JPH08259381A - Pulling up-controlling method for single crystal - Google Patents
Pulling up-controlling method for single crystalInfo
- Publication number
- JPH08259381A JPH08259381A JP6808595A JP6808595A JPH08259381A JP H08259381 A JPH08259381 A JP H08259381A JP 6808595 A JP6808595 A JP 6808595A JP 6808595 A JP6808595 A JP 6808595A JP H08259381 A JPH08259381 A JP H08259381A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- melt
- crucible
- pulling
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は高歩留まり、かつ生産性
の高いシリコン等の半導体の単結晶引上げ制御方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling pulling of a single crystal of a semiconductor such as silicon having a high yield and a high productivity.
【0002】[0002]
【従来の技術】単結晶の製造方法として、ルツボ内溶液
から結晶を成長させつつ引上げるチョクラルスキー法
(以下CZ法と記する)が広く行われている。このCZ
法により単結晶を得ようとする場合、例えば図1に模式
的に示すような構成の単結晶製造装置が用いられる。こ
のような単結晶製造方法においては、まず図中のルツボ
内に原料を入れ、それらを取り囲むヒーターによってこ
の原料を融解する。2. Description of the Related Art The Czochralski method (hereinafter referred to as the CZ method) for pulling a crystal from a solution in a crucible while growing the crystal is widely used as a method for producing a single crystal. This CZ
When a single crystal is to be obtained by the method, for example, a single crystal manufacturing apparatus having a configuration schematically shown in FIG. 1 is used. In such a single crystal manufacturing method, first, raw materials are put in a crucible in the figure, and the raw material is melted by a heater surrounding them.
【0003】そして、このルツボ内の溶液の上方より種
結晶を降ろして溶液表面に接触させる。この種結晶を回
転させながら、引上げ速度を制御しつつ上方に引上げる
ことにより、所定の径の単結晶を作製する。この単結晶
引上げにおいては、結晶の多結晶化、変形を防ぐこと
や、結晶内のドーパントや、不純物の濃度分布を制御す
る目的などのために融液流動を制御し、結晶成長近傍の
温度条件、ドーパントや不純物の融液中での移動現象な
どを最適に制御してきた。Then, the seed crystal is lowered from above the solution in the crucible and brought into contact with the surface of the solution. By rotating this seed crystal and pulling it upward while controlling the pulling speed, a single crystal having a predetermined diameter is produced. In the pulling of this single crystal, the melt flow is controlled for the purpose of preventing polycrystallization and deformation of the crystal, controlling the dopant in the crystal, and the concentration distribution of impurities, and the temperature conditions near the crystal growth. , And have optimally controlled the migration phenomena of dopants and impurities in the melt.
【0004】従来では、直接融液流動を調べる方法がな
く、試行錯誤的にルツボ回転速度、結晶回転速度、ルツ
ボとヒーターの相対的位置、ヒーターの加熱条件などの
操業条件を調節し、結晶成長にとって最適な操業環境を
得てきた。また、安定な結晶成長環境が実現されている
かを知る補助手段として、融液表面のある1点の温度を
測定し、得られた融液表面温度変動を結晶成長環境の指
標とする方法があった。Conventionally, there is no method for directly examining the melt flow, and the crystal growth is performed by trial and error by adjusting the operating conditions such as the crucible rotation speed, the crystal rotation speed, the relative position of the crucible and the heater, and the heating condition of the heater. Has obtained an optimal operating environment for. Further, as an auxiliary means for knowing whether a stable crystal growth environment is realized, there is a method of measuring the temperature at a certain point on the melt surface and using the obtained melt surface temperature fluctuation as an index of the crystal growth environment. It was
【0005】例えば、図2にその概略を示すように、チ
ャンバ上方に放射温度計を取り付けて融液表面の1点の
温度を測定していた。その測定により、温度変動がある
程度小さくなるように操業条件を制御していた。For example, as shown schematically in FIG. 2, a radiation thermometer was attached above the chamber to measure the temperature at one point on the surface of the melt. By the measurement, the operating conditions were controlled so that the temperature fluctuations would be reduced to some extent.
【0006】[0006]
【発明が解決しようとする課題】ところが上記のような
試行錯誤による最適操業条件の探索には多くの時間と労
力が必要である。そのうえ引上げ炉内のカーボン部材な
どの経時変化と共にこれらの条件は変化してしまう。さ
らに放射温度計による融液表面のある1点の測温だけで
安定な結晶成長の指針とするのは以下の点で問題があ
る。However, much time and labor are required to search for optimum operating conditions by trial and error as described above. Moreover, these conditions will change with the aging of the carbon member in the pulling furnace. Further, there is a problem in the following points that the guideline for stable crystal growth is obtained only by measuring the temperature at one point on the melt surface by the radiation thermometer.
