JPH02192490A - Production of single crystal and temperature measuring jig therefor - Google Patents

Production of single crystal and temperature measuring jig therefor

Info

Publication number
JPH02192490A
JPH02192490A JP31320988A JP31320988A JPH02192490A JP H02192490 A JPH02192490 A JP H02192490A JP 31320988 A JP31320988 A JP 31320988A JP 31320988 A JP31320988 A JP 31320988A JP H02192490 A JPH02192490 A JP H02192490A
Authority
JP
Japan
Prior art keywords
heater
temperature
single crystal
raw material
hollow sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31320988A
Other languages
Japanese (ja)
Other versions
JP2609712B2 (en
Inventor
Akinori Satou
了紀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63313209A priority Critical patent/JP2609712B2/en
Publication of JPH02192490A publication Critical patent/JPH02192490A/en
Application granted granted Critical
Publication of JP2609712B2 publication Critical patent/JP2609712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To presume operating conditions readily growing a single crystal relatively to an optionally heater temperature profile by controlling an interfacial position of a raw material melt and a liquid encapsulating agent to a specific relationship. CONSTITUTION:A heat incident hole 13 is provided at a position in the perpendicular direction to a supporting rod 12 on the surface of a hollow sphere 11 of a bisectional structure, having 2-5mm wall thickness and 30-50mm diameter, fixed to a supporting rod 12 for fixing and made of stainless steel subjected to specular finish and a thermocouple 15 fixed along the supporting rod 12 with fixing jigs 17 is inserted through an insertion hole 16 into the hollow sphere 11. The tip thereof is then set in the center (O) of the hollow sphere 11 to construct a temperature measuring jig 5. A heater 7 is assembled into a hot zone 6 and heated in a vacuum heating vessel 2. The temperature measuring jig 5 is then set and vertically moved along the center line of the heater 7. Thereby, a single crystal is pulled up while controlling an interfacial position of a raw material melt 1 and a liquid encapsulating agent 2 so as to keep relationships of H>=20 and D/H<=1.0 taking D/H as a parameter on the assumption that the heater length within the temperature region within 1.6 deg.C from the maximum temperature of the heater is Hmm and the distance of the position at the maximum temperature of the heater and the interfacial position between the raw material melt 1 and the liquid encapsulating agent 2 is Dmm.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はLEC法(液体対111引上げ法)を用いた化
合物半導体単結晶製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a compound semiconductor single crystal manufacturing method using the LEC method (liquid pair 111 pulling method).

〔従来の技術〕[Conventional technology]

化合物半導体単結晶は、電子デバイス2!仮用として重
要で、その需要も増加しており、大型の化合物半導体単
結晶の製造法が課題となっている。
Compound semiconductor single crystals are electronic devices 2! It is important for temporary use, and the demand for it is increasing, and the method of manufacturing large compound semiconductor single crystals has become an issue.

すなわち大口径の単結晶を歩留り良く得ることが要求さ
れ、最も重要視されているのは引上げ装置の熱バランス
である。引上げ使用回数が多くなってくると、熱バラン
スがくずれ単結晶が育成できなくなるという問題がある
。この原因として、ヒーター温度プロファイル特性の変
化により同一の操業条件では、結晶育成中の炉内熱環境
が変化していることが考えられる。ここで、操業条件と
は結晶引上げ開始時における、ヒーター上端から原料融
液と液体対1ヒ剤の界面までの距離及び結晶引上げ中の
ルツボ押上げ速度である。また、炉内熱環境とは原料融
液と液体封止剤の界面近傍における、引上げ方向及びそ
れに直角方向の温度勾配を言う。
In other words, it is required to obtain large-diameter single crystals at a high yield, and the most important consideration is the thermal balance of the pulling device. When the number of times of pulling increases, there is a problem that the heat balance collapses and it becomes impossible to grow a single crystal. The reason for this is considered to be that the thermal environment inside the furnace during crystal growth changes under the same operating conditions due to changes in the heater temperature profile characteristics. Here, the operating conditions are the distance from the upper end of the heater to the interface between the raw material melt and the liquid to the arsenic agent at the start of crystal pulling, and the crucible push-up speed during crystal pulling. Further, the in-furnace thermal environment refers to the temperature gradient in the pulling direction and in the direction perpendicular thereto near the interface between the raw material melt and the liquid sealant.

