JP2003055084A - Device and method for pulling single crystal - Google Patents

Device and method for pulling single crystal

Info

Publication number
JP2003055084A
JP2003055084A JP2001240488A JP2001240488A JP2003055084A JP 2003055084 A JP2003055084 A JP 2003055084A JP 2001240488 A JP2001240488 A JP 2001240488A JP 2001240488 A JP2001240488 A JP 2001240488A JP 2003055084 A JP2003055084 A JP 2003055084A
Authority
JP
Japan
Prior art keywords
single crystal
melt
crucible
temperature
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001240488A
Other languages
Japanese (ja)
Inventor
Masahiko Okui
正彦 奥井
Manabu Nishimoto
学 西元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumitomo Mitsubishi Silicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Mitsubishi Silicon Corp filed Critical Sumitomo Mitsubishi Silicon Corp
Priority to JP2001240488A priority Critical patent/JP2003055084A/en
Publication of JP2003055084A publication Critical patent/JP2003055084A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a single crystal pulling device equipped with a temperature sensor capable of stably and accurately measuring the temperature of the surface of a melt while suppressing the effects of radiation heat from a single crystal and the wall of a crucible and to provide a single crystal pulling method by which the distance between a radiation screen and the surface of the melt is always controlled to be a constant value. SOLUTION: The single crystal pulling device is equipped with the temperature sensor which has a constitution that a graphite chip for receiving radiation heat from the surface of the melt in a crucible is provided and a thermo couple is brought into contact with the graphite chip, which is covered with a heat insulating material except its heat receiving face, through a nonmetal protection tube. The single crystal pulling method comprises measuring the temperature of the surface of the melt in the crucible and controlling the surface level of the melt according to the measurement results so as to keep the distance from the surface of the melt to the lower end part of the radiation screen constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は単結晶引き上げ技術
に関し、より詳細には、結晶品質の均一な単結晶を製造
するための単結晶引き上げ装置および単結晶引き上げ方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal pulling technique, and more particularly to a single crystal pulling apparatus and a single crystal pulling method for producing a single crystal having uniform crystal quality.

【0002】[0002]

【従来の技術】単結晶を成長させるには種々の方法があ
るが、その一つにチョクラルスキー法(以下、CZ法と
記す)と呼ばれる単結晶育成方法がある。図4は、CZ
法に用いられる単結晶引き上げ装置を模式的に示した断
面図であり、図中1は坩堝を示している。
2. Description of the Related Art There are various methods for growing a single crystal, and one of them is a Czochralski method (hereinafter referred to as CZ method) for growing a single crystal. Figure 4 shows CZ
FIG. 1 is a cross-sectional view schematically showing a single crystal pulling apparatus used in the method, in which 1 denotes a crucible.

【0003】この坩堝1は、有底円筒形状の石英製坩堝
と、この石英製坩堝の外側に嵌合された、同じく有底円
筒形状の黒鉛製坩堝とから構成されており、坩堝1は所
定の速度で回転昇降する支持軸2に支持されている。こ
の坩堝1の外側には抵抗加熱式のヒータ3が配置されて
おり、坩堝1内には、このヒータ3により溶融させた結
晶用原料の融液4が充填されるようになっている。ま
た、坩堝1の中心軸上には、引き上げ棒あるいはワイヤ
ー等からなる引き上げ軸5が吊設されており、この引き
上げ軸5の先端に保持具6を介して図示しない種結晶が
取り付けられるようになっている。図中8は輻射スクリ
ーンであり、引き上げ軸方向に適度な温度勾配が単結晶
7に付与されるように、育成中の単結晶7の外周囲を囲
繞するように設けられている。また、これら部材は、圧
力の制御が可能な水冷式のチャンバ内に納められてい
る。
This crucible 1 is composed of a quartz crucible with a bottomed cylindrical shape and a graphite crucible with a bottomed cylindrical shape that is fitted on the outside of this quartz crucible, and the crucible 1 has a predetermined shape. It is supported by a support shaft 2 which rotates and moves up and down at a speed of. A resistance heating type heater 3 is arranged outside the crucible 1, and the crucible 1 is filled with a melt 4 of a raw material for crystallization melted by the heater 3. A pulling shaft 5 made of a pulling rod or a wire is hung on the central axis of the crucible 1, and a seed crystal (not shown) is attached to the tip of the pulling shaft 5 via a holder 6. Has become. Reference numeral 8 in the drawing denotes a radiation screen, which is provided so as to surround the outer periphery of the single crystal 7 being grown so that an appropriate temperature gradient is given to the single crystal 7 in the pulling axis direction. Further, these members are housed in a water-cooled chamber whose pressure can be controlled.