【0007】従来、ルツボ内融液の温度分布はルツボの
回転軸に対して軸対象で、定常的であると考えられてき
た。しかし最近の本発明者の研究によると、ルツボ回転
速度などの操業条件によっては融液内温度分布は非軸対
象で、非定状になる場合があることが明らかになった。
この非定状、非軸対象な温度分布により融液の周方向に
温度の低い部分と高い部分ができ、この低温部と降温部
とがルツボ回転方向に移動するために、結晶成長界面の
安定した1点では温度変動が生ずる。Conventionally, it has been considered that the temperature distribution of the melt in the crucible is axially symmetrical with respect to the rotation axis of the crucible and is stationary. However, recent research by the present inventor has revealed that the temperature distribution in the melt is non-axial and may be indefinite depending on operating conditions such as the crucible rotation speed.
Due to this non-constant, non-axial temperature distribution, a low temperature part and a high temperature part are created in the circumferential direction of the melt, and the low temperature part and the temperature decreasing part move in the crucible rotation direction, so that the crystal growth interface is stable Temperature fluctuation occurs at one point.
【0008】もし結晶成長界面近傍の融液の温度変動が
大きい場合は、結晶が多結晶化したり、結晶に取り込ま
れる不純物にムラが生じたりする。この温度変動の大き
さは測定する融液の位置によって異なる。すなわち、こ
れまでのように融液表面のある1点のみを測定していた
のでは本当に安定な結晶成長環境を知ることはできな
い。If the temperature fluctuation of the melt near the crystal growth interface is large, the crystal becomes polycrystal and the impurities taken into the crystal become uneven. The magnitude of this temperature change depends on the position of the melt to be measured. That is, it is not possible to know a truly stable crystal growth environment by measuring only one point on the melt surface as in the past.
【0009】融液表面における径方向の温度勾配も重要
な制御すべき条件である。結晶の肩広げの時に融液表面
における半径方向の温度勾配が極端に小さい場合、結晶
径が急に大きくなり多結晶化する場合がある。また、結
晶の直胴部の成長時に半径方向の温度勾配が極端に小さ
い場合、結晶が大きく変形する可能性があり、結晶の歩
留まりや生産性が損なわれる。この融液表面における径
方向の温度勾配は従来の融液表面の1点の測定では観測
不可能であった。The radial temperature gradient on the melt surface is also an important condition to control. When the temperature gradient in the radial direction on the surface of the melt is extremely small when the shoulder of the crystal is widened, the crystal diameter may suddenly increase and polycrystallize. Further, when the temperature gradient in the radial direction is extremely small during the growth of the straight body portion of the crystal, the crystal may be largely deformed, and the yield or productivity of the crystal is impaired. The radial temperature gradient on the surface of the melt could not be observed by the conventional measurement of one point on the surface of the melt.
【0010】最近この融液流動を直接調べる方法とし
て、次の3つの方法が報告された。 (1)引上げ時に見られる融液表面の黒い縞模様から融
液表面の流動を予想する方法(山岸、布施川:日本結晶
成長学会誌 VOL17,No3&4,1990)。 (2)融液表面にトレーサーを浮かべ、そのトレーサー
の動きから融液表面の流動を予想する方法(白石:93春
季応物予稿集第1分冊1a-H6 )。 (3)融液に、その融液とほぼ同じ密度のトレーサーを
入れて、融液全体にX線を当て、融液とトレーサーのX
線透過率の差によりトレーサーの動きを追い、融液全体
の流動を知る方法(K.Kakimoto,M.Eguti,H.Watanabe,J
Cry-stal Grouth88(1988)365 )。Recently, the following three methods have been reported as methods for directly examining the melt flow. (1) A method of predicting the flow of the melt surface from the black stripe pattern on the melt surface seen during pulling (Yamagishi, Fusegawa: Journal of the Japan Society for Crystal Growth VOL17, No3 & 4, 1990). (2) A method of floating a tracer on the surface of the melt and predicting the flow on the surface of the melt from the movement of the tracer (Shiraishi: 93 Spring Season Proceedings Vol. 1, 1a-H6). (3) A tracer having almost the same density as that of the melt is put in the melt, and X-rays are applied to the entire melt to make X of the melt and the tracer.
A method of tracking the movement of the tracer by the difference in the linear transmittance and knowing the flow of the entire melt (K.Kakimoto, M. Eguti, H. Watanabe, J.
Cry-stal Grouth88 (1988) 365).