現在、熱環境を一定に維持するために、引上げ使用同数
が一定限度を越えた場合はヒーターを交換しているが、
新らしいヒーターを使用しても熱的条件を一定に保つの
は微妙な調整作業を要している。
Currently, in order to maintain a constant thermal environment, heaters are replaced when the number of pumps used exceeds a certain limit.
Even when using a new heater, keeping the thermal conditions constant requires delicate adjustments.

この発明はヒーターの温度プロファイルを簡単な装置で
測定し、そのプロファイル特性の単結晶育成に及ぼす影
響を明らかにして、任意の温度プロファイルに対して、
単結晶を育成しやすい操業条件を推測し、単結晶の取得
率向上に役立てることを目的とする。
This invention measures the temperature profile of a heater with a simple device, clarifies the influence of the profile characteristics on single crystal growth, and
The purpose of this study is to predict operating conditions that facilitate the growth of single crystals, and to use this information to improve the yield rate of single crystals.

GaAs等の化合物半導体単結晶の製造は第3図に示す
ように、黒鉛ルツボ内に石英ルツボあるいはPBN (
熱分解窒化硼素)ルツボを内装した装置を用い、その中
に半導体原料を収容して、それの外部にセットされた抵
抗加熱用黒鉛ヒーターにより原料を溶融し、その融液に
種結晶を浸して、それを引上げることにより行なわれる
。そして、結晶引上げ中、最も劣化しやすいのは、ヒー
ターであり、通常20〜30回の引上げでヒータを交換
している。
As shown in Figure 3, compound semiconductor single crystals such as GaAs are manufactured by placing a quartz crucible or PBN (PBN) inside a graphite crucible.
Using a device equipped with a pyrolytic boron nitride (pyrolytic boron nitride) crucible, a semiconductor raw material is placed inside the crucible, the raw material is melted by a resistance graphite heater set outside the crucible, and a seed crystal is immersed in the melt. , by pulling it up. The heater is the most likely to deteriorate during crystal pulling, and the heater is usually replaced after 20 to 30 pulls.

〔発明が解決すべき課題〕[Problem to be solved by the invention]

従来、ヒーターの温度プロファイルを測定するには引上
装置内にヒーターとルツボを装着して加熱し、このルツ
ボ内にセラミック保護管内に封入した熱電対を挿入して
温度測定する方法が採用されていた。この場合、温度プ
ロファイルを正確に測定するには、熱電対をルツボ内で
広範囲に移動させたり、多数個の熱電対を挿入して同時
に測温する方法がとられている。このような方法による
場合は測定が非常に煩雑であり、しかも正確さに欠ける
問題がある。精度が上がらない原因として考えられるの
は、ルツボ内のガス対流の影響が大きいことと、溶体や
ホットゾーンからの熱輻射を受けるためと考えられる。
Conventionally, the temperature profile of a heater has been measured by installing a heater and crucible in a lifting device, heating it, and then inserting a thermocouple sealed in a ceramic protection tube into the crucible to measure the temperature. Ta. In this case, in order to accurately measure the temperature profile, the thermocouple is moved over a wide range within the crucible, or multiple thermocouples are inserted to measure the temperature at the same time. When such a method is used, measurement is very complicated and there is a problem of lack of accuracy. Possible reasons for the lack of accuracy are the large influence of gas convection within the crucible and the exposure to heat radiation from the solution and hot zone.