【0004】上記した単結晶引き上げ装置を用いて単結
晶7を引き上げる方法について説明する。まず、チャン
バ内を減圧した後、不活性ガスを導入してチャンバ内を
減圧の不活性ガス雰囲気とし、その後ヒータ3により結
晶用原料を溶融させる。次に、支持軸2と同一軸心で逆
方向に所定の速度で引き上げ軸5を回転させながら、保
持具6に取り付けられた種結晶を降下させて融液4に着
液させ、種結晶を融液3に馴染ませた後、種結晶の下端
に単結晶7を成長させていく。
A method for pulling the single crystal 7 using the above-mentioned single crystal pulling apparatus will be described. First, after decompressing the inside of the chamber, an inert gas is introduced to create a decompressed inert gas atmosphere in the chamber, and then the raw material for crystal is melted by the heater 3. Next, while rotating the pulling shaft 5 in the opposite direction at the same axis as the supporting shaft 2 at a predetermined speed, the seed crystal attached to the holder 6 is lowered to be deposited on the melt 4 to form a seed crystal. After accommodating the melt 3, the single crystal 7 is grown on the lower end of the seed crystal.

【0005】その後、所定のシード絞り、ショルダー部
形成、直胴部形成、テール絞りの各工程を経た後、単結
晶7を溶融液4から切り離して所定の条件で冷却する。
このようにして得られた単結晶7から加工製造されたウ
エーハは、種々の半導体デバイスの基板材料として用い
られる。
After that, after the steps of predetermined seed drawing, shoulder portion formation, straight body portion formation, and tail drawing, the single crystal 7 is separated from the melt 4 and cooled under predetermined conditions.
The wafer processed and manufactured from the single crystal 7 thus obtained is used as a substrate material for various semiconductor devices.

【0006】[0006]

【発明が解決しようとする課題】ところで、上述した単
結晶引き上げを実施するにあたり、単結晶育成中の融液
温度の変動は固液界面における結晶成長速度に直接影響
し、育成される単結晶径の変動を生じ製品歩留まりの低
下を招くため、単結晶の育成中は坩堝内の融液温度を正
確に測定して融液温度を一定温度に管理する必要があ
る。
By the way, in carrying out the above-mentioned single crystal pulling, the fluctuation of the melt temperature during the growth of the single crystal directly affects the crystal growth rate at the solid-liquid interface, and the diameter of the single crystal grown is increased. Therefore, it is necessary to accurately measure the melt temperature in the crucible and control the melt temperature at a constant temperature during the growth of the single crystal because the fluctuation of the above causes a decrease in product yield.

【0007】融液温度を実測する方法として、例えば特
開平3−137088号公報では、熱電対を固液界面近
傍の融液に浸漬させて融液の温度を直接測定し、融液温
度を制御する方法が提示されている。この場合、熱電対
を直接融液に浸漬させることから、熱電対が溶解するこ
とによる融液の不純物汚染を招く恐れがあり、熱電対の
溶解を防ぐためには断続的な測定しかできない。また、
熱電対の寿命にも問題がある。
As a method for measuring the melt temperature, for example, in Japanese Patent Laid-Open No. 137088/1993, the temperature of the melt is directly measured by immersing the thermocouple in the melt near the solid-liquid interface and controlling the melt temperature. How to do is presented. In this case, since the thermocouple is directly immersed in the melt, there is a possibility that the thermocouple may be dissolved and impurities in the melt may be contaminated, and only intermittent measurement can be performed in order to prevent the thermocouple from being dissolved. Also,
There is also a problem with the life of thermocouples.

【0008】また、特開平5−132391号公報で
は、単結晶の固液界面の形状を推測するため、単結晶の
側面近くに融液面から高さの異なる3位置に熱電対を配
置計測し、それにより温度環境を制御する方法が提示さ
れている。この場合、熱電対先端の周囲温度の他に、単
結晶や坩堝壁面からの輻射熱の影響も受け、融液温度に
関する情報が十分には得られないと推測される。
Further, in Japanese Unexamined Patent Publication No. 5-132391, in order to estimate the shape of the solid-liquid interface of a single crystal, thermocouples are placed and measured near the side surface of the single crystal at three different heights from the melt surface. , A method for controlling the temperature environment is presented. In this case, in addition to the ambient temperature at the tip of the thermocouple, it is presumed that radiant heat from the single crystal and the crucible wall is affected, and it is presumed that sufficient information on the melt temperature cannot be obtained.