【0011】ところが、融液表面の黒い縞模様から融液
流動を知る方法では縞模様と融液流動との関係はまだ明
確ではない。また、トレーサーを融液内に入れて融液流
動を知る方法では結晶成長が不可能となる。このように
実際の単結晶製造現場で使用するためにはこれらの方法
には問題がある。However, in the method of knowing the melt flow from the black stripe pattern on the surface of the melt, the relationship between the stripe pattern and the melt flow is not yet clear. Further, crystal growth cannot be performed by a method in which a tracer is placed in the melt to know the melt flow. As described above, these methods have a problem to be used in the actual single crystal manufacturing site.
【0012】本発明では、単結晶引上げ中に融液表面の
二次元的な温度分布およびその時間変動を迅速にかつ詳
細に把握することで、結晶成長に最適な引上げ環境を得
ることを目的とする。An object of the present invention is to obtain an optimum pulling environment for crystal growth by quickly and in detail grasping the two-dimensional temperature distribution on the surface of the melt and its time variation during pulling of a single crystal. To do.
【0013】[0013]
【課題を解決するための手段】本発明者らは、上記目的
を達成するために、融液表面を二次元的に観察し、融液
表面温度の時間変動を詳細に把握することで、安定に単
結晶の引上げを行う方法を見出だし、本発明を完成する
に至ったものである。In order to achieve the above-mentioned object, the inventors of the present invention observe the melt surface two-dimensionally and grasp the time fluctuation of the melt surface temperature in detail to obtain stable stability. The inventors have found a method for pulling a single crystal and completed the present invention.
【0014】すなわち、本発明は、融液から単結晶を引
上げる単結晶製造方法において、単結晶引上げ中に融液
表面の二次元的な温度分布およびその時間変動を測定す
ることで、最適な成長環境を知ることを特徴とする方法
である。That is, according to the present invention, in the method for producing a single crystal in which a single crystal is pulled from a melt, the two-dimensional temperature distribution on the surface of the melt and its time variation are measured during pulling of the single crystal. It is a method characterized by knowing the growth environment.
【0015】また、本発明は、回転するルツボ内にあっ
て、ヒーターによって溶融された結晶部材融液から単結
晶を引上げる単結晶製造方法において、単結晶引上げ中
に、結晶部材融液表面の二次元的な温度分布およびその
時間変動を測定することにより、単結晶の最適な成長環
境を知り、これを基にルツボの回転速度、単結晶回転速
度、ルツボとヒーターとの相対的位置、ヒーターの加熱
条件を調節することにより融液表面の温度分布を軸対象
にして単結晶の成長環境を制御することを特徴とする単
結晶引上げ制御方法である。Further, according to the present invention, in a single crystal manufacturing method for pulling a single crystal from a crystal member melt melted by a heater in a rotating crucible, the surface of the crystal member melt is pulled during pulling of the single crystal. By measuring the two-dimensional temperature distribution and its time variation, the optimum growth environment of the single crystal is known, and based on this, the rotation speed of the crucible, the single crystal rotation speed, the relative position of the crucible and the heater, the heater The single crystal pulling control method is characterized in that the growth environment of the single crystal is controlled with the temperature distribution on the melt surface as an axis by adjusting the heating conditions.
【0016】また、本発明は、回転するルツボ内にあっ
て、ヒーターによって溶融された結晶部材融液から単結
晶を引上げる単結晶製造方法において、単結晶引上げ中
に、結晶部材融液表面の二次元的な温度分布およびその
時間変動を測定することにより、単結晶の最適な成長環
境を知り、これを基にルツボの回転速度、単結晶回転速
度、ルツボとヒーターとの相対的位置、ヒーターの加熱
条件を調節することにより少なくとも結晶成長界面近傍
の温度変動を小さくして単結晶の成長環境を制御するこ
とを特徴とする単結晶引上げ制御方法である。Further, according to the present invention, in a method for producing a single crystal in a rotating crucible for pulling a single crystal from a crystal member melt melted by a heater, the surface of the crystal member melt is pulled during pulling of the single crystal. By measuring the two-dimensional temperature distribution and its time variation, the optimum growth environment of the single crystal is known, and based on this, the rotation speed of the crucible, the single crystal rotation speed, the relative position of the crucible and the heater, the heater The single crystal pulling control method is characterized by controlling the heating environment of the single crystal to control the growth environment of the single crystal by reducing the temperature fluctuation at least near the crystal growth interface.
【0017】[0017]
【作用】本発明により、単結晶引上げ融液上方より二次
元的に融液表面温度を鑑定することにより、結晶成長環
境を詳細に把握し、結晶成長に最適な環境を得るための
オペレーションガイドを容易に作成することができる。According to the present invention, the crystal growth environment is grasped in detail by two-dimensionally determining the melt surface temperature from above the single crystal pulling melt, and the operation guide for obtaining the optimum environment for crystal growth is provided. Can be easily created.
