に関するものである。   The present invention relates to a silicon carbide single crystal ingot and a method for manufacturing the same, and more particularly, to a high-quality and large single crystal ingot that becomes a substrate wafer for an electronic device and a method for manufacturing the same.

炭化珪素(SiC)は、耐熱性及び機械的強度に優れ、放射線に強い等の物理的、化学的性質から、耐環境性半導体材料として注目されている。また、近年、青色から紫外にかけての短波長光デバイス、高周波・高耐圧電子デバイス等の基板ウェハとしてSiC単結晶ウェハの需要が高まっている。しかしながら、大面積を有する高品質のSiC単結晶を、工業的規模で安定に供給し得る結晶成長技術は、未だ確立されていない。それゆえ、SiCは、上述のような多くの利点及び可能性を有する半導体材料にも拘らず、その実用化が阻まれていた。   Silicon carbide (SiC) has attracted attention as an environmentally resistant semiconductor material because of its physical and chemical properties such as excellent heat resistance and mechanical strength, and resistance to radiation. In recent years, the demand for SiC single crystal wafers as substrate wafers for short wavelength optical devices from blue to ultraviolet, high frequency / high voltage electronic devices, and the like has been increasing. However, a crystal growth technique that can stably supply a high-quality SiC single crystal having a large area on an industrial scale has not yet been established. Therefore, practical use of SiC has been hindered despite the semiconductor materials having many advantages and possibilities as described above.

従来、研究室程度の規模では、例えば、昇華再結晶法(レーリー法)でSiC単結晶を成長させ、半導体素子の作製が可能なサイズのSiC単結晶を得ていた。しかしながら、この方法では、得られた単結晶の面積が小さく、その寸法及び形状を高精度に制御することは困難である。また、SiCが有する結晶多形及び不純物キャリア濃度の制御も容易ではない。また、化学気相成長法(CVD法)を用いて、珪素(Si)等の異種基板上にヘテロエピタキシャル成長させることにより、立方晶のSiC単結晶を成長させることも行われている。この方法では、大面積の単結晶は得られるが、基板との格子不整合が約20%あることにより、積層欠陥等の結晶欠陥が入り易く、高品質のSiC単結晶を得ることは難しい。   Conventionally, on a laboratory scale scale, for example, a SiC single crystal was grown by a sublimation recrystallization method (Rayleigh method) to obtain a SiC single crystal of a size capable of manufacturing a semiconductor element. However, with this method, the area of the obtained single crystal is small, and it is difficult to control its size and shape with high accuracy. Also, it is not easy to control the crystal polymorphism and impurity carrier concentration of SiC. In addition, a cubic SiC single crystal is grown by heteroepitaxial growth on a heterogeneous substrate such as silicon (Si) using a chemical vapor deposition method (CVD method). In this method, a single crystal having a large area can be obtained. However, since the lattice mismatch with the substrate is about 20%, crystal defects such as stacking faults are easily generated, and it is difficult to obtain a high-quality SiC single crystal.

これらの問題点を解決するために、SiC単結晶ウェハを種結晶として用いて昇華再結晶を行う改良型のレーリー法が提案され(非特許文献1)、多くの研究機関で実施されている。この方法では、種結晶を用いているため結晶の核形成過程が制御でき、また、不活性ガスにより雰囲気圧力を100Pa〜15kPa程度に制御することにより、結晶の成長速度等を再現性良くコントロールできる。   In order to solve these problems, an improved Rayleigh method for performing sublimation recrystallization using a SiC single crystal wafer as a seed crystal has been proposed (Non-Patent Document 1) and is being implemented by many research institutions. In this method, since the seed crystal is used, the nucleation process of the crystal can be controlled, and the growth rate of the crystal can be controlled with good reproducibility by controlling the atmospheric pressure to about 100 Pa to 15 kPa with an inert gas. .

図1を用いて、改良レーリー法の原理を説明する。種結晶となるSiC単結晶(炭化珪素ウエハ)1と原料となるSiC結晶粉末2は、坩堝(通常は黒鉛)3の中に収納され、アルゴン等の不活性ガス雰囲気中(133〜13.3kPa)、2000〜2400℃に加熱される。この際、原料粉末2に比べ、種結晶1がやや低温になるように、温度勾配が設定される。原料(SiC結晶粉末)2は、昇華後、濃度勾配(温度勾配により形成される)により種結晶方向へ拡散、輸送される。単結晶成長は、種結晶に到着した原料ガスが種結晶上で再結晶化することにより実現される(図中では成長結晶12)。この際、得られる結晶の抵抗率は、不活性ガスからなる雰囲気中に不純物ガスを添加する、あるいは、SiC原料粉末中に不純物元素あるいはその化合物を混合することにより、制御可能である。SiC単結晶中の置換型不純物として代表的なものに、窒素(n型)、ホウ素(p型)、アルミニウム(p型)がある。改良レーリー法を用いれば、SiC単結晶の結晶多形(6H型、4H型、15R型等)及び形状、キャリア型及び濃度を制御しながら、SiC単結晶を成長させることができる。   The principle of the improved Rayleigh method will be described with reference to FIG. The SiC single crystal (silicon carbide wafer) 1 used as a seed crystal and the SiC crystal powder 2 used as a raw material are stored in a crucible (usually graphite) 3 and in an inert gas atmosphere such as argon (133 to 13.3 kPa) , Heated to 2000-2400 ° C. At this time, the temperature gradient is set so that the seed crystal 1 is slightly lower in temperature than the raw material powder 2. After sublimation, the raw material (SiC crystal powder) 2 is diffused and transported in the direction of the seed crystal by a concentration gradient (formed by a temperature gradient). Single crystal growth is realized by recrystallizing the source gas arriving at the seed crystal on the seed crystal (growth crystal 12 in the figure). At this time, the resistivity of the obtained crystal can be controlled by adding an impurity gas in an atmosphere made of an inert gas or mixing an impurity element or a compound thereof in the SiC raw material powder. Representative examples of substitutional impurities in SiC single crystals include nitrogen (n-type), boron (p-type), and aluminum (p-type). By using the modified Rayleigh method, it is possible to grow a SiC single crystal while controlling the crystal polymorphism (6H type, 4H type, 15R type, etc.) and the shape, carrier type and concentration of the SiC single crystal.

現在、上記改良レーリー法によって、口径2インチ(50.8mm)から3インチ(76.2mm)のSiC単結晶ウェハが製造され、エピタキシャル薄膜成長、デバイス作製に供されている。しかしながら、これらのSiC単結晶ウェハには、成長方向(結晶c軸方向)に貫通する転位欠陥が104〜105cm-2程度含まれており、高性能のデバイス製造を妨げていた。 Currently, SiC single crystal wafers having a diameter of 2 inches (50.8 mm) to 3 inches (76.2 mm) are manufactured by the above-described improved Rayleigh method, and are used for epitaxial thin film growth and device fabrication. However, these SiC single crystal wafers contain about 10 4 to 10 5 cm −2 of dislocation defects penetrating in the growth direction (crystal c-axis direction), which hinders the production of high-performance devices.

c軸方向にほぼ平行に伝播する貫通転位欠陥は、{0001}面からの傾きが60〜120°(好ましくは90°)の面、例えば、a面({11-20}面)あるいはm面({1-100}面)を種結晶として用いて、<0001>方向、即ち、c軸方向とほぼ垂直方向にSiC単結晶を成長させることにより、完全に防止できることが、特許文献1に開示されている。しかしながら、この方法では、c軸方向に貫通する転位欠陥は完全に抑制できるものの、c軸に垂直方向に存在する基底面転位は残存し、また、新たに積層欠陥が発生すると言う問題が生じることが、非特許文献2に開示されている。   A threading dislocation defect that propagates substantially parallel to the c-axis direction is a plane whose inclination from the {0001} plane is 60 to 120 ° (preferably 90 °), for example, the a plane ({11-20} plane) or the m plane. Patent Document 1 discloses that it can be completely prevented by growing a SiC single crystal in the <0001> direction, that is, substantially perpendicular to the c-axis direction, using ({1-100} plane) as a seed crystal. Has been. However, with this method, dislocation defects penetrating in the c-axis direction can be completely suppressed, but basal plane dislocations existing in the direction perpendicular to the c-axis remain and a new stacking fault occurs. However, this is disclosed in Non-Patent Document 2.

一方、特許文献2には、N回(Nは、N≧3の自然数)の成長工程を有し、n=1である第1成長工程においては、{1-100}面からオフ角±20°以下の面、又は、{11-20}面からオフ角±20°以下の面を第1成長面とした第1種結晶を用いて、上記第1成長面に直交する方向にSiC単結晶を成長させ第1成長結晶を作製し、n=2、3、…、(N-1)回目(N≧3の自然数)である中間成長工程においては、第(n-1)成長面より45〜90°傾き、且つ、{0001}面より60〜90°傾いた面を第n成長面とした第n種結晶を第(n-1)成長結晶より作製し、この第n種結晶の第n成長面に直交する方向に第n成長結晶を作製し、n=Nである最終成長工程においては、第(N-1)成長結晶の{0001}面よりオフ角度±20°以下の面を最終成長面とした最終種結晶を第(N-1)成長結晶より作製し、この最終種結晶の最終成長面に直交する方向にバルク状のSiC単結晶を作製することにより、貫通転位及び積層欠陥が非常に少ない高品質なSiC単結晶の製造方法が記載されている。
特開平5-262599号公報 特開2003-119097号公報 Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, Vol.52 (1981) pp.146-150 J. Takahashi et al., Journal of Crystal Growth, Vol.181 (1997) pp.229-240
On the other hand, Patent Document 2 includes N growth steps (N is a natural number of N ≧ 3), and in the first growth step where n = 1, the off angle ± 20 from the {1-100} plane. A SiC single crystal in a direction perpendicular to the first growth plane, using a first seed crystal whose first growth plane is a plane of less than 0 ° or a plane with an off angle of ± 20 ° or less from the {11-20} plane In the intermediate growth step where n = 2, 3,..., (N-1) time (N ≧ 3 natural number), 45% from the (n-1) growth plane. An n-th seed crystal is formed from the (n-1) -th growth crystal with a plane inclined by ~ 90 ° and a plane inclined by 60-90 ° from the {0001} plane as the n-th growth plane. An n-th growth crystal is produced in a direction perpendicular to the n-growth plane, and in the final growth step where n = N, a plane having an off angle of ± 20 ° or less from the {0001} plane of the (N-1) -th growth crystal The final seed crystal as the final growth surface is prepared from the (N-1) th growth crystal and is orthogonal to the final growth surface of this final seed crystal. By producing bulk SiC single crystal in the direction, the manufacturing method of threading dislocations and stacking faults is very small high-quality SiC single crystals.
JP-A-5-2562599 JP 2003-119097 Yu. M. Tairov and VF Tsvetkov, Journal of Crystal Growth, Vol.52 (1981) pp.146-150 J. Takahashi et al., Journal of Crystal Growth, Vol.181 (1997) pp.229-240

しかしながら、先に述べた特許文献1あるいは2に記載されている方法では、単結晶の成長方向がc軸方向({0001}面の垂直方向)から大きく傾いた方向(傾角:60°以上)となっているために、大口径の{0001}面ウェハを得ようとした場合には、ほぼその口径に相当する長さまで結晶を成長することが必要となる。そのため、結晶成長に要する時間が長時間化し、結晶製造の生産性が低下する。さらに、SiC単結晶成長においては、原料や坩堝の経時変化等により、最適成長条件を長時間に亘って維持するのは一般に難しい。その結果、長尺結晶の高品質化は困難なものとなる。したがって、特許文献1あるいは2に記載されている方法では、結晶成長の長時間化に伴って、結晶成長の歩留まりが低下し、結晶製造コストが著しく増加してしまっていた。   However, in the method described in Patent Document 1 or 2 described above, the growth direction of the single crystal is greatly inclined from the c-axis direction (vertical direction of {0001} plane) (tilt angle: 60 ° or more). Therefore, in order to obtain a {0001} plane wafer having a large diameter, it is necessary to grow a crystal to a length substantially corresponding to the diameter. For this reason, the time required for crystal growth becomes longer, and the productivity of crystal production decreases. Furthermore, in SiC single crystal growth, it is generally difficult to maintain optimum growth conditions for a long time due to changes in the raw materials and crucibles over time. As a result, it is difficult to improve the quality of long crystals. Therefore, in the method described in Patent Document 1 or 2, the yield of crystal growth is reduced and the crystal production cost is significantly increased as the crystal growth is prolonged.

本発明は、上記事情に鑑みてなされたものであり、貫通転位欠陥の少ない良質の大口径{0001}面ウェハを、再現性良く低コストで製造し得るためのSiC単結晶インゴットの製造方法及びSiC単結晶インゴットを提供するものである。   The present invention has been made in view of the above circumstances, and a method for producing a SiC single crystal ingot for producing a high-quality large-diameter {0001} plane wafer with few threading dislocation defects at low cost with good reproducibility, and A SiC single crystal ingot is provided.

本発明は、
(1) SiC単結晶よりなる種結晶上にSiC単結晶を成長させてバルク状のSiC単結晶インゴットを製造する製造方法において、成長するSiC単結晶の電子濃度を1×1019cm-3以上6×1020cm-3以下とした状態で、単結晶の一部もしくは全部を成長させることを特徴とするSiC単結晶インゴットの製造方法、
(2) 前記電子濃度が3×1019cm-3以上6×1020cm-3以下である(1)に記載のSiC単結晶インゴットの製造方法、
(3) 成長するSiC単結晶に不純物を添加して電子濃度を制御する(1)又は(2)に記載のSiC単結晶インゴットの製造方法、
(4) 前記不純物が窒素である(3)に記載のSiC単結晶インゴットの製造方法、
(5) 成長するSiC単結晶に光を照射して電子濃度を制御する(1)又は(2)に記載のSiC単結晶インゴットの製造方法、
(6) 前記光の波長が250nm以上400nm以下である(5)に記載のSiC単結晶インゴットの製造方法、
(7) (1)〜(6)に記載の製造方法により得られたSiC単結晶インゴットであって、該インゴットの口径が50mm以上300mm以下であることを特徴とするSiC単結晶インゴット、
(8) (7)に記載のSiC単結晶インゴットであって、該インゴットから切り出した{0001}面8°オフウェハ上で計測される転位に起因したエッチピット密度の合計が1×104cm-2以下であることを特徴とするSiC単結晶インゴット、
(9) (7)又は(8)に記載のSiC単結晶インゴットを切断及び研磨してなるSiC単結晶基板、
(10) (9)に記載のSiC単結晶基板に、SiC薄膜をエピタキシャル成長させてなるSiCエピタキシャルウェハ、
(11) (9)に記載のSiC単結晶基板に、窒化ガリウム(GaN)、窒化アルミニウム(AlN)、窒化インジウム(InN)又はこれらの混晶をエピタキシャル成長させてなる薄膜エピタキシャルウェハ、
である。
The present invention
(1) In a manufacturing method for producing a bulk SiC single crystal ingot by growing a SiC single crystal on a seed crystal made of SiC single crystal, the electron concentration of the grown SiC single crystal is 1 × 10 19 cm −3 or more A method for producing a SiC single crystal ingot characterized by growing a part or all of a single crystal in a state of 6 × 10 20 cm −3 or less,
(2) The method for producing a SiC single crystal ingot according to (1), wherein the electron concentration is 3 × 10 19 cm −3 or more and 6 × 10 20 cm −3 or less,
(3) The method for producing a SiC single crystal ingot according to (1) or (2), wherein an impurity is added to a growing SiC single crystal to control an electron concentration,
(4) The method for producing a SiC single crystal ingot according to (3), wherein the impurity is nitrogen,
(5) The method for producing a SiC single crystal ingot according to (1) or (2), wherein the electron concentration is controlled by irradiating light to the growing SiC single crystal,
(6) The method for producing a SiC single crystal ingot according to (5), wherein the wavelength of the light is 250 nm or more and 400 nm or less,
(7) SiC single crystal ingot obtained by the production method according to (1) to (6), wherein the ingot has a diameter of 50 mm to 300 mm, SiC single crystal ingot,
(8) The SiC single crystal ingot according to (7), wherein the total etch pit density caused by dislocations measured on a {0001} plane 8 ° off-wafer cut out from the ingot is 1 × 10 4 cm SiC single crystal ingot characterized by being 2 or less,
(9) SiC single crystal substrate obtained by cutting and polishing the SiC single crystal ingot according to (7) or (8),
(10) A SiC epitaxial wafer obtained by epitaxially growing a SiC thin film on the SiC single crystal substrate according to (9),
(11) The thin film epitaxial wafer formed by epitaxially growing gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN) or a mixed crystal thereof on the SiC single crystal substrate according to (9),
It is.