このような従来方法では誤差の要因を排除してヒーター
の真の発熱による温度分布を測定することは困難である
。精度の低い測定に基づいたのでは、たとえヒーターを
更新しても適正な温度プロファイルは得られず、歩留り
良い単結晶の引上げはできない。
With such conventional methods, it is difficult to eliminate error factors and measure the temperature distribution due to the true heat generation of the heater. Based on measurements with low precision, even if the heater is updated, an appropriate temperature profile cannot be obtained, and single crystals cannot be pulled with a high yield.

〔課題を解決するための手段〕[Means to solve the problem]

前記で述べた、ヒーターを交換した時に生ずる、炉内熱
環境の変化は、ヒーターの温度プロファイル特性が異な
っている為に生ずると仮定した。そして、そのヒーター
を用いた引上げ装置で、j東料融岐と液体封止剤が存在
している状態での炉内温度分布測定を正確かつ迅速に行
ない、ヒーター温度プロファイル特性の炉内熱環境に及
ぼす影響を実験的に検討し、今日の発明に至った。
It was assumed that the change in the thermal environment inside the furnace that occurs when replacing the heater, as described above, occurs because the temperature profile characteristics of the heater are different. Then, using a pulling device using the heater, we can accurately and quickly measure the temperature distribution inside the furnace in the presence of the melting point and liquid sealant, and determine the thermal environment inside the furnace based on the characteristics of the heater temperature profile. We experimentally studied the effect on

まず、本発明の熱電対用の測定治具について説明する。First, a measuring jig for thermocouples according to the present invention will be explained.

測定治具の詳細を第1図に示す。第1図は治具の構造を
示す断面図である。治具の先端は鏡面仕上げしたステン
レス製の中空球11からなっており、中空球11の一端
13aには固定用の支持棒12が溶接で固定しである。
Details of the measurement jig are shown in Figure 1. FIG. 1 is a sectional view showing the structure of the jig. The tip of the jig consists of a mirror-finished hollow sphere 11 made of stainless steel, and a fixing support rod 12 is fixed to one end 13a of the hollow sphere 11 by welding.

中空球11の表面には支持Hi12に対して直角方向の
位置に熱入射孔13が設けである。熱電対15は支持棒
12に沿って固定治具17によって固定され、溶接部1
1a近傍に設けられた熱電対挿入孔18を通して中空球
11内へ挿入され、先端の熱接点14が中空球11の中
心Oに位置するようにセットされる。
A heat incidence hole 13 is provided on the surface of the hollow sphere 11 at a position perpendicular to the support Hi 12. The thermocouple 15 is fixed by a fixing jig 17 along the support rod 12, and the welded part 1
It is inserted into the hollow sphere 11 through the thermocouple insertion hole 18 provided near 1a, and set so that the thermal contact 14 at the tip is located at the center O of the hollow sphere 11.

中空球IIは肉厚2〜5mmのステンレス鋼で作り、2
分割構造とする。球の直径は30〜50關あれば良い。
Hollow sphere II is made of stainless steel with a wall thickness of 2 to 5 mm,
It will have a split structure. The diameter of the sphere should be 30 to 50 mm.

中空球表面はパフ研磨によって三角印4個以上の鏡面に
仕上げる。これにより反射率は0.97まで高められ、
目的とする方向以外の熱輻射はほとんど影響ないものと
なる。
The surface of the hollow sphere is finished to a mirror surface with four or more triangular marks by puff polishing. This increases the reflectance to 0.97,
Heat radiation in directions other than the intended direction has almost no effect.

熱入射孔13は直径3〜5龍の細孔とし、支持棒12に
対して直角方向で、かつ中空球の中心に向って設ける。
The heat incidence hole 13 is a pore having a diameter of 3 to 5 mm, and is provided in a direction perpendicular to the support rod 12 and toward the center of the hollow sphere.

これによりヒーターから発した熱線のうち、一定方向の
熱線による熱量のみを測定し、反射熱線の影響を排除す
ることができる。入射孔から出ていく熱線は無視できる
This makes it possible to measure only the amount of heat due to the heat rays in a certain direction among the heat rays emitted from the heater, and eliminate the influence of reflected heat rays. The heat rays exiting from the entrance hole can be ignored.