【0018】単結晶引上げにおいて、融液表面からはそ
の温度に応じた放射エネルギーが発せられている。放射
エネルギーQと温度Tとの関係は、もし他の反射が重畳
されていなければ次のようになっている。In pulling a single crystal, radiant energy corresponding to the temperature is emitted from the surface of the melt. The relationship between the radiant energy Q and the temperature T is as follows if no other reflection is superposed.
【0019】Q=εσT4 ここで、εは融液の放射率、σはステファン−ボルツマ
ン定数、Tは融液表面温度を表している。この放射エネ
ルギーを上方より二次元的に測定し、それを上記変換式
もしくはそれより実際の系に合うように修正した変換式
にしたがって温度に変換することによって、融液表面温
度を非接触で知ることができる。Q = εσT 4 where ε is the emissivity of the melt, σ is the Stefan-Boltzmann constant, and T is the melt surface temperature. By measuring this radiant energy two-dimensionally from above and converting it to the temperature according to the above conversion formula or a conversion formula modified to suit the actual system, the melt surface temperature can be known without contact. be able to.
【0020】これらを連続的に観察することで融液表面
温度の時間変動を二次元的に知ることができる。そし
て、ルツボ回転速度、結晶回転速度、ルツボとヒーター
の相対位置、ヒーターの加熱条件などの操業条件を変化
させることでこの融液表面温度分布や温度変動を変化さ
せることができる。したがってこれらの融液表面温度デ
ーターは結晶成長に最適な操業環境を得るためのオペレ
ーションガイドとなる。以上述べた方法には、炉内の部
材が経時変化しても、常に融液表面温度を観察して操業
条件を最適に修正できるため、経時変化を考慮したオペ
レーションが可能であるという利点がある。By continuously observing these, it is possible to two-dimensionally know the time variation of the melt surface temperature. The melt surface temperature distribution and temperature fluctuation can be changed by changing the operating conditions such as the crucible rotation speed, the crystal rotation speed, the relative position of the crucible and the heater, and the heating condition of the heater. Therefore, these melt surface temperature data serve as an operation guide for obtaining an optimum operating environment for crystal growth. The method described above has the advantage that even if the members in the furnace change with time, the melt surface temperature can always be observed and the operating conditions can be optimally corrected, so that operation taking into consideration the change with time is possible. .
【0021】図3にCZ引上げにおける融液流動の概略
図を示す。CZ引上げにおける融液流動の特徴はルツボ
側壁で暖められた融液がルツボ側壁に沿って上昇し、自
由表面近傍でルツボ中心軸方向への流れの向きを変え
る。そして中心軸付近で沈み込んだ後、ルツボ底で向き
を変え、ルツボ側壁に向かって流れる。これによって図
3(a)の垂直断面における流れ(子午面流)を形成す
る。通常CZ引上げではルツボを回転させる。これによ
り、上記流れにルツボ回転によって誘起される流れが重
なる。このように密度成層(流体の中に密度差が存在し
ている状態)し、かつ回転している流体を回転成層流体
と呼び、その典型的な例が地球の大気であり、CZ引上
げにおける融液流動と地球大気の流動は非常によく似て
いる。FIG. 3 shows a schematic view of melt flow in CZ pulling. The characteristic of the melt flow in the CZ pulling is that the melt heated on the crucible side wall rises along the crucible side wall and changes the direction of the flow toward the center axis of the crucible near the free surface. After it sinks near the central axis, it turns at the bottom of the crucible and flows toward the side wall of the crucible. This forms a flow (meridional flow) in the vertical cross section of FIG. Normally, the crucible is rotated when pulling up the CZ. As a result, the flow induced by the rotation of the crucible overlaps the above flow. A fluid that is thus density-stratified (where there is a density difference in the fluid) and that is rotating is called a rotary stratified fluid. A typical example of this is the Earth's atmosphere, which is the melt in CZ pull-up. Liquid flow and the flow of the earth's atmosphere are very similar.
【0022】このような回転成層流体における本発明者
の測温実験および数値シュミレーションにより以下のこ
とがわかった。From the temperature measurement experiment and numerical simulation of the present inventor in such a rotary stratified fluid, the following was found.