本発明の製造方法を用いれば、転位欠陥が少ない良質のSiC単結晶を再現性良く低コストで成長させることができる。このようなSiC単結晶から切り出したウェハ及びエピタキシャルウェハを用いれば、光学的特性の優れた青色発光素子、電気的特性の優れた高周波・高耐圧電子デバイスを製作することができる。   By using the production method of the present invention, a high-quality SiC single crystal with few dislocation defects can be grown with good reproducibility at low cost. By using a wafer and an epitaxial wafer cut out from such a SiC single crystal, it is possible to manufacture a blue light-emitting element with excellent optical characteristics and a high-frequency / high-voltage electronic device with excellent electrical characteristics.

本発明のSiC単結晶インゴットの製造方法によれば、SiC単結晶よりなる種結晶上にSiC単結晶を成長させてバルク状のSiC単結晶インゴットを製造する際、成長するSiC単結晶の電子濃度を1×1019cm-3以上とした状態で、単結晶の一部もしくは全部を成長させることにより、SiC単結晶中の転位欠陥を低減させることができる。 According to the method for producing a SiC single crystal ingot of the present invention, when a SiC single crystal is grown on a seed crystal made of a SiC single crystal to produce a bulk SiC single crystal ingot, the electron concentration of the grown SiC single crystal Dislocation defects in the SiC single crystal can be reduced by growing a part or all of the single crystal in a state where is set to 1 × 10 19 cm −3 or more.

図2を用いて、本発明の効果を説明する。本発明のSiC単結晶インゴットの製造方法では、図2に模式的に示したように、種結晶1にバルク状のSiC単結晶を成長させる際に、その一部あるいは全部の電子濃度を1×1019cm-3以上として結晶成長を行う。発明者らは、数多くの結晶成長実験から、このように電子濃度を1×1019cm-3以上として結晶成長を行った領域で、貫通転位欠陥が終端されることを見出した。貫通転位欠陥の途中終端は、成長結晶の転位密度低下を意味し、成長結晶の高品質化に繋がる。なお、図2では、電子濃度を1×1019cm-3以上の高電子濃度で結晶成長させた領域(高電子濃度成長結晶)13をはさんで、それ以降の結晶成長領域(高電子濃度領域後の成長結晶)14とそれ以前の結晶成長領域12とでは、成長結晶中の転位密度に差があることを示している。 The effect of the present invention will be described with reference to FIG. In the method for producing a SiC single crystal ingot according to the present invention, as schematically shown in FIG. 2, when a bulk SiC single crystal is grown on the seed crystal 1, the electron concentration of a part or all of it is 1 ×. Crystal growth is performed at 10 19 cm −3 or more. The inventors have found from many crystal growth experiments that threading dislocation defects are terminated in the region where the crystal growth is performed with the electron concentration of 1 × 10 19 cm −3 or more. The intermediate termination of threading dislocation defects means a decrease in the dislocation density of the grown crystal, leading to higher quality of the grown crystal. In addition, in FIG. 2, the crystal growth region (high electron concentration) after the region (high electron concentration growth crystal) 13 where the crystal growth is performed with a high electron concentration of 1 × 10 19 cm −3 or more is shown. This shows that there is a difference in the dislocation density in the grown crystal between the grown crystal 14 after the region and the crystal grown region 12 before that.

貫通転位欠陥が終端されるメカニズムについて、以下に述べる。SiC単結晶成長において、その電子濃度を高めた場合に、SiC単結晶の積層構造が変化することが知られている。例えば、4Hポリタイプの結晶を成長している際に、電子濃度を高くすると、3Cポリタイプの積層構造(一種の積層欠陥)が出現する。これは、3Cポリタイプの伝導帯(電子の存在が許容されるエネルギー帯)が4Hポリタイプの伝導帯に比べてエネルギー的に低い位置にあるためである。即ち、結晶の電子濃度が高くなった場合に、伝導帯のエネルギー位置が低い3Cポリタイプの積層構造が出現することによって、電子系のエネルギーが低減される。この際、3Cポリタイプの積層構造の発生核となるのが、貫通転位、基底面転位等の転位群である。貫通転位がこの3C積層構造の発生核となった場合には、c軸方向に貫通しようとしていた貫通転位が3C積層構造の発生に伴って、基底面内の構造欠陥、例えば、基底面積層欠陥等に変換する。基底面内の構造欠陥に変換した貫通転位は、その後の結晶成長においてc軸方向(結晶成長方向)に伝播することはなく、結果として、電子濃度を高くして成長した領域以降に成長した結晶部位において転位密度は低くなる。転位欠陥の低減率は、成長条件に依存して変化するが、概ね種結晶の密度に対し、1/4〜2/3程度となる。   The mechanism by which threading dislocation defects are terminated will be described below. In SiC single crystal growth, it is known that when the electron concentration is increased, the laminated structure of the SiC single crystal changes. For example, when a 4H polytype crystal is grown and the electron concentration is increased, a 3C polytype stack structure (a kind of stacking fault) appears. This is because the conduction band of 3C polytype (energy band in which the existence of electrons is allowed) is lower in energy than the conduction band of 4H polytype. That is, when the electron concentration of the crystal increases, the energy of the electron system is reduced by the appearance of a 3C polytype stacked structure having a low energy position in the conduction band. At this time, dislocation groups such as threading dislocations and basal plane dislocations are the nuclei of the 3C polytype laminated structure. When threading dislocations become the generation nucleus of this 3C multilayer structure, the threading dislocations that were going to penetrate in the c-axis direction are accompanied by structural defects in the basal plane, such as base area layer defects. Convert to etc. The threading dislocations converted into structural defects in the basal plane do not propagate in the c-axis direction (crystal growth direction) in subsequent crystal growth, and as a result, crystals grown after the region grown with a high electron concentration The dislocation density is lowered at the site. The reduction rate of dislocation defects varies depending on the growth conditions, but is about 1/4 to 2/3 of the density of the seed crystal.

結晶成長中に電子濃度を高める方法としては、幾つか挙げることができる。まず、結晶成長中にドナーとなる(SiC単結晶中で電子を供与する)不純物を添加する方法である。このような不純物として、窒素、砒素、リン等が考えられる。また、成長する結晶に光を照射することによっても、電子濃度を高めることができる。この際、光の波長としては、250nm以上400nm以下であることが好ましい。光の波長が250nm未満の場合には、光が結晶の極表面で吸収されてしまい、貫通転位の終端効果が大きな面積に亘って得られない。また、光の波長が400nm超の場合には、光のエネルギーがSiC単結晶の禁制帯幅以下となってしまい、電子の発生効率が著しく低下する。   There are several methods for increasing the electron concentration during crystal growth. First, there is a method of adding an impurity (donating electrons in a SiC single crystal) which becomes a donor during crystal growth. Nitrogen, arsenic, phosphorus, etc. can be considered as such impurities. The electron concentration can also be increased by irradiating the growing crystal with light. At this time, the wavelength of light is preferably 250 nm or more and 400 nm or less. When the wavelength of light is less than 250 nm, light is absorbed at the extreme surface of the crystal, and the termination effect of threading dislocation cannot be obtained over a large area. In addition, when the wavelength of light exceeds 400 nm, the energy of light becomes less than the forbidden band width of the SiC single crystal, and the electron generation efficiency is remarkably reduced.