【0009】このように、単結晶育成にあっては融液温
度を正確に制御する必要があるものの、これまで提供さ
れる融液温度測定手段では、融液への不純物汚染を発生
させることなく、正確に融液温度を測定することができ
ないため、高品質な単結晶を精度良く育成できない問題
があった。
As described above, although it is necessary to accurately control the melt temperature in growing a single crystal, the melt temperature measuring means provided so far does not generate impurity contamination in the melt. However, since the melt temperature cannot be measured accurately, there is a problem that a high quality single crystal cannot be grown with high accuracy.

【0010】一方、単結晶育成に伴って坩堝内の融液が
減少し、融液面位置が低下するため、これを補正するよ
うに坩堝を上昇させて融液面位置を常に一定位置に保つ
制御が実施されている。特に、近年、単結晶育成には欠
かせない輻射スクリーンを用いた単結晶引き上げにあっ
ては、この融液面位置制御が適切に行われない場合に
は、融液表面と輻射スクリーン下端部との間隔(以下、
「ギャップ」という)が変化し、育成中の単結晶が受け
る熱履歴が大きく変化してしまうため、単結晶の引き上
げ長手方向に結晶品質のばらつきを生じる問題がある。
On the other hand, as the single crystal is grown, the melt in the crucible decreases and the melt surface position lowers. Therefore, the crucible is raised to correct this and the melt surface position is always kept at a fixed position. Controls are in place. In particular, in recent years, in pulling a single crystal using a radiation screen, which is indispensable for growing a single crystal, when the melt surface position control is not properly performed, the melt surface and the lower end of the radiation screen are Interval (below,
There is a problem that the crystal quality varies in the pulling longitudinal direction of the single crystal, because the "gap") changes and the thermal history received by the growing single crystal greatly changes.

【0011】このため、ギャップ位置間隔を一定に保つ
ためには、坩堝内の融液表面位置を正確に測定する必要
があるが、これまで採用される融液表面位置の測定は、
二次元CCDカメラなどを用いた光学的測定手段による
ものであるため、融液表面の波立ちや迷光などの影響を
受け、正確に融液表面位置を測定することができなかっ
た。
Therefore, in order to keep the gap position distance constant, it is necessary to accurately measure the melt surface position in the crucible. However, the melt surface position that has been adopted so far is
Since it is an optical measuring means using a two-dimensional CCD camera or the like, it is not possible to accurately measure the melt surface position due to the influence of waviness and stray light on the melt surface.

【0012】本発明は上記問題に鑑みなされたもので、
単結晶や坩堝壁からの輻射熱の影響をできるだけ小さく
し、融液表面温度を安定的に、正確に測定し得る温度セ
ンサーを備えた単結晶引き上げ装置の提供と、ギャップ
位置間隔を常に一定値に制御可能な単結晶引き上げ方法
の提供を目的とする。
The present invention has been made in view of the above problems,
Provide a single crystal pulling device equipped with a temperature sensor that can measure the melt surface temperature stably and accurately by minimizing the effect of radiant heat from the single crystal and the crucible wall, and keep the gap position interval constant. An object is to provide a controllable single crystal pulling method.

【0013】[0013]

【課題を解決するための手段】本発明の請求項1に係わ
る単結晶引き上げ装置は、坩堝内の融液表面からの輻射
熱を受熱する黒鉛片を備え、受熱面以外は断熱材で覆っ
たその黒鉛片に、非金属保護管を介して熱電対を接触さ
せて構成される温度センサーを備えたことを特徴とする
ものである。
A single crystal pulling apparatus according to claim 1 of the present invention is provided with a graphite piece for receiving radiant heat from the surface of a melt in a crucible, and a graphite piece other than the heat receiving surface is covered with a heat insulating material. It is characterized in that a temperature sensor constituted by contacting a thermocouple with a graphite piece through a non-metal protective tube is provided.

【0014】本発明の請求項2に係わる単結晶引き上げ
装置は、育成中の単結晶の周囲を囲繞する輻射スクリー
ンを備え、上記の温度センサーが輻射スクリーンの下端
部に取り付けられていることを特徴とするものである。
A single crystal pulling apparatus according to a second aspect of the present invention is provided with a radiation screen surrounding the single crystal being grown, and the temperature sensor is attached to a lower end portion of the radiation screen. It is what

【0015】本発明の請求項3に係わる単結晶引き上げ
方法は、育成中の単結晶の周囲を囲繞するように輻射ス
クリーンが配置された単結晶引き上げ装置を使用して単
結晶を引き上げる際、坩堝内の融液表面の温度を測定
し、該測定結果に基づき、予め設定した融液表面から輻
射スクリーン下端部までの間隔が一定に維持されるよう
に融液表面位置を制御することを特徴とするものであ
る。
In the method for pulling a single crystal according to claim 3 of the present invention, when pulling a single crystal by using a single crystal pulling apparatus in which a radiation screen is arranged so as to surround the circumference of the growing single crystal, a crucible is used. Measuring the temperature of the melt surface in, based on the measurement result, characterized by controlling the melt surface position so that the distance from the preset melt surface to the lower end of the radiation screen is maintained constant To do.