【0023】回転成層流体は、ルツボ回転が低回転の時
には流れはほぼ軸対称的な流れであり、融液表面温度分
布もほぼ軸対象である(図3(a))。ところがルツボ
回転速度を大きくしていくと、融液自由表面に水平渦が
発生し、流れは非軸対象に遷移する。これにより融液表
面の温度分布も非軸対象になる。When the crucible rotation is low, the flow of the rotary stratified fluid is substantially axisymmetric, and the melt surface temperature distribution is also substantially symmetrical (FIG. 3 (a)). However, when the crucible rotation speed was increased, horizontal vortices were generated on the free surface of the melt, and the flow transitioned to a non-axial symmetry. As a result, the temperature distribution on the surface of the melt becomes non-axial.
【0024】そしてこの軸対象分布はルツボ回転方向
に、ルツボ回転速度に依存した速度で移動する。この非
軸対象な温度分布の回転により、融液表面のある一定の
系の円周上の1点に着目した場合、低い温度の融液と高
い温度の融液が、周期的にその点にやってくるために、
その点ではその低温と高温の融液の温度差に基づいた温
度変動が生ずる。この温度変動の大きさと周期は着目す
る半径位置で事なり、融液表面上に最大の温度変動振幅
を持つ半径位置が存在する。The axisymmetric distribution moves in the crucible rotation direction at a speed dependent on the crucible rotation speed. Due to this non-axially symmetrical rotation of the temperature distribution, when focusing on one point on the circumference of a certain system on the surface of the melt, the low-temperature melt and the high-temperature melt are periodically moved to that point. To come
At that point, temperature fluctuation occurs based on the temperature difference between the low temperature and high temperature melts. The magnitude and cycle of this temperature fluctuation are different at the radial position of interest, and there is a radial position having the maximum temperature fluctuation amplitude on the melt surface.
【0025】さらにこの最大の温度変動振幅を持つ半径
位置は、ルツボ回転速度などの操業条件によって変化す
る。ルツボ回転をさらに大きくしていくと、垂直断面に
おける流れと水平断面における温度分布が図3(c)の
ようになる。この状態では同じ非軸対象温度分布であっ
ても中心軸近傍では温度変動の小さな領域が形成され
る。すなわち、温度変動の最大の部分が図3(b)に比
べ、よりルツボに近い方へ移動する。Further, the radial position having the maximum temperature fluctuation amplitude changes depending on operating conditions such as the crucible rotation speed. When the crucible rotation is further increased, the flow in the vertical section and the temperature distribution in the horizontal section become as shown in FIG. 3 (c). In this state, even if the temperature distribution is not symmetrical with respect to the axis, a region where the temperature fluctuation is small is formed near the central axis. That is, the maximum portion of the temperature fluctuation moves closer to the crucible than in FIG. 3B.
【0026】上記理由により融液表面の1点のみの測温
では正確な融液温度環境は得られないことがわかる。ま
た、融液表面における半径方向の温度勾配も、ルツボ回
転速度などの操業条件によって変化する。本発明では、
融液表面から発せられる放射エネルギーのに二次元分布
をCCDカメラなどの撮像デバイスで観察して、電気信
号に変換し、それを温度に変換することにより融液表面
におけるに二次元温度分布を得る。この二次元温度分布
をディスプレーに移し出しながら、操業中にルツボ回転
速度、結晶回転速度、ルツボ位置、ヒーター加熱条件を
変更して結晶引上げに最適な状態を得る。From the above reason, it is understood that an accurate melt temperature environment cannot be obtained by measuring the temperature of only one point on the melt surface. Further, the temperature gradient in the radial direction on the surface of the melt also changes depending on operating conditions such as the crucible rotation speed. In the present invention,
A two-dimensional temperature distribution on the melt surface is obtained by observing the two-dimensional distribution of the radiant energy emitted from the melt surface with an imaging device such as a CCD camera, converting it into an electric signal, and converting it into temperature. . While transferring this two-dimensional temperature distribution to the display, the crucible rotation speed, crystal rotation speed, crucible position, and heater heating conditions are changed during operation to obtain the optimum state for crystal pulling.
【0027】[0027]
【実施例】以下、本発明を実施例により具体的に説明す
る。EXAMPLES The present invention will be specifically described below with reference to examples.
【0028】図4に示すように、CCDカメラにより融
液上方のチャンバ上部から結晶の無い状態での融液表面
温度分布を二次元的に測定した。図5に18インチルツ
ボ中に45kgの多結晶シリコンを融解した後、上方か
ら上記方法で融液表面を観察したときの表面温度分布の
模式図を示す。なお、図中点線は6インチ結晶単結晶の
位置を示す。図5(a)にルツボ回転速度2rpmにお
ける温度分布を示す。図5(a)にルツボ回転速度2r
pmにおける温度分布を示す。As shown in FIG. 4, the temperature distribution of the melt surface in the absence of crystals was two-dimensionally measured from the upper part of the chamber above the melt with a CCD camera. FIG. 5 shows a schematic diagram of the surface temperature distribution when 45 kg of polycrystalline silicon is melted in an 18 inch crucible and the surface of the melt is observed from above by the above method. The dotted line in the figure indicates the position of the 6-inch crystal single crystal. FIG. 5A shows the temperature distribution at the crucible rotation speed of 2 rpm. The crucible rotation speed 2r is shown in FIG.