貫通転位の終端を引き起こす電子濃度としては、1×1019cm-3以上6×1020cm-3以下、好ましくは3×1019cm-3以上6×1020cm-3以下である。電子濃度が1×1019cm-3未満となった場合には、上述した効果を得るのが難しい(3Cポリタイプの積層構造が安定化されなくなる)。また、電子濃度が6×1020cm-3超となった場合には、成長結晶の結晶性が著しく劣化してしまい、好ましくない。 The electron concentration causing the termination of threading dislocations is 1 × 10 19 cm −3 or more and 6 × 10 20 cm −3 or less, preferably 3 × 10 19 cm −3 or more and 6 × 10 20 cm −3 or less. When the electron concentration is less than 1 × 10 19 cm −3 , it is difficult to obtain the above-described effect (the 3C polytype laminated structure is not stabilized). Further, when the electron concentration exceeds 6 × 10 20 cm −3 , the crystallinity of the grown crystal is significantly deteriorated, which is not preferable.

上記の電子濃度は、成長するSiC単結晶中に、1×1019cm-3以上6×1020cm-3以下、好ましくは3×1019cm-3以上、6×1020cm-3以下のドナー不純物を添加することによって実現できる。例えば、窒素ドナーの場合、改良レーリー法によるバルク状のSiC単結晶成長において、雰囲気ガス中の窒素ガス分圧を170Pa〜5.3kPaの範囲に制御することによって実現できる。一方、光照射による電子濃度制御の場合、光の侵入長を1mm程度と見積もると、単位面積当たり0.5〜3W/cm2の光照射量で、所望の電子濃度を実現できる。結晶成長中のSiC単結晶への光照射は、充分断熱された坩堝下部に微小な光照射窓を設けることにより行うことができる。尚、電子濃度について、不純物を添加する場合には、下記実施例で説明するように、添加するドナー濃度から求めることができ、一方、光照射の場合には、単位面積当たり入射する光子数から見積もることができる。 The above electron concentration is 1 × 10 19 cm −3 or more and 6 × 10 20 cm −3 or less, preferably 3 × 10 19 cm −3 or more and 6 × 10 20 cm −3 or less in the growing SiC single crystal. This can be realized by adding a donor impurity. For example, in the case of a nitrogen donor, it can be realized by controlling the nitrogen gas partial pressure in the atmospheric gas in the range of 170 Pa to 5.3 kPa in bulk SiC single crystal growth by the modified Rayleigh method. On the other hand, in the case of electron concentration control by light irradiation, when the light penetration length is estimated to be about 1 mm, a desired electron concentration can be realized with a light irradiation amount of 0.5 to 3 W / cm 2 per unit area. Light irradiation of the SiC single crystal during crystal growth can be performed by providing a minute light irradiation window at the bottom of a sufficiently insulated crucible. As for the electron concentration, when impurities are added, it can be obtained from the donor concentration to be added, as described in the following examples. On the other hand, in the case of light irradiation, from the number of incident photons per unit area. Can be estimated.

転位欠陥の終端は、電子濃度の高い領域の厚みが1mm以上になると、その効果が現れ始め、領域の厚さが大きくなるにしたがって顕著になる。そのため、上記高電子濃度の結晶領域については、少なくとも単結晶の成長方向に厚さ1mm以上となるようにするのが好ましい。しかしながら、電子濃度の高い領域の厚みが5mm以上になると、メカニズムはよく分かっていないが、その効果(転位欠陥の減少率)は飽和傾向にある。   The end of the dislocation defect starts to appear when the thickness of the region with a high electron density is 1 mm or more, and becomes more prominent as the thickness of the region increases. Therefore, it is preferable that the high electron concentration crystal region be at least 1 mm thick in the growth direction of the single crystal. However, when the thickness of the high electron concentration region is 5 mm or more, the mechanism is not well understood, but the effect (reduction rate of dislocation defects) tends to be saturated.

本発明では、成長する炭化珪素単結晶の電子濃度を制御することにより良質の単結晶を得ることが可能であることから、大型の種結晶を用意することによって大口径の炭化珪素単結晶インゴットを得ることができる。特に、口径が50mm以上300mm以下のインゴットを切断し、研磨して得たSiC単結晶基板であれば、この基板を用いて各種デバイスを製造する際、工業的に確立されている従来の半導体(Si、GaAs等)基板用の製造ラインを使用することができ、量産に適している。また、この基板の転位密度が{0001}面8°オフウェハ上のエッチピット密度換算で1×104cm-2以下と低いため、この基板上に素子を作製した場合に、素子の逆方向リーク電流を低減でき、特に、大電流、高出力のデバイス製造に適している。 In the present invention, a high-quality single crystal can be obtained by controlling the electron concentration of the growing silicon carbide single crystal. Therefore, a large-diameter silicon carbide single crystal ingot is prepared by preparing a large seed crystal. Obtainable. In particular, if a SiC single crystal substrate obtained by cutting and polishing an ingot having a diameter of 50 mm or more and 300 mm or less, a conventional semiconductor (established industrially) when manufacturing various devices using this substrate ( Si, GaAs, etc.) production lines for substrates can be used and are suitable for mass production. In addition, since the dislocation density of this substrate is as low as 1 × 10 4 cm -2 or less in terms of etch pit density on the {0001} plane 8 ° off-wafer, when the device is fabricated on this substrate, the reverse leakage of the device The current can be reduced, and is particularly suitable for manufacturing a large current and high output device.

さらに、このSiC単結晶基板上にCVD法等により0.1〜500μm程度の厚さのSiCエピタキシャル薄膜を成長して作製されるSiC単結晶エピタキシャルウェハ、あるいはGaN、AlN、InN及びこれらの混晶薄膜エピタキシャルウェハは、その基板となるSiC単結晶基板の転位密度が小さいために、良好な特性(耐電圧、エピタキシャル薄膜の表面モフォロジー等)を有するようになる。   Furthermore, a SiC single crystal epitaxial wafer produced by growing a SiC epitaxial thin film having a thickness of about 0.1 to 500 μm on this SiC single crystal substrate by a CVD method or the like, or GaN, AlN, InN and mixed crystal thin film epitaxial thereof. The wafer has good characteristics (such as withstand voltage and surface morphology of the epitaxial thin film) because the dislocation density of the SiC single crystal substrate as the substrate is small.

以下に、本発明の実施例及び比較例を述べる。
図3は、本発明の炭化珪素単結晶インゴットの製造方法に係る製造装置であり、種結晶を用いた改良型レーリー法によって、SiC単結晶を成長させる装置の一例である。
Below, the Example and comparative example of this invention are described.
FIG. 3 shows a manufacturing apparatus according to the method for manufacturing a silicon carbide single crystal ingot of the present invention, which is an example of an apparatus for growing a SiC single crystal by an improved Rayleigh method using a seed crystal.

まず、この単結晶成長装置について簡単に説明する。結晶成長は、種結晶として用いた傾斜面を成長面上に有するSiC単結晶1の上に、原料であるSiC粉末2を昇華再結晶化させることにより行われる。種結晶のSiC単結晶1は、黒鉛製坩堝3の蓋4の内面に取り付けられる。原料のSiC粉末2は、黒鉛製坩堝3の内部に充填されている。このような黒鉛製坩堝3は、二重石英管5の内部に、黒鉛の支持棒6により設置される。黒鉛製坩堝3の周囲には、熱シールドのための黒鉛製フェルト7が取り付けられている。二重石英管5は、真空排気装置11により高真空排気(10-3 Pa以下)することができ、かつ、二重石英管5に設けられたArガス配管9及びArガス用マスフローコントローラ10によって、その内部雰囲気をArガスで圧力制御することができる。また、二重石英管5の外周には、ワークコイル8が設置されており、高周波電流を流すことにより黒鉛製坩堝3を加熱し、原料及び種結晶を所望の温度に加熱することができる。坩堝温度の計測は、坩堝上部及び下部を覆うフェルトの中央部に直径2〜4mmの光路を設け、坩堝上部及び下部からの光を取り出し、二色温度計を用いて行う(図示外)。この際、坩堝下部の温度を原料温度、坩堝上部の温度を種結晶温度とする。 First, this single crystal growth apparatus will be briefly described. Crystal growth is performed by sublimating and recrystallizing SiC powder 2 as a raw material on SiC single crystal 1 having an inclined surface used as a seed crystal on the growth surface. The seed crystal SiC single crystal 1 is attached to the inner surface of the lid 4 of the graphite crucible 3. The raw material SiC powder 2 is filled in a graphite crucible 3. Such a graphite crucible 3 is installed inside a double quartz tube 5 by a graphite support rod 6. Around the graphite crucible 3, a graphite felt 7 for heat shielding is attached. The double quartz tube 5 can be high vacuum evacuated (10 −3 Pa or less) by the vacuum evacuation device 11, and the Ar gas pipe 9 and the Ar gas mass flow controller 10 provided in the double quartz tube 5 The internal atmosphere can be pressure controlled with Ar gas. A work coil 8 is provided on the outer periphery of the double quartz tube 5, and the graphite crucible 3 can be heated by flowing a high-frequency current to heat the raw material and the seed crystal to a desired temperature. The temperature of the crucible is measured using a two-color thermometer (not shown) by providing an optical path with a diameter of 2 to 4 mm at the center of the felt covering the upper and lower parts of the crucible, taking out light from the upper and lower parts of the crucible. At this time, the temperature at the lower part of the crucible is the raw material temperature, and the temperature at the upper part of the crucible is the seed crystal temperature.

次に、この結晶成長装置を用いたSiC単結晶の製造について、実施例を説明する。まず、予め成長しておいたSiC単結晶インゴットから、口径50mm、厚さ1mmの{0001}面4°オフウェハを種結晶1として、さらに、口径50mm、厚さ0.5mmの{0001}面8°オフウェハをエッチピット密度計測用ウェハとしてそれぞれ用意した。次に、このSiC単結晶インゴット中の貫通転位密度及び基底面転位密度を計測する目的で、上記{0001}面8°オフウェハのエッチピット観察を行った。その結果、貫通転位、基底面転位に起因したエッチピット密度は、それぞれ1.8×104cm-2、2.6×103cm-2であった。 Next, an example of manufacturing a SiC single crystal using this crystal growth apparatus will be described. First, from a previously grown SiC single crystal ingot, a {0001} plane 4 ° off-wafer with a diameter of 50 mm and a thickness of 1 mm is used as a seed crystal 1, and further a {0001} plane with a diameter of 50 mm and a thickness of 0.5 mm is 8 °. Each off-wafer was prepared as an etch pit density measurement wafer. Next, for the purpose of measuring the threading dislocation density and the basal plane dislocation density in the SiC single crystal ingot, the etch pit observation of the {0001} plane 8 ° off-wafer was performed. As a result, the etch pit densities due to threading dislocations and basal plane dislocations were 1.8 × 10 4 cm −2 and 2.6 × 10 3 cm −2 , respectively.

その後、この評価ウェハと同一インゴットから切り出した上記の種結晶1を、黒鉛製坩堝3の蓋4の内面に取り付けた。黒鉛製坩堝3の内部には、原料2を充填した。原料2としては、市販の工業用SiC結晶粉末(純度:99.9%以上)を酸洗浄後、乾燥させたものを用いた。次いで、原料を充填した黒鉛製坩堝3を、種結晶1を取り付けた蓋4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。   Thereafter, the seed crystal 1 cut out from the same ingot as the evaluation wafer was attached to the inner surface of the lid 4 of the graphite crucible 3. The raw material 2 was filled in the graphite crucible 3. As the raw material 2, a commercially available SiC crystal powder (purity: 99.9% or more) obtained after acid cleaning and drying was used. Next, the graphite crucible 3 filled with the raw material is closed with the lid 4 to which the seed crystal 1 is attached, covered with the graphite felt 7, and then placed on the graphite support rod 6, and inside the double quartz tube 5 installed.

そして、石英管5の内部を真空排気した後、ワークコイル8に電流を流し、原料温度を2000℃まで上げた。その後、雰囲気ガスとして窒素を3%含むArガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である2400℃まで上昇させた。成長圧力である1.3kPaには約30分かけて減圧し、その後、約50時間SiC単結晶の成長を続けた。この際の坩堝内の温度勾配は15℃/cmで、成長速度は平均で約0.60mm/時であった。途中、高電子濃度の状態で結晶成長を行う目的で、成長開始から15時間後より、雰囲気ガス中の窒素ガスの含有量を3%から50%まで上昇させ、そのまま10時間結晶成長を行った。その後、雰囲気ガス中の窒素ガスの含有量を50%から3%に戻し、引き続き25時間、成長を行って結晶プロセスを終了した。   Then, after evacuating the inside of the quartz tube 5, a current was passed through the work coil 8 to raise the raw material temperature to 2000 ° C. Thereafter, Ar gas containing 3% nitrogen was introduced as an atmospheric gas, and the raw material temperature was raised to the target temperature of 2400 ° C. while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over about 30 minutes, and then SiC single crystal growth was continued for about 50 hours. At this time, the temperature gradient in the crucible was 15 ° C./cm, and the average growth rate was about 0.60 mm / hour. On the way, for the purpose of crystal growth in a high electron concentration state, the nitrogen gas content in the atmospheric gas was increased from 3% to 50% from 15 hours after the start of growth, and the crystal growth was performed for 10 hours as it was. . Thereafter, the content of nitrogen gas in the atmospheric gas was returned from 50% to 3%, and the growth was continued for 25 hours to complete the crystal process.

最終的に得られた結晶(インゴット)は、口径は51.5mmで、高さは30mm程度であった。高電子濃度の状態で結晶成長を行った領域(結晶の成長端から13〜18mmの領域)の結晶成長中の電子濃度は3〜4×1019cm-3と見積もられた。結晶成長中の電子濃度の見積もりは、窒素ドナーの高温での活性化率が100%であることを考慮して、SiC単結晶中の窒素元素濃度=高温での電子濃度、とした。SiC単結晶中の窒素元素濃度は、二次イオン質量分析法により測定した。 The finally obtained crystal (ingot) had a diameter of 51.5 mm and a height of about 30 mm. The electron concentration during the crystal growth in the region where the crystal was grown in a high electron concentration state (13-18 mm from the crystal growth edge) was estimated to be 3-4 × 10 19 cm −3 . The estimation of the electron concentration during crystal growth was made such that the nitrogen element concentration in the SiC single crystal = the electron concentration at high temperature, considering that the activation rate of the nitrogen donor at high temperature was 100%. The nitrogen element concentration in the SiC single crystal was measured by secondary ion mass spectrometry.

こうして得られたSiC単結晶をX線回折及びラマン散乱により分析したところ、4H型のSiC単結晶インゴットが成長したことを確認できた。また、成長結晶中に存在する貫通転位及び基底面転位密度を評価する目的で、成長した単結晶インゴットの成長後半部分(高電子濃度領域後の成長結晶部分)から{0001}面8°オフウェハを切り出し、研磨した。その後、約530℃の溶融KOHでウェハ表面をエッチングし、顕微鏡により貫通転位、基底面転位に対応するエッチピットの密度を調べたところ、それぞれウェハ全面の平均で0.7×104cm-2、1.9×103cm-2であった。すなわち、エッチピット密度の合計は0.89×104cm-2であった。 When the SiC single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, it was confirmed that a 4H type SiC single crystal ingot had grown. Also, in order to evaluate the threading dislocation and basal plane dislocation density existing in the grown crystal, the {0001} plane 8 ° off-wafer from the latter half of the grown single crystal ingot (grown crystal after the high electron concentration region) Cut out and polished. After that, the wafer surface was etched with molten KOH at about 530 ° C., and the density of etch pits corresponding to threading dislocations and basal plane dislocations was examined with a microscope, and the average of 0.7 × 10 4 cm −2 , 1.9 on the entire wafer surface, respectively. × 10 3 cm -2 That is, the total etch pit density was 0.89 × 10 4 cm −2 .