【0016】本発明の請求項4に係わる単結晶引き上げ
方法は、育成中の単結晶の周囲を囲繞するように輻射ス
クリーンが配置された単結晶引き上げ装置を使用して単
結晶を引き上げる方法において、坩堝内の融液表面から
の輻射熱を受熱する黒鉛片を備え、受熱面以外は断熱材
で覆ったその黒鉛片に、非金属保護管を介して熱電対を
接触させて構成される温度センサーを用いて坩堝内の融
液表面の温度を測定し、該測定結果に基づき、予め設定
した融液表面から輻射スクリーン下端部までの間隔が一
定に維持されるように融液表面位置を制御することを特
徴とするものである。
The method for pulling a single crystal according to claim 4 of the present invention is a method for pulling a single crystal using a single crystal pulling apparatus in which a radiation screen is arranged so as to surround the circumference of the growing single crystal. Equipped with a graphite piece that receives radiant heat from the melt surface in the crucible, the graphite piece covered with a heat insulating material except the heat receiving surface, a temperature sensor configured by contacting a thermocouple through a non-metallic protective tube To measure the temperature of the melt surface in the crucible using, based on the measurement results, to control the melt surface position so that the distance from the preset melt surface to the lower end of the radiation screen is maintained constant It is characterized by.

【0017】本発明の請求項1に係わる単結晶引き上げ
装置で採用する温度センサーは、基本的には、融液表面
からの輻射熱により黒鉛が加熱され、その温度を熱電対
にて検出するものである。黒鉛は輻射熱の吸収性に優
れ、熱伝導がよく、しかも比熱が小さいので、黒鉛片の
受熱面以外を断熱材で覆って単結晶や坩堝壁からの輻射
熱を遮蔽することにより、正確に融液表面からの輻射熱
を検出することができる。
The temperature sensor employed in the apparatus for pulling a single crystal according to claim 1 of the present invention is basically one in which graphite is heated by radiant heat from the surface of the melt and the temperature is detected by a thermocouple. is there. Graphite has excellent absorption of radiant heat, good heat conduction, and low specific heat, so by covering the radiant heat from the single crystal or crucible wall by covering the part other than the heat receiving surface of the graphite piece with a heat insulating material, the melt can be accurately melted. Radiant heat from the surface can be detected.

【0018】本発明の請求項2に係わる単結晶引き上げ
装置によれば、輻射スクリーンの下端部に上記の温度セ
ンサーを備えるという簡便な構成を採用することによっ
て、大掛かりな装置を必要とすることなく、単結晶の成
長界面近傍にあたる輻射スクリーン下端部直下の融液表
面温度を正確に測定することができる。
According to the single crystal pulling apparatus according to the second aspect of the present invention, by adopting a simple structure in which the temperature sensor is provided at the lower end portion of the radiation screen, a large-scale apparatus is not required. The surface temperature of the melt directly below the lower end of the radiation screen, which is near the growth interface of the single crystal, can be accurately measured.

【0019】本発明の請求項3に係わる単結晶引き上げ
方法によれば、常にギャップ位置を一定位置に制御する
ことができる。この点について詳述すると、単結晶育成
中、融液表面位置に変動があった場合には融液表面温度
も変化するため、予め融液表面温度とギャップ位置との
相関関係を求めておき、実際の育成中の融液表面温度を
測定して前記相関関係との比較を行うことにより、現状
のギャップ位置を算出することができる。次いでギャッ
プ算出値と予め設定したギャップ設定値との差を補正す
るように坩堝の昇降を実施することで、常にギャップ位
置を一定位置に制御することができる。
According to the method for pulling a single crystal according to the third aspect of the present invention, the gap position can always be controlled to a constant position. If this point is described in detail, during single crystal growth, the melt surface temperature also changes when there is a change in the melt surface position, so the correlation between the melt surface temperature and the gap position is obtained in advance, The actual gap position can be calculated by measuring the melt surface temperature during actual growth and comparing it with the above correlation. Then, the gap position can be constantly controlled to a constant position by raising and lowering the crucible so as to correct the difference between the calculated gap value and the preset gap setting value.

【0020】本発明の請求項4に係わる単結晶引き上げ
方法によれば、育成中の融液表面温度をより高精度に算
出することができることから、ギャップ位置制御の精度
がより向上する。
According to the single crystal pulling method of the fourth aspect of the present invention, since the melt surface temperature during the growth can be calculated with higher accuracy, the accuracy of gap position control is further improved.