中空球内部も鏡面仕上げとし、入射熱線が全反射して球
の中心部Oに集中し、熱電対の熱接点14を加熱するよ
うに配置する。
The inside of the hollow sphere is also mirror-finished and arranged so that the incident heat rays are totally reflected and concentrated at the center O of the sphere, heating the thermal junction 14 of the thermocouple.

支持棒12の他端には適当な把持部12aを設け、測定
に際して上下動、回転動を可能にする。さらに熱電対タ
ーミナル(図示せず)をとりつけたりしても良い。
A suitable gripping portion 12a is provided at the other end of the support rod 12 to enable vertical and rotational movement during measurement. Furthermore, a thermocouple terminal (not shown) may be attached.

次に本発明の治具を用いてヒーターの温度プロファイル
を測定する方法について説明する。
Next, a method of measuring the temperature profile of a heater using the jig of the present invention will be explained.

〔実 施 例〕〔Example〕

まず、測定するヒーター7を第2図に示す様にカーボン
製のホットゾーン6に組み込み、真空加熱容器2内で加
熱する。加熱方法はパワーコントロールで、約5kWの
パワーをかける。ヒーター温度プロファイルは、CA熱
電対4を第1図に示したような測定治具5にセットし測
定する。熱入射孔13を一定方向に向け、Dj定定置具
円筒状ヒーターの中心軸に沿って上下させ、熱起電力を
測定する。熱入射孔13の方向を変えて測定する。この
ような測定を何度かくり返してヒーターの発熱温度分布
を測定する。
First, a heater 7 to be measured is installed in a carbon hot zone 6 as shown in FIG. 2, and heated in a vacuum heating container 2. The heating method is power control, applying approximately 5kW of power. The heater temperature profile is measured by setting the CA thermocouple 4 in a measuring jig 5 as shown in FIG. The heat incidence hole 13 is oriented in a certain direction, the Dj fixed fixture is moved up and down along the central axis of the cylindrical heater, and the thermoelectromotive force is measured. The measurement is performed by changing the direction of the heat incidence hole 13. Such measurements are repeated several times to measure the heat generation temperature distribution of the heater.

以上の様な方法で測定すると、ヒーターの温度プロファ
イルは第4図に示す結果となる。詳細に検討した結果測
定の再現性は1.6℃以内で精度が良いことがわかった
。以上のデーターより、ヒーター温度プロファイルの単
結晶育成に及ぼす影響を定量的に検討するパラメーター
を定める。
When measured using the method described above, the temperature profile of the heater results as shown in FIG. 4. As a result of detailed study, it was found that the reproducibility of the measurement was within 1.6°C and the accuracy was good. From the above data, parameters are determined to quantitatively examine the effect of heater temperature profile on single crystal growth.

炉内温度分布測定から実験的に求めた事実として、原料
融液と液体封止剤の界面近傍での成長方向の温度勾配が
均一であると単結晶を育成しやすいという事実がある。
It is a fact experimentally determined from measurements of the temperature distribution in the furnace that it is easier to grow a single crystal if the temperature gradient in the growth direction near the interface between the raw material melt and the liquid sealant is uniform.

伝熱学的には、原料融液と液体封止剤の界面近傍の加熱
が均一であれば、その部分における成長方向の温度勾配
は界面内で均一となる。そこで、第4図により原料融液
と液体封止剤との界面近傍の加熱の均一性を示すパラメ
ーターとしてD/Hを設定する。すなわち、ヒーター温
度プロファイルにおいて、測定の再現性を考慮し、最高
温度から1.8℃以内にある温度領域のヒーター長さを
Hとする。また、プロファイルにおいて最高温度位置に
対する原料融液と液体対+L、剤との界面の距離をDと
する。そして、パラメーターとしてD/Hを設定する。
In terms of heat transfer, if the heating near the interface between the raw material melt and the liquid sealant is uniform, the temperature gradient in the growth direction in that area will be uniform within the interface. Therefore, as shown in FIG. 4, D/H is set as a parameter indicating the uniformity of heating near the interface between the raw material melt and the liquid sealant. That is, in the heater temperature profile, considering the reproducibility of measurement, the length of the heater in the temperature range within 1.8° C. from the maximum temperature is defined as H. Further, in the profile, the distance between the interface between the raw material melt, the liquid pair +L, and the agent with respect to the highest temperature position is defined as D. Then, D/H is set as a parameter.

測定の結果D/Hが小さくなると、単結晶は育成されや
すく、逆に大きくなると単結晶は育成されにくくなる。
As a result of measurement, when D/H becomes small, it is easy to grow a single crystal, and conversely, when D/H becomes large, it becomes difficult to grow a single crystal.

本発明の測定法による、ヒーター温度プロファイルの測
定結果を第5図(a) 、 (b) 、 (e)に示す
。第5図(a) 、(b)は引上げ開始前のもの、第5
図(c)は20回引上げを行った後のものである。(C
)では最高温度帯近傍に曲線の滑らかさが欠ける部分が
認められ、劣化しはじめていることがわかる。次にヒー
ターAを用いて結晶の引上げを行ない、引上げ中のデー
ターより、単結晶が多結晶化した時の対ヒーター上端か
ら原料融液と液体封止剤の界面までの距離及び温度プロ
ファイルより、パラメーターD/Hを計算した。育成し
た結晶長(L12に対する単結晶長さ(Lscρの比、
L   /L  を先に計算したパラメーターD/H8
er      er で整理したのが第6図である。W46図より、結晶育成
中、パラメーターD/Hが大きくなると、111結晶は
育成しにくいことがわかる。D/)1は1以下とするの
が良いことが判かる。
The measurement results of the heater temperature profile by the measurement method of the present invention are shown in FIGS. 5(a), (b), and (e). Figures 5 (a) and (b) are before the start of lifting;
Figure (c) shows the result after being pulled up 20 times. (C
), there is a part where the curve lacks smoothness near the highest temperature zone, indicating that it is beginning to deteriorate. Next, the crystal was pulled up using heater A, and from the data during pulling, the distance from the upper end of the heater to the interface between the raw material melt and the liquid sealant and the temperature profile when the single crystal became polycrystallized. The parameter D/H was calculated. The ratio of the single crystal length (Lscρ) to the grown crystal length (L12,
Parameter D/H8 for which L /L was calculated previously
Figure 6 shows the arrangement of er er. From Figure W46, it can be seen that when the parameter D/H increases during crystal growth, it becomes difficult to grow the 111 crystal. It can be seen that it is better to set D/)1 to 1 or less.

すなわち、任意のヒーターに対して、温度プロファイル
を測定し、そのプロファイル特性において、パラメータ
ーD/Hが小さくなる様に操業条件を設定すれば、単結
晶の育成は容易になる。
That is, by measuring the temperature profile of an arbitrary heater and setting operating conditions such that the parameter D/H is small in the profile characteristics, single crystal growth becomes easy.

1以下に維持する具体的な方法は、まずDを小さくする
こと。すなわち融液と封止剤との界面をなるべくヒータ
ーの最高温度位置に近づけること。
A specific method to maintain it below 1 is to first reduce D. In other words, the interface between the melt and the sealant should be brought as close to the highest temperature position of the heater as possible.

次にHを大きくすること。Next, increase H.

すなわちヒーターの等発熱量帯域が広くなるようなヒー
ター設計を行うことである。第5図からヒーターのHは
少くとも20mm以上とる必要がある。
In other words, the heater should be designed so that the heater's constant calorific value band is wide. From FIG. 5, it is necessary to take H of the heater at least 20 mm or more.

このようなヒーターを使用し、かつ融液と封止剤との界
面位置を調整することによってD/Hを1以下に維持す
れば、単結晶取得率は飛躍的に向上させることができる
If such a heater is used and D/H is maintained at 1 or less by adjusting the interface position between the melt and the sealant, the single crystal yield can be dramatically improved.