さらに、同じく上記SiC単結晶の成長後半の部位から、口径51mmの{0001}面SiC単結晶基板を切出し、鏡面基板とした。基板の面方位は(0001)Si面で[11-20]方向に8°オフとした。このSiC単結晶基板を用いて、SiCのエピタキシャル成長を行った。SiCエピタキシャル薄膜の成長条件は、成長温度1500℃、シラン(SiH4)、プロパン(C3H8)、水素(H2)の流量が、それぞれ5.0×10-9m3/sec、3.3×10-9m3/sec、5.0×10-5m3/secであった。成長圧力は大気圧とした。成長時間は2時間で、膜厚として約5μmのSiC薄膜が成長した炭化珪素エピタキシャルウェハを得た。 Further, a {0001} -plane SiC single crystal substrate having a diameter of 51 mm was cut out from the latter half of the SiC single crystal growth, and used as a mirror substrate. The plane orientation of the substrate was 8 ° off in the [11-20] direction on the (0001) Si plane. SiC was epitaxially grown using this SiC single crystal substrate. The growth conditions of the SiC epitaxial thin film are as follows: the growth temperature is 1500 ° C., the flow rates of silane (SiH 4 ), propane (C 3 H 8 ), and hydrogen (H 2 ) are 5.0 × 10 −9 m 3 / sec and 3.3 × 10 respectively. -9 m 3 / sec, 5.0 × 10 -5 m 3 / sec. The growth pressure was atmospheric pressure. The growth time was 2 hours, and a silicon carbide epitaxial wafer on which a SiC thin film having a film thickness of about 5 μm was grown was obtained.

エピタキシャル薄膜成長後、ノマルスキー光学顕微鏡により、得られたエピタキシャル薄膜の表面モフォロジーを観察したところ、ウェハ全面に渡って非常に平坦で、ピット等の表面欠陥が少ない良好な表面モフォロジーを有するSiCエピタキシャル薄膜が成長していることが確認できた。   After the epitaxial thin film was grown, the surface morphology of the obtained epitaxial thin film was observed with a Nomarski optical microscope. It was confirmed that it was growing.

また、上記SiC単結晶から同様にして、オフ角度が0°の(0001)Si面SiC単結晶基板を切り出し、鏡面研磨した後、その上にGaN薄膜を有機金属化学気相成長(MOCVD)法によりエピタキシャル成長させた。成長条件は、成長温度1050℃、トリメチルガリウム(TMG)、アンモニア(NH3)、シラン(SiH4)をそれぞれ、54×10-6モル/min、4リットル/min、22×10-11モル/min流した。また、成長圧力は大気圧とした。成長時間は20分間で、n型のGaNを約1μmの膜厚で成長させた薄膜エピタキシャルウェハを得た。 Similarly, from the SiC single crystal, a (0001) Si surface SiC single crystal substrate with an off angle of 0 ° was cut out and mirror-polished, and then a GaN thin film was formed on the metal organic chemical vapor deposition (MOCVD) method. By epitaxial growth. Growth conditions are: growth temperature 1050 ° C., trimethylgallium (TMG), ammonia (NH 3 ), silane (SiH 4 ), 54 × 10 −6 mol / min, 4 liter / min, 22 × 10 −11 mol / min, respectively. Min shed. The growth pressure was atmospheric pressure. The growth time was 20 minutes, and a thin film epitaxial wafer was obtained by growing n-type GaN with a thickness of about 1 μm.

得られたGaN薄膜の表面状態を調べる目的で、成長表面をノマルスキー光学顕微鏡により観察した。ウェハ全面に渡って非常に平坦なモフォロジーが得られ、全面に渡って高品質なGaN薄膜が形成されていることが確認できた。   In order to investigate the surface state of the obtained GaN thin film, the growth surface was observed with a Nomarski optical microscope. A very flat morphology was obtained over the entire wafer surface, and it was confirmed that a high-quality GaN thin film was formed over the entire surface.

[比較例1]
雰囲気ガス中の窒素ガス含有量を3%で一定とした比較例について記す。まず、予め成長しておいたSiC単結晶インゴットから、口径50mm、厚さ1mmの{0001}面4°オフウェハを種結晶1として、さらに、口径50mm、厚さ0.5mmの{0001}面8°オフウェハをエッチピット密度計測用ウェハとしてそれぞれ用意した。次に、このSiC単結晶インゴット中の貫通転位密度及び基底面転位密度を計測する目的で、上記{0001]面8°オフウェハのエッチピット観察を行った。その結果、貫通転位、基底面転位に起因したエッチピット密度は、それぞれ1.6×104cm-2、2.2×103cm-2であった。
[Comparative Example 1]
A comparative example in which the nitrogen gas content in the atmospheric gas is fixed at 3% will be described. First, from a previously grown SiC single crystal ingot, a {0001} plane 4 ° off-wafer with a diameter of 50 mm and a thickness of 1 mm is used as a seed crystal 1, and further a {0001} plane with a diameter of 50 mm and a thickness of 0.5 mm is 8 °. Each off-wafer was prepared as an etch pit density measurement wafer. Next, for the purpose of measuring the threading dislocation density and the basal plane dislocation density in the SiC single crystal ingot, etch pit observation of the {0001] plane 8 ° off-wafer was performed. As a result, the etch pit densities due to threading dislocations and basal plane dislocations were 1.6 × 10 4 cm −2 and 2.2 × 10 3 cm −2 , respectively.

その後、この評価ウェハと同一インゴットから切り出した上記の種結晶1を用いて、実施例と同様の手順で結晶成長を50時間行った。ただし、本比較例においては結晶成長中の雰囲気ガス窒素含有量をはじめから終わりまで3%で一定とした。得られた結晶の口径は51.5mm、平均の結晶成長速度は約0.64mm/時、及び、高さは32mm程度であった。また、結晶成長中の電子濃度については、実施例1と同様にして見積もったところ4〜6×1018cm-3であった。 Thereafter, using the seed crystal 1 cut out from the same ingot as the evaluation wafer, crystal growth was performed for 50 hours in the same procedure as in the example. However, in this comparative example, the atmospheric gas nitrogen content during crystal growth was kept constant at 3% from the beginning to the end. The diameter of the obtained crystal was 51.5 mm, the average crystal growth rate was about 0.64 mm / hour, and the height was about 32 mm. The electron concentration during crystal growth was estimated in the same manner as in Example 1, and was 4 to 6 × 10 18 cm −3 .

こうして得られたSiC単結晶をX線回折及びラマン散乱により分析したところ、4H型のSiC単結晶インゴットが成長したことを確認できた。また、単結晶中の窒素元素濃度を測定する目的で、二次イオン質量分析を行ったところ、5×1018cm-3であった。さらに、成長結晶中に存在する貫通転位及び基底面転位密度を評価する目的で、成長した単結晶インゴットの成長後半部分から{0001}面8°オフウェハを切り出し、研磨した。その後、約530℃の溶融KOHでウェハ表面をエッチングし、顕微鏡により貫通転位、基底面転位に対応するエッチピットの密度を調べたところ、それぞれウェハ全面の平均で1.7×104cm-2、2.0×103cm-2であった。 When the SiC single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, it was confirmed that a 4H type SiC single crystal ingot had grown. Further, secondary ion mass spectrometry was performed for the purpose of measuring the concentration of nitrogen element in the single crystal, and it was 5 × 10 18 cm −3 . Further, for the purpose of evaluating the threading dislocation and basal plane dislocation density existing in the grown crystal, a {0001} plane 8 ° off-wafer was cut out from the latter half of the grown single crystal ingot and polished. After that, the wafer surface was etched with molten KOH at about 530 ° C., and the density of etch pits corresponding to threading dislocations and basal plane dislocations was examined with a microscope. The average of the entire wafer surface was 1.7 × 10 4 cm −2 , 2.0 × 10 3 cm -2

さらに、同じく上記SiC単結晶の成長後半の部位から、口径51mmの{0001}面SiC単結晶基板を切出し、鏡面ウェハとした。基板の面方位は(0001)Si面で[11-20]方向に8°オフとした。このSiC単結晶基板を用いて、SiCのエピタキシャル成長を行った。SiCエピタキシャル薄膜の成長条件は、成長温度1500℃とし、シラン(SiH4)、プロパン(C3H8)、水素(H2)の流量を、それぞれ5.0×10-9m3/sec、3.3×10-9m3/sec、5.0×10-5m3/secとした。また、成長圧力は大気圧とした。成長時間は2時間で、膜厚としては約5μm成長した。 Furthermore, a {0001} plane SiC single crystal substrate having a diameter of 51 mm was cut out from the latter half of the SiC single crystal growth stage to obtain a mirror wafer. The plane orientation of the substrate was 8 ° off in the [11-20] direction on the (0001) Si plane. SiC was epitaxially grown using this SiC single crystal substrate. The growth condition of the SiC epitaxial thin film is that the growth temperature is 1500 ° C., and the flow rates of silane (SiH 4 ), propane (C 3 H 8 ), and hydrogen (H 2 ) are 5.0 × 10 −9 m 3 / sec and 3.3 ×, respectively. 10 −9 m 3 / sec, 5.0 × 10 −5 m 3 / sec. The growth pressure was atmospheric pressure. The growth time was 2 hours and the film thickness was about 5 μm.

エピタキシャル薄膜成長後、ノマルスキー光学顕微鏡により、得られたエピタキシャル薄膜の表面モフォロジーを観察したところ、転位欠陥に起因すると思われる表面欠陥(ピット)がほぼウェハ全面に亘って観測された。   After the epitaxial thin film was grown, the surface morphology of the obtained epitaxial thin film was observed with a Nomarski optical microscope. As a result, surface defects (pits) thought to be caused by dislocation defects were observed over almost the entire wafer surface.

また、上記SiC単結晶から同様にして、オフ角度が0°の(0001)Si面SiC単結晶基板を切り出し、鏡面研磨した後、その上にGaN薄膜を有機金属化学気相成長(MOCVD)法によりエピタキシャル成長させた。成長条件は、成長温度1050℃とし、トリメチルガリウム(TMG)、アンモニア(NH3)、シラン(SiH4)をそれぞれ、54×10-6モル/min、4リットル/min、22×10-11モル/min流した。また、成長圧力は大気圧とした。成長時間は20分間で、n型のGaNを約1μmの膜厚で成長させた。
得られたGaN薄膜の表面状態を調べる目的で、成長表面をノマルスキー光学顕微鏡により観察したところ、やや荒れた表面モフォロジーを呈していることが分かった。
Similarly, from the SiC single crystal, a (0001) Si surface SiC single crystal substrate with an off angle of 0 ° was cut out and mirror-polished, and then a GaN thin film was formed on the metal organic chemical vapor deposition (MOCVD) method. By epitaxial growth. The growth conditions are a growth temperature of 1050 ° C., trimethylgallium (TMG), ammonia (NH 3 ), and silane (SiH 4 ), 54 × 10 −6 mol / min, 4 liter / min, and 22 × 10 −11 mol, respectively. / min flowed. The growth pressure was atmospheric pressure. The growth time was 20 minutes, and n-type GaN was grown to a thickness of about 1 μm.
In order to investigate the surface state of the obtained GaN thin film, the growth surface was observed with a Nomarski optical microscope, and it was found that the surface morphology was somewhat rough.

改良レーリー法の原理を説明する図Diagram explaining the principle of the improved Rayleigh method 本発明の効果を説明する図The figure explaining the effect of this invention 本発明の製造方法に用いられる単結晶成長装置の一例を示す構成図Configuration diagram showing an example of a single crystal growth apparatus used in the manufacturing method of the present invention

符号の説明Explanation of symbols

1 種結晶(SiC単結晶)
2 SiC粉末原料
3 黒鉛製坩堝
4 黒鉛製坩堝蓋
5 二重石英管
6 支持棒
7 黒鉛製フェルト
8 ワークコイル
9 Arガス配管
10 Arガス用マスフローコントローラ
11 真空排気装置
12 成長結晶
13 高電子濃度成長結晶
14 高電子濃度領域後の成長結晶
1 seed crystal (SiC single crystal)
2 Raw material for SiC powder
3 Graphite crucible
4 Graphite crucible lid
5 Double quartz tube
6 Support rod
7 Graphite felt
8 Work coil
9 Ar gas piping
10 Ar gas mass flow controller
11 Vacuum exhaust system
12 Growing crystals
13 High electron concentration growth crystal
14 Grown crystals after high electron concentration region

Claims (11)

炭化珪素単結晶よりなる種結晶上に炭化珪素単結晶を成長させてバルク状の炭化珪素単結晶インゴットを製造する方法において、成長する炭化珪素単結晶の電子濃度を1×1019cm-3以上6×1020cm-3以下とした状態で、単結晶の一部もしくは全部を成長させることを特徴とする炭化珪素単結晶インゴットの製造方法。 In a method for producing a bulk silicon carbide single crystal ingot by growing a silicon carbide single crystal on a seed crystal composed of a silicon carbide single crystal, the electron concentration of the grown silicon carbide single crystal is 1 × 10 19 cm −3 or more. A method for producing a silicon carbide single crystal ingot, wherein a part or all of a single crystal is grown in a state of 6 × 10 20 cm −3 or less. 前記電子濃度が3×1019cm-3以上6×1020cm-3以下である請求項1に記載の炭化珪素単結晶インゴットの製造方法。 2. The method for producing a silicon carbide single crystal ingot according to claim 1, wherein the electron concentration is 3 × 10 19 cm −3 or more and 6 × 10 20 cm −3 or less. 成長する炭化珪素単結晶に不純物を添加して電子濃度を制御する請求項1又は2に記載の炭化珪素単結晶インゴットの製造方法。   3. The method for producing a silicon carbide single crystal ingot according to claim 1, wherein an impurity is added to the growing silicon carbide single crystal to control an electron concentration. 前記不純物が窒素である請求項3に記載の炭化珪素単結晶インゴットの製造方法。   4. The method for producing a silicon carbide single crystal ingot according to claim 3, wherein the impurity is nitrogen. 成長する炭化珪素単結晶に光を照射して電子濃度を制御する請求項1又は2に記載の炭化珪素単結晶インゴットの製造方法。   3. The method for producing a silicon carbide single crystal ingot according to claim 1, wherein the electron concentration is controlled by irradiating light to the growing silicon carbide single crystal. 前記光の波長が250nm以上400nm以下である請求項5に記載の炭化珪素単結晶インゴットの製造方法。   6. The method for producing a silicon carbide single crystal ingot according to claim 5, wherein the wavelength of the light is 250 nm or more and 400 nm or less. 請求項1〜6に記載の製造方法により得られた炭化珪素単結晶インゴットであって、該インゴットの口径が50mm以上300mm以下であることを特徴とする炭化珪素単結晶インゴット。   A silicon carbide single crystal ingot obtained by the production method according to claim 1, wherein a diameter of the ingot is 50 mm or more and 300 mm or less. 請求項7に記載の炭化珪素単結晶インゴットであって、該インゴットから切り出した{0001}面8°オフウェハ上で計測される転位に起因したエッチピット密度の合計が1×104cm-2以下であることを特徴とする炭化珪素単結晶インゴット。 8. The silicon carbide single crystal ingot according to claim 7, wherein a total of etch pit densities caused by dislocations measured on a {0001} plane 8 ° off-wafer cut out from the ingot is 1 × 10 4 cm −2 or less A silicon carbide single crystal ingot characterized by being: 請求項7又は8に記載の炭化珪素単結晶インゴットを切断及び研磨してなる炭化珪素単結晶基板。   A silicon carbide single crystal substrate obtained by cutting and polishing the silicon carbide single crystal ingot according to claim 7 or 8. 請求項9に記載の炭化珪素単結晶基板に、炭化珪素薄膜をエピタキシャル成長させてなる炭化珪素エピタキシャルウェハ。   10. A silicon carbide epitaxial wafer obtained by epitaxially growing a silicon carbide thin film on the silicon carbide single crystal substrate according to claim 9. 請求項9に記載の炭化珪素単結晶基板に、窒化ガリウム、窒化アルミニウム、窒化インジウム又はこれらの混晶をエピタキシャル成長させてなる薄膜エピタキシャルウェハ。   10. A thin film epitaxial wafer obtained by epitaxially growing gallium nitride, aluminum nitride, indium nitride, or a mixed crystal thereof on the silicon carbide single crystal substrate according to claim 9.
JP2006054420A 2006-03-01 2006-03-01 Method for producing silicon carbide single crystal ingot Active JP4818754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006054420A JP4818754B2 (en) 2006-03-01 2006-03-01 Method for producing silicon carbide single crystal ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006054420A JP4818754B2 (en) 2006-03-01 2006-03-01 Method for producing silicon carbide single crystal ingot

Publications (2)

Publication Number Publication Date
JP2007230823A true JP2007230823A (en) 2007-09-13
JP4818754B2 JP4818754B2 (en) 2011-11-16

Family

ID=38551797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006054420A Active JP4818754B2 (en) 2006-03-01 2006-03-01 Method for producing silicon carbide single crystal ingot

Country Status (1)

Country Link
JP (1) JP4818754B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184833A (en) * 2009-02-12 2010-08-26 Denso Corp Silicon carbide single crystal substrate and silicon carbide single crystal epitaxial wafer
WO2012090572A1 (en) * 2010-12-27 2012-07-05 住友電気工業株式会社 Silicon carbide substrate, semiconductor device, method for producing silicon carbide substrate, and method for producing semiconductor device
JP2014028757A (en) * 2011-08-29 2014-02-13 Nippon Steel & Sumitomo Metal Silicon carbide single crystal ingot and substrate cut from the same
JP2014031313A (en) * 2013-09-26 2014-02-20 Denso Corp Single crystal substrate made of silicon carbide, and single crystal epitaxial wafer made of silicon carbide
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US8940614B2 (en) 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
US9018639B2 (en) 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
US9017804B2 (en) 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
JP2015091755A (en) * 2012-11-15 2015-05-14 新日鐵住金株式会社 Bulk silicon carbide single crystal
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
CN111272505A (en) * 2018-12-05 2020-06-12 昭和电工株式会社 Method for obtaining sample for evaluation of SiC single crystal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977594A (en) * 1995-09-11 1997-03-25 Nippon Steel Corp Production of low resistance single crystal silicon carbide
JPH09157092A (en) * 1995-12-13 1997-06-17 Nippon Steel Corp Production of silicon carbide single crystal
JPH1067600A (en) * 1996-08-26 1998-03-10 Nippon Steel Corp Single crystal silicon carbide ingot and its production
JPH10182296A (en) * 1996-12-19 1998-07-07 Nippon Steel Corp Single crystal silicon carbide ingot and its production
JPH11106297A (en) * 1997-09-30 1999-04-20 Nippon Steel Corp Growth of silicon carbide single crystal having low resistance
JP2003104799A (en) * 2001-09-28 2003-04-09 Nippon Steel Corp Silicon carbide single crystal ingot and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977594A (en) * 1995-09-11 1997-03-25 Nippon Steel Corp Production of low resistance single crystal silicon carbide
JPH09157092A (en) * 1995-12-13 1997-06-17 Nippon Steel Corp Production of silicon carbide single crystal
JPH1067600A (en) * 1996-08-26 1998-03-10 Nippon Steel Corp Single crystal silicon carbide ingot and its production
JPH10182296A (en) * 1996-12-19 1998-07-07 Nippon Steel Corp Single crystal silicon carbide ingot and its production
JPH11106297A (en) * 1997-09-30 1999-04-20 Nippon Steel Corp Growth of silicon carbide single crystal having low resistance
JP2003104799A (en) * 2001-09-28 2003-04-09 Nippon Steel Corp Silicon carbide single crystal ingot and its manufacturing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010184833A (en) * 2009-02-12 2010-08-26 Denso Corp Silicon carbide single crystal substrate and silicon carbide single crystal epitaxial wafer
WO2012090572A1 (en) * 2010-12-27 2012-07-05 住友電気工業株式会社 Silicon carbide substrate, semiconductor device, method for producing silicon carbide substrate, and method for producing semiconductor device
US8624266B2 (en) 2010-12-27 2014-01-07 Sumitomo Electric Industries, Ltd. Silicon carbide substrate, semiconductor device, method of manufacturing silicon carbide substrate and method of manufacturing semiconductor device
EP3780114A1 (en) * 2010-12-27 2021-02-17 Sumitomo Electric Industries, Ltd. Silicon carbide substrate, semiconductor device, method for producing silicon carbide substrate, and method for producing semiconductor device
JP2016121059A (en) * 2010-12-27 2016-07-07 住友電気工業株式会社 Semiconductor device silicon carbide substrate and semiconductor device
JP5857959B2 (en) * 2010-12-27 2016-02-10 住友電気工業株式会社 Silicon carbide substrate for semiconductor device and semiconductor device
US9234297B2 (en) 2011-08-29 2016-01-12 Nippon Steel & Sumitomo Metal Corporation Silicon carbide single crystal wafer and manufacturing method for same
JP2014028757A (en) * 2011-08-29 2014-02-13 Nippon Steel & Sumitomo Metal Silicon carbide single crystal ingot and substrate cut from the same
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US9337277B2 (en) 2012-09-11 2016-05-10 Dow Corning Corporation High voltage power semiconductor device on SiC
US9165779B2 (en) 2012-10-26 2015-10-20 Dow Corning Corporation Flat SiC semiconductor substrate
US9018639B2 (en) 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
US10119200B2 (en) 2012-11-15 2018-11-06 Showa Denko K.K. Silicon carbide single crystal substrate and process for producing same
JP2015091755A (en) * 2012-11-15 2015-05-14 新日鐵住金株式会社 Bulk silicon carbide single crystal
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
US9017804B2 (en) 2013-02-05 2015-04-28 Dow Corning Corporation Method to reduce dislocations in SiC crystal growth
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US8940614B2 (en) 2013-03-15 2015-01-27 Dow Corning Corporation SiC substrate with SiC epitaxial film
JP2014031313A (en) * 2013-09-26 2014-02-20 Denso Corp Single crystal substrate made of silicon carbide, and single crystal epitaxial wafer made of silicon carbide
US10002760B2 (en) 2014-07-29 2018-06-19 Dow Silicones Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
CN111272505A (en) * 2018-12-05 2020-06-12 昭和电工株式会社 Method for obtaining sample for evaluation of SiC single crystal
US11815437B2 (en) 2018-12-05 2023-11-14 Resonac Corporation Method of acquiring sample for evaluation of SiC single crystal

Also Published As

Publication number Publication date
JP4818754B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4818754B2 (en) Method for producing silicon carbide single crystal ingot
JP4964672B2 (en) Low resistivity silicon carbide single crystal substrate
JP4469396B2 (en) Silicon carbide single crystal ingot, substrate obtained therefrom and epitaxial wafer
JP4603386B2 (en) Method for producing silicon carbide single crystal
KR101379941B1 (en) Silicon carbide single crystal and silicon carbide single crystal wafer
JP5304713B2 (en) Silicon carbide single crystal substrate, silicon carbide epitaxial wafer, and thin film epitaxial wafer
JP4926556B2 (en) Method for manufacturing silicon carbide single crystal ingot and silicon carbide single crystal substrate
JP4585359B2 (en) Method for producing silicon carbide single crystal
EP2059946A1 (en) Micropipe-free silicon carbide and related method of manufacture
JP4879686B2 (en) Silicon carbide single crystal manufacturing method, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
WO2003085175A1 (en) Seed crystal of silicon carbide single crystal and method for producing ingot using same
JP2004099340A (en) Seed crystal for silicon carbide single crystal growth, silicon carbide single crystal ingot and method of manufacturing the same
WO2006070480A1 (en) Silicon carbide single crystal, silicon carbide single crystal wafer, and process for producing the same
JP2008110907A (en) Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP4690906B2 (en) Seed crystal for growing silicon carbide single crystal, method for producing the same, and method for producing silicon carbide single crystal
JP5212343B2 (en) Silicon carbide single crystal ingot, substrate obtained therefrom and epitaxial wafer
JP4408247B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP2009256155A (en) Silicon carbide single crystal ingot and production method of the same
JP2003104798A (en) Silicon carbide single crystal and its manufacturing method and raw material for silicon carbide crystal for growing silicon carbide single crystal
JP5614387B2 (en) Silicon carbide single crystal manufacturing method and silicon carbide single crystal ingot
JP4850807B2 (en) Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP4224195B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal
JP5370025B2 (en) Silicon carbide single crystal ingot
JP4585137B2 (en) Method for producing silicon carbide single crystal ingot
JP2003137694A (en) Seed crystal for growing silicon carbide single crystal, silicon carbide single crystal ingot and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110816

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4818754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350