【0021】[0021]

【発明の実施の形態】以下、本発明に係る単結晶引き上
げ装置および単結晶引き上げ方法の実施の形態を図面に
基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a single crystal pulling apparatus and a single crystal pulling method according to the present invention will be described below with reference to the drawings.

【0022】図1は、本発明に係る単結晶引き上げ装置
を模式的に示す断面図であり、輻射スクリーン9の下端
に温度センサー9を取り付けた以外は、図4で説明した
従来の単結晶引き上げ装置と同じ装置構成、同じ符号で
あり、各部材の符号説明を省略する。
FIG. 1 is a cross-sectional view schematically showing a single crystal pulling apparatus according to the present invention. The conventional single crystal pulling apparatus described in FIG. 4 except that a temperature sensor 9 is attached to the lower end of a radiation screen 9. The device configuration and the same reference numerals are the same as those of the device, and the description of the reference symbols of each member is omitted.

【0023】図2は、本発明に係る単結晶引き上げ装置
で使用する温度センサー9を模式的に示す断面図であ
る。坩堝内の融液表面に対面して黒鉛片10の受熱面1
4を向け、その反対側に熱電対12を保護管13を介し
て接触させてあり、黒鉛片10は受熱面14以外の面か
ら直接熱輻射を受けないように、断熱材11でその周囲
を覆う構造とする。
FIG. 2 is a sectional view schematically showing a temperature sensor 9 used in the single crystal pulling apparatus according to the present invention. The heat receiving surface 1 of the graphite piece 10 facing the surface of the melt in the crucible 1
4 and the thermocouple 12 is brought into contact with the opposite side through the protective tube 13 so that the graphite piece 10 is surrounded by the heat insulating material 11 so as not to receive heat radiation directly from the surface other than the heat receiving surface 14. The structure will be covered.

【0024】黒鉛片10は高密度高純度の黒鉛製とし、
その受熱面14の形状は四角でも円形でもよく、特にそ
の形状は限定されない。受熱面14の面積は19〜23
0mm2程度となる5mmφから15mm角程度であれ
ばよく、その厚さは3〜12mm程度あればよい。
The graphite pieces 10 are made of high-density and high-purity graphite,
The shape of the heat receiving surface 14 may be square or circular, and its shape is not particularly limited. The area of the heat receiving surface 14 is 19 to 23.
It may be about 5 mmφ, which is about 0 mm2, to about 15 mm square, and its thickness may be about 3 to 12 mm.

【0025】熱電対12は、1400℃以上の使用に耐
えるJIS−C1602のB、R、Sなどの種類を用い
る。太さは通常の直径0.5mmのものでよく、さらに
細かくしたものは黒鉛加熱への影響が少なく好ましい。
保護管13や図示しない絶縁管は、石英ガラス製でもよ
いが、JIS−R1401またはR1402などに示さ
れる、1400℃以上の使用に耐える非金属磁器性のも
のを用いるのが望ましい。断熱材11は黒鉛布、カーボ
ンフェルト、セラミックファイバーなど、汚染の恐れの
ないものを用いればよく、薄い部分でも2mm以上の厚
さがあることが好ましい。また、断熱材11からの不純
物脱離による汚染を防止する観点からは、断熱材外表面
を黒鉛材で覆い、さらにその上にSiC膜をコーティン
グすることが望ましい。なお、温度センサー9は、受熱
面14から融液表面3までの距離が3mm〜10mmと
なるように設置することが望ましい。
As the thermocouple 12, types such as JIS-C1602 B, R, and S which can withstand use at 1400 ° C. or higher are used. The thickness may be a usual diameter of 0.5 mm, and a finer diameter is preferable because it has little influence on heating of graphite.
The protective tube 13 and the insulating tube (not shown) may be made of quartz glass, but it is desirable to use a non-metallic porcelain having a resistance to use at 1400 ° C. or higher as shown in JIS-R1401 or R1402. The heat insulating material 11 may be made of graphite cloth, carbon felt, ceramic fiber, or the like that does not cause contamination, and it is preferable that the thin portion has a thickness of 2 mm or more. Further, from the viewpoint of preventing contamination due to desorption of impurities from the heat insulating material 11, it is desirable to cover the outer surface of the heat insulating material with a graphite material and further coat a SiC film thereon. The temperature sensor 9 is preferably installed so that the distance from the heat receiving surface 14 to the melt surface 3 is 3 mm to 10 mm.

【0026】図1に示す単結晶引き上げ装置を使用し
て、実際のシリコン単結晶引き上げを実施するにあたっ
ては、まず、実際の単結晶引き上げを実施する前に、予
め、シリコン融液4が充填された坩堝1を昇降させて融
液面位置を種々変更したギャップ位置間隔の変更実験を
実施し、それぞれのギャップ位置での融液表面温度を図
2に示す温度センサーを用いて測定し、ギャップ位置間
隔と融液表面温度との関係を求めた相関テーブルを用意
する。この相関テーブルは図示しないCPUに入力管理
されている。
In carrying out the actual pulling of the silicon single crystal using the single crystal pulling apparatus shown in FIG. 1, first, the silicon melt 4 is filled in advance before the actual pulling of the single crystal. The crucible 1 was moved up and down to perform various experiments of changing the gap position intervals by changing the melt surface position, and the melt surface temperature at each gap position was measured using the temperature sensor shown in FIG. A correlation table for determining the relationship between the interval and the melt surface temperature is prepared. This correlation table is input and managed by a CPU (not shown).

【0027】図2は、図1に示す単結晶引き上げ装置を
使用した時のギャップ位置間隔と融液表面温度との相関
関係を示すグラフである。この図から明らかなように、
ギャップ位置間隔が広がるほど融液温度が低下すること
となる。本発明者らの実験によれば、ギャップ位置間隔
が2mmずれるだけで、融液表面温度が4,5℃変化す
る結果であった。
FIG. 2 is a graph showing the correlation between the gap position distance and the melt surface temperature when the single crystal pulling apparatus shown in FIG. 1 is used. As you can see from this figure,
The wider the gap position interval, the lower the melt temperature. According to the experiments conducted by the present inventors, the result was that the melt surface temperature was changed by 4,5 ° C. simply by shifting the gap position distance by 2 mm.

【0028】次に、実際のシリコン単結晶引き上げ過程
においては、温度センサー9を用いて融液表面の温度を
常時測定する。該測定結果はCPUに入力され、上述し
たギャップ位置間隔と融液表面温度の相関テーブルとの
比較演算が行われ、現状の正確なギャップ位置間隔が算
出される。次に、この算出した現状のギャップ位置間隔
と、予め設定した所定のギャップ位置間隔との比較演算
がCPUによって行われ、その結果、ギャップ位置間隔
に差がある場合に、これを補正するように図示しない坩
堝昇降装置に制御信号が送信されて坩堝1の昇降が行わ
れ、融液表面位置が調整される。これにより、常にギャ
ップ位置間隔が一定の条件で単結晶を引き上げることが
でき、直径偏差が少なく、結晶品質の均一な単結晶を製
造することができる。
Next, in the actual silicon single crystal pulling process, the temperature of the melt surface is constantly measured by using the temperature sensor 9. The measurement result is input to the CPU, and the above-described gap position interval and the correlation table of the melt surface temperature are compared and calculated to calculate the current accurate gap position interval. Next, the CPU calculates a comparison between the calculated current gap position interval and a preset predetermined gap position interval. As a result, if there is a difference in the gap position interval, the CPU will correct the gap position interval. A control signal is transmitted to a crucible lifting device (not shown) to move the crucible 1 up and down, and the melt surface position is adjusted. Thereby, the single crystal can be always pulled under the condition that the gap position distance is constant, and the diameter deviation is small, and the single crystal with uniform crystal quality can be manufactured.

【0029】[0029]

【本発明の効果】以上説明したように、本発明の単結晶
引き上げ装置を使用することにより、融液の汚染などを
招くことなく、正確に坩堝内の融液表面温度を測定する
ことができ、融液温度を常に一定に保つことができる。
また、本発明の単結晶引き上げ方法を採用することによ
り、融液面位置に変動を生じても、瞬時にこれを補正
し、常にギャップ位置間隔が一定の状態で単結晶を引き
上げることができる。これにより、直径偏差が少なく、
引き上げ長手方向に結晶品質の均一な単結晶を製造する
ことができる。
As described above, by using the single crystal pulling apparatus of the present invention, the melt surface temperature in the crucible can be accurately measured without causing contamination of the melt. The melt temperature can always be kept constant.
Further, by adopting the single crystal pulling method of the present invention, even if the melt surface position fluctuates, it can be instantly corrected and the single crystal can be always pulled in a state where the gap position interval is constant. This reduces the diameter deviation,
It is possible to manufacture a single crystal having uniform crystal quality in the pulling longitudinal direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態に係る単結晶引上げ装置を
模式的に示した断面図である。
FIG. 1 is a sectional view schematically showing a single crystal pulling apparatus according to an embodiment of the present invention.

【図2】本発明の実施の形態に係る単結晶引き上げ装置
で使用する温度センサーを模式的に示した断面図であ
る。
FIG. 2 is a sectional view schematically showing a temperature sensor used in the single crystal pulling apparatus according to the embodiment of the present invention.

【図3】本発明の単結晶引き上げ装置を使用した時のギ
ャップ位置間隔と融液表面温度との相関関係を示したグ
ラフである。
FIG. 3 is a graph showing the correlation between the gap position distance and the melt surface temperature when the single crystal pulling apparatus of the present invention is used.

【図4】従来の単結晶引き上げ装置を模式的に示した断
面図である。
FIG. 4 is a sectional view schematically showing a conventional single crystal pulling apparatus.

【符号の説明】[Explanation of symbols]

1 坩堝 2 坩堝昇降軸 3 ヒータ 4 溶融液 5 引き上げ軸 6 種結晶 7 単結晶 8 輻射スクリーン 9 温度センサー 10 黒鉛片 11 断熱材 12 熱電対 13 保護管 14 受熱面 1 crucible 2 crucible lifting shaft 3 heater 4 Molten liquid 5 Lifting shaft 6 seed crystals 7 Single crystal 8 Radiation screen 9 Temperature sensor 10 Graphite pieces 11 Insulation 12 thermocouple 13 Protection tube 14 Heat receiving surface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 坩堝内の融液表面からの輻射熱を受熱す
る黒鉛片を備え、受熱面以外は断熱材で覆ったその黒鉛
片に、非金属保護管を介して熱電対を接触させて構成さ
れる温度センサーを備えたことを特徴とする単結晶引き
上げ装置。
1. A structure in which a graphite piece for receiving radiant heat from the surface of a melt in a crucible is provided, and the graphite piece covered with a heat insulating material except for the heat receiving surface is contacted with a thermocouple via a non-metal protective tube. A single crystal pulling apparatus, which is equipped with a temperature sensor.
【請求項2】 育成中の単結晶の周囲を囲繞する輻射ス
クリーンを備え、前記温度センサーは輻射スクリーンの
下端部に取り付けられていることを特徴とする請求項1
記載の単結晶引き上げ装置。
2. A radiation screen surrounding the single crystal being grown is provided, and the temperature sensor is attached to a lower end portion of the radiation screen.
The single crystal pulling apparatus described.
【請求項3】 育成中の単結晶の周囲を囲繞するように
輻射スクリーンが配置された単結晶引き上げ装置を使用
して単結晶を引き上げる方法において、坩堝内の融液表
面の温度を測定し、該測定結果に基づき、予め設定した
融液表面から輻射スクリーン下端部までの間隔が一定に
維持されるように、融液表面位置を制御することを特徴
とする単結晶の引き上げ方法。
3. A method for pulling a single crystal by using a single crystal pulling apparatus in which a radiation screen is arranged so as to surround the circumference of the growing single crystal, and measuring the temperature of the melt surface in the crucible, A method for pulling a single crystal, characterized in that the position of the melt surface is controlled so that a preset distance from the melt surface to the lower end of the radiation screen is kept constant based on the measurement result.
【請求項4】 育成中の単結晶の周囲を囲繞するように
輻射スクリーンが配置された単結晶引き上げ装置を使用
して単結晶を引き上げる方法において、坩堝内の融液表
面からの輻射熱を受熱する黒鉛片を備え、受熱面以外は
断熱材で覆ったその黒鉛片に、非金属保護管を介して熱
電対を接触させて構成される温度センサーを用いて坩堝
内の融液表面の温度を測定し、該測定結果に基づき、予
め設定した融液表面から輻射スクリーン下端部までの間
隔が一定に維持されるように、融液表面位置を制御する
ことを特徴とする単結晶の引き上げ方法。
4. A method for pulling a single crystal by using a single crystal pulling apparatus in which a radiation screen is arranged so as to surround the single crystal being grown, and the radiant heat from the melt surface in the crucible is received. The temperature of the melt surface in the crucible is measured using a temperature sensor that is equipped with a graphite piece, and the graphite piece covered with a heat insulating material except the heat receiving surface is contacted with a thermocouple through a non-metallic protective tube. Then, based on the measurement results, the melt surface position is controlled so that the preset distance from the melt surface to the lower end of the radiation screen is maintained constant, and a single crystal pulling method is characterized.
JP2001240488A 2001-08-08 2001-08-08 Device and method for pulling single crystal Pending JP2003055084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001240488A JP2003055084A (en) 2001-08-08 2001-08-08 Device and method for pulling single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001240488A JP2003055084A (en) 2001-08-08 2001-08-08 Device and method for pulling single crystal

Publications (1)

Publication Number Publication Date
JP2003055084A true JP2003055084A (en) 2003-02-26

Family

ID=19071091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001240488A Pending JP2003055084A (en) 2001-08-08 2001-08-08 Device and method for pulling single crystal

Country Status (1)

Country Link
JP (1) JP2003055084A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122833A1 (en) * 2006-04-25 2007-11-01 Shin-Etsu Handotai Co., Ltd. Method for measuring distance between reference reflector and melt surface, method for control the position of melt surface using same, and silicon single crystal producing apparatus
JP2011057464A (en) * 2009-09-07 2011-03-24 Sumco Techxiv株式会社 Method for producing single crystal silicon, and production apparatus for single crystal silicon
KR101196723B1 (en) 2010-12-31 2012-11-07 주식회사수성기술 Thermo couple for polycrystline silicon ingot producing apparatus
JP2015027940A (en) * 2008-09-30 2015-02-12 ヘムロック・セミコンダクター・コーポレーション Method of determining amount of impurity that contaminating material contributes to high purity silicon and furnace for treating high purity silicon
KR101571958B1 (en) * 2014-01-28 2015-11-25 주식회사 엘지실트론 Apparatus and method for growing ingot

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122833A1 (en) * 2006-04-25 2007-11-01 Shin-Etsu Handotai Co., Ltd. Method for measuring distance between reference reflector and melt surface, method for control the position of melt surface using same, and silicon single crystal producing apparatus
JP2007290906A (en) * 2006-04-25 2007-11-08 Shin Etsu Handotai Co Ltd Method of measuring distance between reference reflector and melt surface, method of controlling melt surface level by using the measured result, and apparatus for manufacturing silicon single crystal
US8085985B2 (en) 2006-04-25 2011-12-27 Shin-Etsu Handotai Co., Ltd. Method for determining distance between reference member and melt surface, method for controlling location of melt surface using the same, and apparatus for production silicon single crystal
JP2015027940A (en) * 2008-09-30 2015-02-12 ヘムロック・セミコンダクター・コーポレーション Method of determining amount of impurity that contaminating material contributes to high purity silicon and furnace for treating high purity silicon
JP2011057464A (en) * 2009-09-07 2011-03-24 Sumco Techxiv株式会社 Method for producing single crystal silicon, and production apparatus for single crystal silicon
KR101196723B1 (en) 2010-12-31 2012-11-07 주식회사수성기술 Thermo couple for polycrystline silicon ingot producing apparatus
KR101571958B1 (en) * 2014-01-28 2015-11-25 주식회사 엘지실트론 Apparatus and method for growing ingot

Similar Documents

Publication Publication Date Title
CN109196144B (en) Method and apparatus for manufacturing silicon single crystal
US9587325B2 (en) Method for calculating a height position of silicon melt surface, method for pulling silicon single crystal, and silicon single crystal pulling apparatus
US8885915B2 (en) Method for measuring and controlling distance between lower end surface of heat shielding member and surface of raw material melt and method for manufacturing silicon single crystal
JP2008195545A (en) Method for measuring distance between lower end surface of heat shielding member and surface of material melt, and method for controlling the distance
US5723337A (en) Method for measuring and controlling the oxygen concentration in silicon melts and apparatus therefor
JP2019214486A (en) Method of measuring interval between melt level and seed crystal, method of preheating seed crystal, and method of manufacturing single crystal
JP2003055084A (en) Device and method for pulling single crystal
KR101283986B1 (en) Control point proffer device for melt level measuring of ingot growing apparatus
JP2735960B2 (en) Liquid level control method
JP6256284B2 (en) Method for measuring distance between bottom surface of heat shield member and raw material melt surface and method for producing silicon single crystal
KR101679071B1 (en) Melt Gap Controlling System, Method of Manufacturing Single Crystal including the Melt Gap Controlling System
JP5404264B2 (en) Single crystal silicon manufacturing method and single crystal silicon manufacturing apparatus
JPH07330484A (en) Pulling up device and production of silicon single crystal
CN114908415B (en) Method and apparatus for growing silicon single crystal ingot
JP2606046B2 (en) Control method of single crystal oxygen concentration during single crystal pulling
JP2543449B2 (en) Crystal growth method and apparatus
JPH07133187A (en) Method for growing semiconductor single crystal
JPH09118585A (en) Apparatus for pulling up single crystal and method for pulling up single crystal
CN114761626B (en) Single crystal production system and single crystal production method
JP2549607Y2 (en) Crystal growth equipment
JP2855498B2 (en) Semiconductor single crystal pulling equipment
JP4128278B2 (en) Single crystal manufacturing equipment
KR20090074940A (en) Growing apparatus of a single crystal ingot having thermocouple
JPH0859388A (en) Device for producing single crystal
JPH05124890A (en) Semiconductor single crystal growing device