The temperature distribution in pm is shown.
【0029】融液表面の温度分布はルツボ回転速度2r
pmにおいてすでに非対称軸に遷移しており、これがル
ツボ回転方向に回転していた。この非軸対象性の最も大
きいところはルツボ中心からちょうど6インチ結晶の端
あたりに存在していた(図5(a))。The temperature distribution on the surface of the melt is the crucible rotation speed 2r.
At pm, the axis had already transitioned to the asymmetric axis, which was rotating in the crucible rotation direction. The most non-axial symmetry existed just around the edge of the crystal 6 inches from the center of the crucible (Fig. 5 (a)).
【0030】また、融液表面の半径方向の温度勾配も温
度変動の最も大きい位置で最小値をとっていた。この状
態で6インチ結晶を引上げた結果、結晶の肩広げの過程
でほとんど全ての結晶が多結晶化した。一方、図5
(b)の状態でも融液表面の温度分布は非対称軸製を示
すが、ルツボ回転速度を上げたことで融液表面上の温度
変動の最も大きい部分および半径方向の最も小さい部分
は、6インチ結晶の半径より外に移動しており、結晶は
多結晶化も変形もせず単結晶で引き上がった。Further, the temperature gradient in the radial direction of the melt surface also takes the minimum value at the position where the temperature fluctuation is greatest. As a result of pulling up the 6-inch crystal in this state, almost all of the crystal was polycrystallized in the process of expanding the shoulder of the crystal. On the other hand, FIG.
Even in the state of (b), the temperature distribution on the surface of the melt shows an asymmetric axis, but by increasing the rotation speed of the crucible, the largest temperature fluctuation on the melt surface and the smallest radial part are 6 inches. It moved out of the radius of the crystal, and the crystal pulled up as a single crystal without polycrystallization or deformation.
【0031】[0031]
【発明の効果】以上述べたように、請求項1記載の本発
明の方法により、最適な成長環境を知り従来の融液表面
温度の1点測定より確実に融液の表面の温度環境を把握
することができ、結晶成長に最適な温度条件を実現する
オペレーションガイドとすることができる。As described above, according to the method of the present invention as set forth in claim 1, the optimum growth environment can be known, and the temperature environment of the surface of the melt can be grasped more reliably than the conventional one-point measurement of the melt surface temperature. Therefore, it can be used as an operation guide for realizing the optimum temperature condition for crystal growth.
【0032】請求項2記載の本発明の単結晶引上げ制御
方法により、ルツボの回転速度、単結晶回転速度、ルツ
ボとヒーターとの相対的位置、ヒーターの加熱条件を調
節することで、融液表面の温度分布を軸対象にして高品
質な単結晶の引上げを行うことができる。According to the single crystal pulling control method of the present invention according to claim 2, the rotation speed of the crucible, the single crystal rotation speed, the relative position of the crucible and the heater, and the heating conditions of the heater are adjusted to adjust the melt surface. It is possible to pull a high quality single crystal with the temperature distribution of the above as the axis.
【0033】請求項3記載の本発明の単結晶引上げ制御
方法により、ルツボの回転速度、単結晶回転速度、ルツ
ボとヒーターとの相対的位置、ヒーターの加熱条件を調
節することにより少なくとも結晶成長界面近傍の温度変
動を小さくして高品質な単結晶の引上げを行うことがで
きる。According to the single crystal pulling control method of the present invention as set forth in claim 3, at least the crystal growth interface is adjusted by adjusting the rotation speed of the crucible, the single crystal rotation speed, the relative position of the crucible and the heater, and the heating conditions of the heater. High-quality single crystals can be pulled by reducing temperature fluctuations in the vicinity.
【図1】 CZ炉を模式的に示す図面である。FIG. 1 is a drawing schematically showing a CZ furnace.
【図2】 放射温度計による融液表面の1点測定を表す
図面である。FIG. 2 is a drawing showing a single-point measurement of a melt surface with a radiation thermometer.
【図3】 CZ引上げにおける融液の典型的な流れと、
温度分布のルツボ回転依存性を表す図面である。FIG. 3 shows a typical flow of melt in CZ pulling,
It is a figure showing the crucible rotation dependence of temperature distribution.