〔作  用〕[For production]

本発明による測温用治具を使用すると、微細な熱入射孔
より熱電対に向けて入射する熱線のみとらえて測定する
ので、反射や対流の影響を排除でき、真のヒーター発熱
によるエネルギーに近いものを測定することとなり、精
度が向上する。
When using the temperature measuring jig according to the present invention, only the heat rays incident on the thermocouple through the fine heat incidence holes are captured and measured, eliminating the effects of reflection and convection, and close to the energy generated by the true heater heat generation. This allows you to measure things and improves accuracy.

また、本発明の方法による場合は、最高温度帯を正確に
把握できるので、最適引上げ条件の維持が容易になる。
Furthermore, when using the method of the present invention, the maximum temperature range can be accurately determined, making it easier to maintain optimal pulling conditions.

〔効  果〕〔effect〕

ヒーターの温度プロファイルを測定し、パラメーターD
/Hを使用することによって、任意のヒーター温度プロ
ファイルに対して、単結晶を育成しやすい操業条件を推
測できる。
Measure the temperature profile of the heater and set parameter D
By using /H, it is possible to estimate operating conditions that facilitate the growth of single crystals for any heater temperature profile.

すなわち、本発明はヒーターの温度プロファイルを装置
を複雑にすることなく測定し、測定したプロファイル特
性に対して単結晶を育成しやすい操業条件を推定する方
法である。
That is, the present invention is a method of measuring the temperature profile of a heater without complicating the apparatus and estimating operational conditions that facilitate the growth of single crystals based on the measured profile characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の測温治具の構造を説明する図、第2図
は本発明の測温治具を使用して引上げ装置の温度分布を
示す図である。 第3図はLEC法による結晶引上げ方法を説明するため
の図である。 第4図は本発明の測温治具を使用して」1疋したヒータ
ーの温度プロファイルの一例を示す図、第5図は同じく
ヒーターの温度プロファイルの例を示す図である。 第6図はパラメーターD/Hと111結晶取得率の関係
を示す図である。 1・・・融 液       2・・・液体封市剤4・
・・ルツボ       5・・・測温治具6・・・ホ
ットゾーン    7・・・ヒーター11・・・中空球
       12・・・支持棒13・・・熱入射孔 
     14・・・熱電対の熱接点15・・・熱雷対
FIG. 1 is a diagram explaining the structure of the temperature measuring jig of the present invention, and FIG. 2 is a diagram showing the temperature distribution of a pulling device using the temperature measuring jig of the present invention. FIG. 3 is a diagram for explaining a crystal pulling method using the LEC method. FIG. 4 is a diagram showing an example of the temperature profile of a heater made using the temperature measuring jig of the present invention, and FIG. 5 is a diagram showing an example of the temperature profile of the heater as well. FIG. 6 is a diagram showing the relationship between the parameter D/H and the 111 crystal acquisition rate. 1... Melt 2... Liquid sealant 4.
... Crucible 5 ... Temperature measurement jig 6 ... Hot zone 7 ... Heater 11 ... Hollow sphere 12 ... Support rod 13 ... Heat incidence hole
14... Thermal junction of thermocouple 15... Thermal lightning couple

Claims (2)

【特許請求の範囲】[Claims] (1)液体封止引上げ法(LEC法)にて単結晶を引き
上げるに際し、ヒーターの最高温度から1.6℃以内に
ある温度領域のヒーター長さをH(mm)とし、ヒータ
ーの最高温度位置と原料融液と液体封止剤との界面位置
との距離をD(mm)としたとき、D/Hをパラメータ
ーにとり H≧20、D/H≦1.0 なる関係を維持するように原料融液と液体封止剤との界
面位置を制御しつつ引上げることを特徴とする、単結晶
の製造方法。
(1) When pulling a single crystal using the liquid encapsulation pulling method (LEC method), the length of the heater in the temperature range within 1.6°C from the maximum temperature of the heater is defined as H (mm), and the maximum temperature position of the heater is When the distance between the material melt and the interface position between the raw material melt and the liquid sealant is D (mm), the raw material is A method for producing a single crystal, characterized by pulling the melt and a liquid sealant while controlling the interface position.
(2)表面を鏡面仕上げしたステンレス製の中空球の表
面に熱入射孔を設け、該中空球の中心に熱電対の温接点
を配置し、熱入射孔と直角方向に支持棒を取付け懸架可
能な構造としたことを特徴とする測温用治具。
(2) A heat incidence hole is provided on the surface of a stainless steel hollow sphere with a mirror-finished surface, a hot junction of a thermocouple is placed in the center of the hollow sphere, and a support rod can be attached at right angles to the heat incidence hole for suspension. A temperature measurement jig characterized by having a structure.
JP63313209A 1988-12-12 1988-12-12 Single crystal manufacturing method and temperature measuring jig therefor Expired - Lifetime JP2609712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63313209A JP2609712B2 (en) 1988-12-12 1988-12-12 Single crystal manufacturing method and temperature measuring jig therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63313209A JP2609712B2 (en) 1988-12-12 1988-12-12 Single crystal manufacturing method and temperature measuring jig therefor

Publications (2)

Publication Number Publication Date
JPH02192490A true JPH02192490A (en) 1990-07-30
JP2609712B2 JP2609712B2 (en) 1997-05-14

Family

ID=18038422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63313209A Expired - Lifetime JP2609712B2 (en) 1988-12-12 1988-12-12 Single crystal manufacturing method and temperature measuring jig therefor

Country Status (1)

Country Link
JP (1) JP2609712B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134898A (en) * 1976-05-07 1977-11-11 Sumitomo Electric Ind Ltd Gap single crystal with low dislocation density
JPS6090897A (en) * 1983-10-25 1985-05-22 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for manufacturing compound semiconductor single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52134898A (en) * 1976-05-07 1977-11-11 Sumitomo Electric Ind Ltd Gap single crystal with low dislocation density
JPS6090897A (en) * 1983-10-25 1985-05-22 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for manufacturing compound semiconductor single crystal

Also Published As

Publication number Publication date
JP2609712B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
US9260796B2 (en) Method for measuring distance between lower end surface of heat insulating member and surface of raw material melt and method for controlling thereof
JPH09183606A (en) Production of polycrystalline semiconductor and apparatus for production therefor
Sasaki et al. Surface tension variation of molten silicon measured by the ring method
US7014707B2 (en) Apparatus and process for producing crystal article, and thermocouple used therein
GB2140704A (en) Control of crystal pulling
JP5088338B2 (en) Method of pulling silicon single crystal
JP6256284B2 (en) Method for measuring distance between bottom surface of heat shield member and raw material melt surface and method for producing silicon single crystal
JPH02192490A (en) Production of single crystal and temperature measuring jig therefor
KR101679071B1 (en) Melt Gap Controlling System, Method of Manufacturing Single Crystal including the Melt Gap Controlling System
JPH08259381A (en) Pulling up-controlling method for single crystal
JP2609712C (en)
CN106687625A (en) Single crystal production method
RU2320791C1 (en) Crystal growing method and apparatus for performing the same
JP3991400B2 (en) Single crystal growth method and apparatus
JP2003055084A (en) Device and method for pulling single crystal
JP2543449B2 (en) Crystal growth method and apparatus
KR101366726B1 (en) Apparatus and method for growing monocrystalline silicon ingots
CN114761626B (en) Single crystal production system and single crystal production method
WO2022118537A1 (en) Method for measuring distance between heat shield member lower end surface and raw material melt surface, method for controlling distance between heat shield member lower end surface and raw material melt surface, and method for producing silicon single crystal
JP2549607Y2 (en) Crystal growth equipment
JPH04144990A (en) Growth of crystal
JPH0140800B2 (en)
JPS6356198B2 (en)
JPS5950638B2 (en) Manufacturing equipment for band-shaped silicon crystals
JP3154351B2 (en) Single crystal growth method