【図4】 CCDカメラなどの撮像デバイスによる融液
表面の二次元測温を示す図面である。FIG. 4 is a drawing showing two-dimensional temperature measurement of a melt surface by an imaging device such as a CCD camera.
【図5】 ルツボ回転と2rpmと8rpmにおけるC
CDカメラによって観察した融液表面の温度分布を模式
的に表した図面である。FIG. 5: Crucible rotation and C at 2 rpm and 8 rpm
It is drawing which represented typically the temperature distribution of the melt surface observed by the CD camera.
a…結晶 b…融液 c…ルツボ d…ルツボサポート e…ルツボ受け f…ルツボ軸 g…ヒーター h…断熱材 i…炉壁 a ... Crystal b ... Melt c ... Crucible d ... Crucible support e ... Crucible receiver f ... Crucible shaft g ... Heater h ... Insulation material i ... Furnace wall
Claims (3)
法において、 該単結晶引上げ中に該融液表面の二次元的な温度分布お
よびその時間変動を測定することで、最適な成長環境を
知ることを特徴とする方法。1. A method for producing a single crystal in which a single crystal is pulled from a melt, in which an optimum growth environment is obtained by measuring a two-dimensional temperature distribution on the surface of the melt and its time variation during the pulling of the single crystal. A method characterized by knowing.
よって溶融された結晶部材融液から単結晶を引上げる単
結晶製造方法において、 該単結晶引上げ中に、該結晶部材融液表面の二次元的な
温度分布およびその時間変動を測定することにより、該
単結晶の成長環境を知り、これを基に該ルツボの回転速
度、該単結晶回転速度、該ルツボと該ヒーターとの相対
的位置、該ヒーターの加熱条件を調節することにより該
融液表面の温度分布を軸対象にして該単結晶の成長環境
を制御することを特徴とする単結晶引上げ制御方法。2. A method for producing a single crystal in a rotating crucible for pulling a single crystal from a crystal member melt melted by a heater, wherein a two-dimensional surface of the crystal member melt is pulled during the pulling of the single crystal. By knowing the temperature distribution and its time variation, to know the growth environment of the single crystal, based on this, the rotation speed of the crucible, the single crystal rotation speed, the relative position of the crucible and the heater, A single crystal pulling control method, wherein the growth environment of the single crystal is controlled with the temperature distribution on the melt surface as an axis by adjusting the heating conditions of the heater.
よって溶融された結晶部材融液から単結晶を引上げる単
結晶製造方法において、 該単結晶引上げ中に、該結晶部材融液表面の二次元的な
温度分布およびその時間変動を測定することにより、該
単結晶の成長環境を知り、これを基に該ルツボの回転速
度、該単結晶回転速度、該ルツボと該ヒーターとの相対
的位置、該ヒーターの加熱条件を調節することにより少
なくとも結晶成長界面近傍の温度変動を小さくして該単
結晶の成長環境を制御することを特徴とする単結晶引上
げ制御方法。3. A single crystal manufacturing method for pulling a single crystal from a crystal member melt melted by a heater in a rotating crucible, wherein a two-dimensional surface of the crystal member melt is pulled during the pulling of the single crystal. By knowing the temperature distribution and its time variation, to know the growth environment of the single crystal, based on this, the rotation speed of the crucible, the single crystal rotation speed, the relative position of the crucible and the heater, A method for controlling pulling of a single crystal, characterized in that a growth environment of the single crystal is controlled by adjusting a heating condition of the heater to reduce temperature fluctuation at least near a crystal growth interface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6808595A JP2880092B2 (en) | 1995-03-27 | 1995-03-27 | Single crystal manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6808595A JP2880092B2 (en) | 1995-03-27 | 1995-03-27 | Single crystal manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08259381A true JPH08259381A (en) | 1996-10-08 |
JP2880092B2 JP2880092B2 (en) | 1999-04-05 |
Family
ID=13363559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6808595A Expired - Fee Related JP2880092B2 (en) | 1995-03-27 | 1995-03-27 | Single crystal manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2880092B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999004066A1 (en) * | 1997-07-17 | 1999-01-28 | Memc Electronic Materials, Inc. | Method and system for controlling growth of a silicon crystal |
WO1999011844A1 (en) * | 1997-09-03 | 1999-03-11 | Leybold Systems Gmbh | Method and device for monitoring a melt for producing crystals |
US6200384B1 (en) | 1998-07-27 | 2001-03-13 | Nippon Steel Corporation | Method for production of silicon single crystal |
WO2002010486A1 (en) * | 2000-07-28 | 2002-02-07 | Shin-Etsu Handotai Co., Ltd. | Method for detecting completion of melting of polycrystalline silicone, method for setting temperature for contacting seed crystal with melt, and apparatus for producing silicon single crystal |
JP2009161400A (en) * | 2008-01-08 | 2009-07-23 | Shin Etsu Handotai Co Ltd | Method and apparatus for producing silicon single crystal |
US8438883B2 (en) | 2007-02-28 | 2013-05-14 | Samsung Electronics Co., Ltd. | Washing machine improving washing efficiency |
KR101317197B1 (en) * | 2011-10-24 | 2013-10-15 | 한국생산기술연구원 | Orientation control device for sapphire growth furnace |
KR101317198B1 (en) * | 2011-10-24 | 2013-10-15 | 한국생산기술연구원 | Monitoring apparatus for sapphire growth furnace |
-
1995
- 1995-03-27 JP JP6808595A patent/JP2880092B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999004066A1 (en) * | 1997-07-17 | 1999-01-28 | Memc Electronic Materials, Inc. | Method and system for controlling growth of a silicon crystal |
WO1999011844A1 (en) * | 1997-09-03 | 1999-03-11 | Leybold Systems Gmbh | Method and device for monitoring a melt for producing crystals |
US6200384B1 (en) | 1998-07-27 | 2001-03-13 | Nippon Steel Corporation | Method for production of silicon single crystal |
WO2002010486A1 (en) * | 2000-07-28 | 2002-02-07 | Shin-Etsu Handotai Co., Ltd. | Method for detecting completion of melting of polycrystalline silicone, method for setting temperature for contacting seed crystal with melt, and apparatus for producing silicon single crystal |
US8438883B2 (en) | 2007-02-28 | 2013-05-14 | Samsung Electronics Co., Ltd. | Washing machine improving washing efficiency |
JP2009161400A (en) * | 2008-01-08 | 2009-07-23 | Shin Etsu Handotai Co Ltd | Method and apparatus for producing silicon single crystal |
KR101317197B1 (en) * | 2011-10-24 | 2013-10-15 | 한국생산기술연구원 | Orientation control device for sapphire growth furnace |
KR101317198B1 (en) * | 2011-10-24 | 2013-10-15 | 한국생산기술연구원 | Monitoring apparatus for sapphire growth furnace |
Also Published As
Publication number | Publication date |
---|---|
JP2880092B2 (en) | 1999-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109196144B (en) | Method and apparatus for manufacturing silicon single crystal | |
JP5167651B2 (en) | Method for measuring distance between heat shield member lower end surface and raw material melt surface, and method for controlling the distance | |
KR101901308B1 (en) | Method for calculating height position of silicon melt surface, method for drawing up monocrystalline silicon and device for drawing up monocrystalline silicon | |
JP3388664B2 (en) | Method and apparatus for manufacturing polycrystalline semiconductor | |
JPH10152395A (en) | Production of silicon single crystal | |
EP1734157B1 (en) | Production process of silicon single crystal | |
KR101048831B1 (en) | Graphite heater for producing single crystal, single crystal manufacturing device and single crystal manufacturing method | |
JPH08259381A (en) | Pulling up-controlling method for single crystal | |
KR102422843B1 (en) | Method of estimating oxygen concentration of silicon single crystal and manufacturing method of silicon single crystal | |
JP4035924B2 (en) | Single crystal diameter control method and crystal growth apparatus | |
JP3531333B2 (en) | Crystal manufacturing apparatus by Czochralski method, crystal manufacturing method, and crystal manufactured by this method | |
JP3085568B2 (en) | Apparatus and method for producing silicon single crystal | |
JPH09263485A (en) | Method for controlling pulling of single crystal, production of single crystal and apparatus therefor | |
JP3867476B2 (en) | Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus | |
JPH09175889A (en) | Single crystal pull-up apparatus | |
US7470326B2 (en) | Apparatus for manufacturing silicon single crystal, method for manufacturing silicon single crystal, and silicon single crystal | |
JP4725752B2 (en) | Single crystal manufacturing method | |
WO2009104533A1 (en) | Silicon single crystal growing device and quartz crucible | |
JP3589077B2 (en) | Method for producing silicon single crystal, and single crystal and silicon wafer produced by this method | |
KR20090125696A (en) | Method for manufacturing silicon single crystal | |
JP4134800B2 (en) | Graphite heater for single crystal production, single crystal production apparatus and single crystal production method | |
JPH11130585A (en) | Apparatus for pulling single crystal | |
JPS61122187A (en) | Apparatus for pulling up single crystal | |
JP4148060B2 (en) | Graphite heater for single crystal production, single crystal production apparatus and single crystal production method | |
TWI819744B (en) | Process for producing a single crystal of silicon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990119 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090129 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090129 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100129 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |