JP4930488B2 - Single crystal diameter detection method, single crystal manufacturing method using the same, and single crystal manufacturing apparatus - Google Patents

Single crystal diameter detection method, single crystal manufacturing method using the same, and single crystal manufacturing apparatus Download PDF

Info

Publication number
JP4930488B2
JP4930488B2 JP2008271225A JP2008271225A JP4930488B2 JP 4930488 B2 JP4930488 B2 JP 4930488B2 JP 2008271225 A JP2008271225 A JP 2008271225A JP 2008271225 A JP2008271225 A JP 2008271225A JP 4930488 B2 JP4930488 B2 JP 4930488B2
Authority
JP
Japan
Prior art keywords
single crystal
diameter
growth point
maximum
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008271225A
Other languages
Japanese (ja)
Other versions
JP2010100453A (en
Inventor
雅彦 浦野
直樹 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2008271225A priority Critical patent/JP4930488B2/en
Publication of JP2010100453A publication Critical patent/JP2010100453A/en
Application granted granted Critical
Publication of JP4930488B2 publication Critical patent/JP4930488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、チョクラルスキー法(CZ法)により、ルツボ内に収容したシリコン融液から単結晶を引き上げる際に、単結晶の直径を検出する方法及びこれを用いた単結晶の製造方法、並びに単結晶製造装置に関するものである。   The present invention relates to a method for detecting the diameter of a single crystal when a single crystal is pulled from a silicon melt contained in a crucible by the Czochralski method (CZ method), a method for producing a single crystal using the same, and The present invention relates to a single crystal manufacturing apparatus.

近年のCZ法による単結晶は無欠陥結晶など高品質化、直径300mm以上の大型化が進んできている。特に、無欠陥結晶の製造においては、炉内の温度勾配の制御が重要である。また、CZ法による結晶育成では、結晶の直径を一定にする必要がある。   In recent years, single crystals by the CZ method have been improved in quality, such as defect-free crystals, and larger in diameter of 300 mm or more. In particular, in the production of defect-free crystals, it is important to control the temperature gradient in the furnace. Further, in the crystal growth by the CZ method, it is necessary to make the crystal diameter constant.

従来の単結晶直径の検出方法では、直径の片側の位置の変化から、単結晶直径を検出していた。この場合、結晶直径はゼロ点から結晶半径分の全てを捉えないと検出値の正確な調整ができない。このために大口径結晶の場合には、分解能が下がり検出誤差も大きかった。   In the conventional single crystal diameter detection method, the single crystal diameter is detected from the change in the position of one side of the diameter. In this case, the detection value cannot be adjusted accurately unless the crystal diameter is captured from the zero point to the entire crystal radius. For this reason, in the case of a large-diameter crystal, the resolution is lowered and the detection error is large.

また、この検出方法は、バッチ終了後の炉内清掃の時にカメラへ接触する場合や、チャンバーの解体セット時のショックでカメラ位置がわずかに変化した場合などは、検出誤差が結晶間のバラツキとして現われてしまう。つまり、一本目の結晶製造時に条件を合わせても、次の2本目の結晶では直径が変わってしまい、また、相対的に炉内の温度分布も変わることで、単結晶の品質不良につながっていた。しかし、カメラ位置が変化しなければ再現性があるため、従来はこの方法を用いて直径を検出して結晶直径を制御していた。そのため、直径の制御精度が悪く、炉内の熱環境が変化してしまい、育成した単結晶に思わぬ欠陥が形成されるなど品質不良による歩留まり低下を起こす場合があった。   In addition, this detection method has a detection error that varies between crystals when it comes into contact with the camera when cleaning the furnace after batch completion, or when the camera position changes slightly due to a shock when the chamber is disassembled. It will appear. In other words, even if the conditions are adjusted during the production of the first crystal, the diameter of the next second crystal changes, and the temperature distribution in the furnace also changes relatively, leading to poor quality of the single crystal. It was. However, since there is reproducibility if the camera position does not change, conventionally, this method was used to detect the diameter and control the crystal diameter. For this reason, the accuracy of diameter control is poor, the thermal environment in the furnace changes, and an unexpected defect may be formed in the grown single crystal, resulting in a decrease in yield due to poor quality.

また,従来のように単結晶の直径を片側のみで検出している場合には、湯面位置によっても、結晶間のバラツキを生じていた。すなわち、湯面の位置が所望位置になければ、育成結晶の直径が引上げ中に変化して、下太りや下細りとなってしまう。下太りしている結晶と下細りしている結晶とでは、結晶長さに対する熱環境が異なり、品質のバラツキにつながっていた。そこで、結晶の直径を安定させるために初期湯面位置を求める方法が提案されている(例えば特許文献1参照)。   In addition, when the diameter of a single crystal is detected only on one side as in the prior art, there is variation between crystals depending on the position of the molten metal surface. That is, if the position of the molten metal surface is not at a desired position, the diameter of the grown crystal changes during the pulling, resulting in lower thickness or lower thickness. The thermal environment for the crystal length was different between the thinned crystal and the thinned crystal, leading to variations in quality. Therefore, a method for obtaining the initial molten metal surface position in order to stabilize the diameter of the crystal has been proposed (see, for example, Patent Document 1).

しかし、この方法によっても、単結晶の直径のバラツキを解消することは困難であり、設定直径として、バラツキを見込んだ太い設定になっている。そして、これによって歩留まりを低下させる問題が生じていた。   However, even with this method, it is difficult to eliminate the variation in the diameter of the single crystal, and the setting diameter is set to be thick in consideration of the variation. As a result, there has been a problem of reducing the yield.

特開平9−235182号公報JP-A-9-235182

本発明は、単結晶直径の検出精度を向上させる検出方法、及びその検出結果に基づいて精度良く直径制御を行い、無欠陥結晶の育成を歩留まり良く、工業的に安定して育成する単結晶の製造方法及びその製造装置を提供することを目的としている。   The present invention provides a detection method for improving the detection accuracy of a single crystal diameter, and a diameter control with high accuracy based on the detection result. It aims at providing a manufacturing method and its manufacturing device.

上記課題を解決するため、本発明は、チョクラルスキー法により、ルツボ内に収容したシリコン融液から単結晶を引き上げる際に、単結晶の直径を検出する方法であって、少なくとも、前記単結晶と融液面との接点である単結晶の成長点において単結晶の直径が最大となる成長点と前記単結晶を包囲している炉内構造物の内径が最大となる基準点との距離を、炉外からカメラを用いて測定し、該測定した距離と前記炉内構造物の内径との差から、前記単結晶の直径を算出し、該算出して得られた値を前記単結晶の直径とすることを特徴とする単結晶直径の検出方法を提供する(請求項1)。   In order to solve the above problems, the present invention is a method for detecting the diameter of a single crystal when pulling up a single crystal from a silicon melt contained in a crucible by the Czochralski method, and at least the single crystal The distance between the growth point at which the diameter of the single crystal is the maximum at the growth point of the single crystal, which is the contact point between the surface and the melt surface, and the reference point at which the inner diameter of the in-furnace structure surrounding the single crystal is maximized. , Measured from outside the furnace using a camera, from the difference between the measured distance and the inner diameter of the internal structure of the furnace, to calculate the diameter of the single crystal, the value obtained by the calculation of the single crystal A method for detecting a diameter of a single crystal, characterized in that the diameter is a diameter, is provided.

このように、単結晶の直径が最大となる成長点と炉内構造物の基準点との距離を炉外からカメラで測定し、測定した距離と炉内構造物の内径との差から、単結晶の直径を算出し、算出して得られた値を単結晶の直径とすることで、直接、単結晶の直径を検出する場合と比較して、検出の分解能が向上し、精度良く直径を検出することができる。そのため、大口径単結晶の直径の検出精度を向上することができ、単結晶の歩留まりの向上と品質ばらつきの低減を達成することができる。   In this way, the distance between the growth point at which the diameter of the single crystal is maximum and the reference point of the in-furnace structure is measured from the outside of the furnace with a camera, and the difference between the measured distance and the inner diameter of the in-furnace structure is By calculating the diameter of the crystal and using the calculated value as the diameter of the single crystal, the detection resolution is improved compared to the case of directly detecting the diameter of the single crystal, and the diameter can be accurately determined. Can be detected. Therefore, the detection accuracy of the diameter of the large-diameter single crystal can be improved, and the yield of the single crystal can be improved and the quality variation can be reduced.

また、本発明の検出方法では、前記単結晶の直径が最大となる成長点と前記炉内構造物の基準点との距離の測定は、前記単結晶の直径が最大となる成長点に正対するように設置したカメラを用いて行うことが好ましい(請求項2)。
これにより、単結晶の直径が最大となる成長点は、測定方向が直角となるカメラによって測定される。そのため、測定した単結晶の直径が最大となる成長点と炉内構造物の基準点との距離を用いて、単結晶の直径を算出する際に近似する必要がなく、より正確に単結晶の直径を検出することができる。
In the detection method of the present invention, the distance between the growth point at which the diameter of the single crystal is maximum and the reference point of the furnace structure is directly opposite to the growth point at which the diameter of the single crystal is maximum. It is preferable to use a camera installed as described above.
Thereby, the growth point at which the diameter of the single crystal is maximum is measured by a camera whose measurement direction is a right angle. Therefore, there is no need to approximate the single crystal diameter by calculating the single crystal diameter by using the distance between the growth point at which the measured single crystal diameter is the maximum and the reference point of the in-furnace structure. The diameter can be detected.

また、本発明の検出方法では、前記単結晶の直径が最大となる成長点と前記炉内構造物の基準点との距離の測定は、前記単結晶の直径が最大となる成長点の両端に設置した2台のカメラを用いて行うことが好ましい(請求項3)。
これにより、単結晶の成長点の両端に設置した2台のカメラを用いて、単結晶の成長点の両端と炉内構造物の基準点とのそれぞれの距離を測定することができる。そのため、測定したそれぞれの距離を用いることで、単結晶の直径をより正確に検出することができる。
In the detection method of the present invention, the distance between the growth point where the diameter of the single crystal is maximum and the reference point of the in-furnace structure is measured at both ends of the growth point where the diameter of the single crystal is maximum. It is preferable to carry out using two installed cameras.
Thereby, the distance between both ends of the single crystal growth point and the reference point of the in-furnace structure can be measured using two cameras installed at both ends of the single crystal growth point. Therefore, the diameter of the single crystal can be detected more accurately by using each measured distance.

また、本発明の検出方法では、前記単結晶の直径(D)は、前記単結晶の直径が最大となる成長点の両端における一方の成長点と前記炉内構造物の基準点との距離(a)、他方の成長点と前記炉内構造物の基準点との距離(b)、前記炉内構造物の内径(c)を用いて、下記式(1)によって算出することができる(請求項4)。
D=c−(a+b)・・・・・(1)
このような式(1)により単結晶の直径を算出することで、間接的にまた容易に単結晶の直径を検出することができる。また、2台のカメラで測定した距離を用いて、式(1)により単結晶の直径を算出することで、より精度良く単結晶の直径を検出することができる。
In the detection method of the present invention, the diameter (D) of the single crystal is a distance between one growth point at both ends of the growth point where the diameter of the single crystal is maximum and a reference point of the in-furnace structure ( a), the distance (b) between the other growth point and the reference point of the in-furnace structure, and the inner diameter (c) of the in-furnace structure can be calculated by the following formula (1) (claims) Item 4).
D = c- (a + b) (1)
By calculating the diameter of the single crystal by such an expression (1), the diameter of the single crystal can be detected indirectly and easily. Moreover, the diameter of a single crystal can be detected with higher accuracy by calculating the diameter of the single crystal according to Equation (1) using the distance measured by two cameras.

さらに、本発明の検出方法では、前記単結晶の直径(D)は、前記単結晶の直径が最大となる成長点の両端における一方の成長点と前記炉内構造物の基準点との距離(a)、前記炉内構造物の内径(c)を用いて、下記式(2)によって算出することができる(請求項5)。
D=c−2a・・・・・・・・(2)
このような式(2)により単結晶の直径を算出することで、1台のカメラで測定した単結晶の直径が最大となる成長点と炉内構造物の基準点との距離を用いて、間接的にまた容易に単結晶の直径を検出することができる。
Furthermore, in the detection method of the present invention, the diameter (D) of the single crystal is the distance between one growth point at both ends of the growth point where the diameter of the single crystal is maximum and the reference point of the in-furnace structure ( a) The inner diameter (c) of the in-furnace structure can be used to calculate the following equation (2).
D = c-2a (2)
By calculating the diameter of the single crystal according to such an expression (2), using the distance between the growth point at which the diameter of the single crystal is measured with one camera and the reference point of the in-furnace structure, The diameter of the single crystal can be detected indirectly and easily.

また、前記単結晶のコーン部形成時には、コーン部直径検出用の1台のカメラを用いて、前記単結晶の直径の測定を行い、前記単結晶の直胴部形成時には、直胴直径検出用の1台または2台のカメラを用いて、前記単結晶の直径の測定を行うことができる(請求項6)。
このように、単結晶のコーン部形成時と直胴部形成時において、異なるカメラを用いて単結晶の直径を測定することで、直胴部形成時の直径の検出分解能を向上することができる。また、測定視野の狭いカメラを用いて測定した場合であっても、大口径の単結晶の直径を確実に精度良く検出することができる。
In addition, when the cone portion of the single crystal is formed, the diameter of the single crystal is measured using one camera for detecting the cone portion diameter, and when the straight body portion of the single crystal is formed, the diameter of the straight barrel is detected. The diameter of the single crystal can be measured using one or two cameras.
In this way, by measuring the diameter of the single crystal using different cameras when forming the cone portion and the straight body portion of the single crystal, it is possible to improve the resolution of detecting the diameter when forming the straight body portion. . Even when measurement is performed using a camera with a narrow measurement field of view, the diameter of a single crystal having a large diameter can be reliably detected with high accuracy.

また、少なくとも、上記のいずれかに記載の方法により単結晶の直径を検出し、該検出結果に基づいて、前記単結晶の直径を制御しつつ、単結晶を引き上げて製造することを特徴とする単結晶の製造方法を提供する(請求項7)。
前述のように、本発明の単結晶直径の検出方法によれば、大口径の単結晶の直径を精度良く検出することができる。そして、本発明では、この検出結果に基づいて、高精度に単結晶の直径を制御することができるため、たとえば無欠陥結晶の育成を歩留まり良く工業的に安定して育成することができ、所望の高品質のシリコン単結晶を効率的に高い生産性で製造することができる。
In addition, the diameter of the single crystal is detected by at least one of the methods described above, and the single crystal is pulled up and manufactured based on the detection result while controlling the diameter of the single crystal. A method for producing a single crystal is provided (claim 7).
As described above, according to the single crystal diameter detection method of the present invention, the diameter of a large-diameter single crystal can be detected with high accuracy. In the present invention, since the diameter of the single crystal can be controlled with high accuracy based on the detection result, for example, the defect-free crystal can be grown industrially stably with a high yield. The high quality silicon single crystal can be efficiently manufactured with high productivity.

さらに、本発明は、チョクラルスキー法により、ルツボ内に収容したシリコン融液から単結晶を引き上げてシリコン単結晶を製造する単結晶製造装置であって、少なくとも、前記シリコン融液を収容するルツボと、前記単結晶を包囲する炉内構造物と、前記単結晶と融液面との接点である単結晶の成長点において単結晶の直径が最大となる成長点と前記炉内構造物の内径が最大となる基準点との距離を炉外から測定するカメラと、前記単結晶の直径を制御する直径制御装置とを備え、前記カメラで測定した前記単結晶の直径が最大となる成長点と前記炉内構造物の基準点との距離と前記炉内構造物の内径との差から、前記単結晶の直径を算出することで検出し、該検出結果に基づいて、前記直径制御装置によって前記単結晶の直径を制御するものであることを特徴とする単結晶製造装置を提供する(請求項8)。   Furthermore, the present invention is a single crystal manufacturing apparatus for manufacturing a silicon single crystal by pulling up a single crystal from a silicon melt stored in a crucible by the Czochralski method, and at least the crucible for storing the silicon melt A furnace internal structure surrounding the single crystal, a growth point at which the diameter of the single crystal is a maximum at a single crystal growth point that is a contact point between the single crystal and the melt surface, and an inner diameter of the furnace internal structure. A growth point where the diameter of the single crystal measured by the camera is a maximum, and a diameter control device for controlling the diameter of the single crystal, and From the difference between the distance from the reference point of the in-furnace structure and the inner diameter of the in-furnace structure, it is detected by calculating the diameter of the single crystal, and based on the detection result, the diameter control device Control the diameter of a single crystal Providing a single crystal manufacturing apparatus characterized by the at is (claim 8).

このように、本発明の単結晶製造装置は、単結晶の直径が最大となる成長点と炉内構造物の基準点との距離を炉外からカメラで測定し、測定した距離と炉内構造物の内径との差から、単結晶の直径を算出することで検出し、この検出結果に基づいて、単結晶の直径を制御するものである。そのため、直接、単結晶の直径を検出する場合と比較して、検出の分解能が向上し、精度良く直径を検出することができる。また、大口径の直径の検出精度も向上することができ、単結晶の歩留まりの向上と品質ばらつきの低減を達成することができる装置とすることができる。   Thus, the single crystal manufacturing apparatus of the present invention measures the distance between the growth point at which the diameter of the single crystal is maximum and the reference point of the in-furnace structure with the camera from the outside of the furnace, and the measured distance and the in-furnace structure Detection is performed by calculating the diameter of the single crystal from the difference from the inner diameter of the object, and the diameter of the single crystal is controlled based on the detection result. Therefore, compared with the case of directly detecting the diameter of the single crystal, the detection resolution is improved and the diameter can be detected with high accuracy. In addition, the detection accuracy of the large diameter can be improved, and a device capable of improving the yield of single crystals and reducing quality variations can be obtained.

また、本発明の製造装置では、前記カメラは、前記単結晶の直径が最大となる成長点に正対するように設置したものであることが好ましい(請求項9)。
これにより、カメラは、単結晶の直径が最大となる成長点に対して直角のところに位置する。そのため、測定した単結晶の直径が最大となる成長点と炉内構造物の基準点との距離を用いて、単結晶の直径を算出する際に近似する必要がなく、より正確に単結晶の直径を検出することができる装置とすることができる。
In the manufacturing apparatus of the present invention, it is preferable that the camera is installed so as to face a growth point where the diameter of the single crystal is maximum (claim 9).
Thus, the camera is positioned at a right angle to the growth point where the diameter of the single crystal is maximum. Therefore, there is no need to approximate the single crystal diameter by calculating the single crystal diameter by using the distance between the growth point at which the measured single crystal diameter is the maximum and the reference point of the in-furnace structure. It can be set as the apparatus which can detect a diameter.

また、本発明の製造装置では、前記カメラは、前記単結晶の直径が最大となる成長点の両端に2台設置したものであることが好ましい(請求項10)。
これにより、単結晶の成長点の両端に設置した2台のカメラを用いて、単結晶の成長点の両端と炉内構造物の基準点とのそれぞれの距離を測定することができる。そのため、測定したそれぞれの距離を用いることで、単結晶の直径をより正確に検出することができる装置とすることができる。
In the manufacturing apparatus of the present invention, it is preferable that two cameras are installed at both ends of the growth point where the diameter of the single crystal is maximum (claim 10).
Thereby, the distance between both ends of the single crystal growth point and the reference point of the in-furnace structure can be measured using two cameras installed at both ends of the single crystal growth point. Therefore, it can be set as the apparatus which can detect the diameter of a single crystal more correctly by using each measured distance.

また、本発明の製造装置では、前記単結晶の直径(D)は、前記単結晶の直径が最大となる成長点の両端における一方の成長点と前記炉内構造物の基準点との距離(a)、他方の成長点と前記炉内構造物の基準点との距離(b)、前記炉内構造物の内径(c)を用いて、下記式(1)によって算出するものであることが好ましい(請求項11)。
D=c−(a+b)・・・・・(1)
このような式(1)により単結晶の直径を算出することで、間接的にまた容易に単結晶の直径を検出することができる装置とすることができる。また、2台のカメラで測定した距離を用いて、式(1)により単結晶の直径を算出することで、より精度良く単結晶の直径を検出することができる装置とすることができる。
In the manufacturing apparatus of the present invention, the diameter (D) of the single crystal is the distance between one growth point at both ends of the growth point where the diameter of the single crystal is maximum and the reference point of the in-furnace structure ( a), the distance (b) between the other growth point and the reference point of the in-furnace structure, and the inner diameter (c) of the in-furnace structure may be calculated by the following formula (1). Preferred (claim 11).
D = c- (a + b) (1)
By calculating the diameter of the single crystal by such an equation (1), the apparatus can detect the diameter of the single crystal indirectly and easily. Further, by calculating the diameter of the single crystal according to the equation (1) using the distance measured by the two cameras, the apparatus can detect the diameter of the single crystal with higher accuracy.

また、本発明の製造装置では、前記単結晶の直径(D)は、前記単結晶の直径が最大となる成長点の両端における一方の成長点と前記炉内構造物の基準点との距離(a)、前記炉内構造物の内径(c)を用いて、下記式(2)によって算出するものであることができる(請求項12)。
D=c−2a・・・・・・・・(2)
このような式(2)により単結晶の直径を算出することで、1台のカメラで測定した単結晶の直径が最大となる成長点と炉内構造物の基準点との距離を用いて、間接的にまた容易に単結晶の直径を検出することができる装置とすることができる。
In the manufacturing apparatus of the present invention, the diameter (D) of the single crystal is the distance between one growth point at both ends of the growth point where the diameter of the single crystal is maximum and the reference point of the in-furnace structure ( a) It can be calculated by the following formula (2) using the inner diameter (c) of the in-furnace structure (claim 12).
D = c-2a (2)
By calculating the diameter of the single crystal according to such an expression (2), using the distance between the growth point at which the diameter of the single crystal is measured with one camera and the reference point of the in-furnace structure, The apparatus can detect the diameter of the single crystal indirectly and easily.

また、本発明の製造装置では、前記カメラは、前記単結晶の直胴部形成時の直胴直径検出用に1台または2台設置されたものであり、該カメラの他に、前記単結晶のコーン部形成時のコーン部直径検出用に1台のカメラが設置されたものであることが好ましい(請求項13)。
このように、単結晶のコーン部直径検出用と直胴直径検出用として、用途別にカメラが設置されていることで、直胴部形成時の直径の検出分解能を向上することができ、大口径の単結晶の直径を精度良く検出することができる装置とすることができる。また、用途に関係なく1台のカメラで単結晶の直径を測定する場合と比較して、測定視野の狭いカメラを設置することが可能である。
Further, in the manufacturing apparatus of the present invention, one or two cameras are installed for detecting the diameter of the straight body when forming the straight body of the single crystal. In addition to the camera, the single crystal It is preferable that one camera is installed for detecting the diameter of the cone portion when forming the cone portion.
In this way, the single-crystal cone diameter detection and straight cylinder diameter detection cameras are installed according to applications, so that the diameter detection resolution at the time of straight cylinder formation can be improved, and the large aperture It can be set as the apparatus which can detect the diameter of this single crystal with high precision. In addition, it is possible to install a camera with a narrower measurement field of view than when measuring the diameter of a single crystal with a single camera regardless of the application.

以上説明したように、本発明の単結晶直径の検出方法によれば、大口径の単結晶の直径を精度良く検出することができる。そして、この検出結果に基づいて、高精度に単結晶の直径を制御することが可能である。そのため、たとえば無欠陥結晶の育成を歩留まり良く工業的に安定して育成することができ、所望の高品質のシリコン単結晶を効率的に高い生産性で製造することができる。   As described above, according to the method for detecting a single crystal diameter of the present invention, the diameter of a large-diameter single crystal can be detected with high accuracy. And based on this detection result, it is possible to control the diameter of a single crystal with high precision. Therefore, for example, defect-free crystals can be grown with good yield and industrially stably, and a desired high-quality silicon single crystal can be efficiently produced with high productivity.

以下、本発明についてより具体的に説明する。
前述のように、従来は、単結晶直径の片側の位置の変化から、単結晶直径を検出していたが、この方法であると単結晶直径はゼロ点から結晶半径分の全てを捉えないと検出値の正確な調整ができないため、大口径の単結晶の場合には、分解能が下がり検出誤差も大きいという問題があった。
Hereinafter, the present invention will be described more specifically.
As described above, conventionally, the single crystal diameter was detected from the change in the position of one side of the single crystal diameter, but with this method, the single crystal diameter must be captured from the zero point to the entire crystal radius. Since the detection value cannot be accurately adjusted, there is a problem that the resolution is lowered and the detection error is large in the case of a single crystal having a large diameter.

そこで、本発明者らは、単結晶の直径のゼロ点から半径分の全てを捉えるのではなく、もっと狭い範囲を測定することで単結晶直径の検出することができれば、検出の分解能が向上できることに想到し、単結晶の直径が最大となる成長点と炉内構造物の内径が最大となる基準点との距離をカメラで測定し、測定した距離と既知である炉内構造物の内径との差から、単結晶の直径を算出することを試みた。   Therefore, the present inventors can improve the detection resolution if the single crystal diameter can be detected by measuring a narrower range rather than capturing all of the radius from the zero point of the single crystal diameter. The distance between the growth point where the diameter of the single crystal is maximum and the reference point where the inner diameter of the furnace structure is maximum is measured with a camera, and the measured distance and the known inner diameter of the furnace structure are measured. From this difference, an attempt was made to calculate the diameter of the single crystal.

その結果、算出した単結晶の直径は、実際の単結晶の直径に一致することがわかった。
そして、カメラを2台使用すると、単結晶の直径(D)は、単結晶の直径が最大となる成長点の両端における一方の成長点と炉内構造物の基準点との距離(a)、他方の成長点と炉内構造物の基準点との距離(b)、炉内構造物の内径(c)を用いて、下記式(1)によって算出することができることもわかった。
D=c−(a+b)・・・・・(1)
As a result, it was found that the calculated diameter of the single crystal coincided with the actual diameter of the single crystal.
And when two cameras are used, the diameter (D) of the single crystal is the distance (a) between one growth point at both ends of the growth point where the diameter of the single crystal is maximum and the reference point of the in-furnace structure. It was also found that the distance (b) between the other growth point and the reference point of the in-furnace structure and the inner diameter (c) of the in-furnace structure can be calculated by the following formula (1).
D = c- (a + b) (1)

さらに、カメラが1台の場合であっても、単結晶の直径(D)は、単結晶の直径が最大となる成長点の両端における一方の成長点と炉内構造物の基準点との距離(a)、炉内構造物の内径(c)を用いて、下記式(2)によって算出することができることもわかった。
D=c−2a・・・・・・・・(2)
Further, even if there is one camera, the diameter (D) of the single crystal is the distance between one growth point at both ends of the growth point where the diameter of the single crystal is maximum and the reference point of the in-furnace structure. It was also found that (a) can be calculated by the following formula (2) using the inner diameter (c) of the in-furnace structure.
D = c-2a (2)

本発明は、上記の発見に基づいて完成されたものであり、以下、本発明について図面を参照しながらさらに詳細に説明するが、本発明はこれらに限定されるものではない。
図1は本発明の単結晶の製造装置の一例を示す概略図である。
The present invention has been completed based on the above findings, and the present invention will be described in more detail below with reference to the drawings. However, the present invention is not limited to these.
FIG. 1 is a schematic view showing an example of a single crystal production apparatus of the present invention.

この単結晶製造装置20は、中空円筒状のチャンバー1を具備し、その中心部にルツボ5が配設されている。このルツボは二重構造であり、有底円筒状をなす石英製の内側保持容器(以下、単に「石英ルツボ5a」という)と、その石英ルツボ5aの外側を保持すべく適合された同じく有底円筒状の黒鉛製の外側保持容器(「黒鉛ルツボ5b」)とから構成されている。   The single crystal manufacturing apparatus 20 includes a hollow cylindrical chamber 1, and a crucible 5 is disposed at the center thereof. This crucible has a double structure, and is an inner holding container made of quartz having a bottomed cylindrical shape (hereinafter simply referred to as “quartz crucible 5a”) and a similarly bottomed fitting adapted to hold the outside of the quartz crucible 5a. It is composed of a cylindrical graphite outer holding container (“graphite crucible 5b”).

これらのルツボ5は、回転および昇降が可能になるように支持軸6の上端部に固定されていて、ルツボの外側には抵抗加熱式ヒーター8が概ね同心円状に配設されている。さらに、ヒーター8の外側周辺には断熱材9が同心円状に配設されている。そして、ヒーター8により、シリコン原料を溶融したシリコン融液2がルツボ内に収容されている。   These crucibles 5 are fixed to the upper end of the support shaft 6 so as to be able to rotate and move up and down, and a resistance heating heater 8 is arranged substantially concentrically outside the crucible. Further, a heat insulating material 9 is concentrically arranged around the outside of the heater 8. And the silicon melt 2 which melt | dissolved the silicon raw material with the heater 8 is accommodated in the crucible.

シリコン融液2を充填したルツボ5の中心軸には、支持軸6と同一軸上で逆方向または同方向に所定の速度で回転する引上ワイヤー(または引上シャフト、以下両者を合わせて「引上軸7」という)が配設され、引上軸7の下端には種結晶4が保持されている。そして、種結晶4の下端面にはシリコン単結晶3が形成される。   The central axis of the crucible 5 filled with the silicon melt 2 is a pull-up wire (or pull-up shaft that rotates at a predetermined speed in the reverse direction or the same direction on the same axis as the support shaft 6. And a seed crystal 4 is held at the lower end of the pulling shaft 7. A silicon single crystal 3 is formed on the lower end surface of the seed crystal 4.

さらに、単結晶製造装置20は、シリコン単結晶3を包囲する炉内構造物10と、単結晶3と融液面との接点である単結晶の成長点と炉内構造物10との距離を炉外から測定するカメラ11と、単結晶3の直径を制御する直径制御装置12とを具備する。   Furthermore, the single crystal manufacturing apparatus 20 determines the distance between the in-furnace structure 10 surrounding the silicon single crystal 3 and the growth point of the single crystal, which is a contact point between the single crystal 3 and the melt surface, and the in-furnace structure 10. A camera 11 for measuring from outside the furnace and a diameter control device 12 for controlling the diameter of the single crystal 3 are provided.

この直径制御装置12は、カメラ11を用いた単結晶の直径の検出結果に応じて、支持軸6および引上軸7あるいはヒーター8に信号を出力して、ルツボ位置、ルツボ上昇速度、種結晶位置、引上速度、あるいはヒーターパワー等を制御することで、単結晶の直径を制御する。   The diameter control device 12 outputs signals to the support shaft 6 and the pulling shaft 7 or the heater 8 according to the detection result of the diameter of the single crystal using the camera 11, and the crucible position, the crucible rising speed, the seed crystal. The diameter of the single crystal is controlled by controlling the position, pulling speed, heater power, etc.

単結晶製造装置20は、単結晶3の直径が最大となる成長点と炉内構造物10の内径が最大となる基準点との距離を炉外からカメラ11で測定し、測定した距離と炉内構造物10の内径の差から単結晶3の直径を算出することで検出し、この検出結果に基づいて、直径制御装置12によって単結晶3の直径を制御するものである。従って、直接、単結晶の直径を検出する場合と比較して、検出の分解能が向上し、精度良く直径を検出することができる。そのため、大口径の直径の検出精度も向上することができ、単結晶の歩留まりの向上と品質ばらつきの低減を達成することができる装置とすることができる。   The single crystal manufacturing apparatus 20 measures the distance between the growth point at which the diameter of the single crystal 3 is maximum and the reference point at which the inner diameter of the in-furnace structure 10 is maximum with the camera 11 from the outside of the furnace, and the measured distance and the furnace Detection is performed by calculating the diameter of the single crystal 3 from the difference in inner diameter of the internal structure 10, and the diameter of the single crystal 3 is controlled by the diameter control device 12 based on the detection result. Therefore, compared with the case of directly detecting the diameter of the single crystal, the detection resolution is improved and the diameter can be detected with high accuracy. Therefore, the detection accuracy of a large diameter can be improved, and a device capable of improving the yield of single crystals and reducing quality variations can be obtained.

この場合、上記製造装置は、カメラを単結晶の直径が最大となる成長点の位置に正対するように設置したものであることが好ましい。
ここで、図2は本発明における単結晶とカメラとの上面構成例を模式的に示す図である。図2のように、単結晶の直径が最大となる成長点は、カメラの撮影方向から直角のところに位置する。そのため、測定した単結晶の直径が最大となる成長点と炉内構造物の基準点との距離を用いて、単結晶の直径を算出する際に近似する必要がなく、より正確に単結晶の直径を検出することができる
In this case, it is preferable that the manufacturing apparatus is a camera installed so as to face the growth point where the diameter of the single crystal is maximum.
Here, FIG. 2 is a diagram schematically showing a top surface configuration example of the single crystal and the camera in the present invention. As shown in FIG. 2, the growth point at which the diameter of the single crystal is maximum is located at a right angle from the photographing direction of the camera. Therefore, there is no need to approximate the single crystal diameter by calculating the single crystal diameter by using the distance between the growth point at which the measured single crystal diameter is the maximum and the reference point of the in-furnace structure. Can detect the diameter

また、上記製造装置では、図2のように、単結晶の直径が最大となる成長点の両端にカメラを2台設置することができる。
そして、2台のカメラで測定した距離のうち、単結晶の直径が最大となる成長点の両端における一方の成長点と炉内構造物の基準点との距離(a)、他方の成長点と炉内構造物の基準点との距離(b)として、さらに炉内構造物の内径(c)を用いて、下記式(1)によって単結晶の直径(D)を算出することができる。炉内構造物の内径(c)は、用いた炉内構造物の内径であるので、予め知ることができる。
D=c−(a+b)・・・・・(1)
In the manufacturing apparatus, as shown in FIG. 2, two cameras can be installed at both ends of the growth point where the diameter of the single crystal is maximum.
Of the distances measured by the two cameras, the distance (a) between one growth point and the reference point of the in-furnace structure at both ends of the growth point where the diameter of the single crystal is maximum, and the other growth point As the distance (b) from the reference point of the in-furnace structure, the inner diameter (c) of the in-furnace structure can be used to calculate the diameter (D) of the single crystal by the following formula (1). Since the inner diameter (c) of the in-furnace structure is the inner diameter of the used in-furnace structure, it can be known in advance.
D = c- (a + b) (1)

このような式(1)により単結晶の直径を算出することで、間接的にまた容易に単結晶の直径を検出することができる。また、2台のカメラで測定した距離を用いて、式(1)により単結晶の直径を算出することで、より精度良く単結晶の直径を検出することができる装置とすることができる。   By calculating the diameter of the single crystal by such an expression (1), the diameter of the single crystal can be detected indirectly and easily. Further, by calculating the diameter of the single crystal according to the equation (1) using the distance measured by the two cameras, the apparatus can detect the diameter of the single crystal with higher accuracy.

さらに、上記製造装置では、カメラを1台とすることもできる。
この場合、単結晶の直径(D)は、単結晶の直径が最大となる成長点の両端における一方の成長点と炉内構造物の基準点との距離(a)、炉内構造物の内径(c)を用いて、下記式(2)によって算出することができる。
D=c−2a・・・・・・・・(2)
Furthermore, in the manufacturing apparatus, one camera can be used.
In this case, the diameter (D) of the single crystal is the distance (a) between one growth point at both ends of the growth point where the diameter of the single crystal is maximum and the reference point of the in-furnace structure, and the inner diameter of the in-furnace structure. Using (c), it can be calculated by the following equation (2).
D = c-2a (2)

このような式(2)により単結晶の直径を算出することで、2台のカメラを使用しなくても、間接的にまた容易に単結晶の直径を検出することができる。   By calculating the diameter of the single crystal according to the equation (2), the diameter of the single crystal can be detected indirectly and easily without using two cameras.

また、上記製造装置では、単結晶の直胴部形成時の直胴直径検出用に上記のように1台または2台のカメラを設置し、さらに、これとは別に単結晶のコーン部形成時のコーン部直径検出用に1台のカメラを設置することもできる。
このように、単結晶のコーン部直径検出用と直胴直径検出用として、用途別にカメラが設置されることで、直胴部形成時の直径の検出分解能を向上することができ、大口径の単結晶の直径を精度良く検出することができる装置とすることができる。また、用途に関係なく1台のカメラで単結晶の直径を測定する場合と比較して、測定視野の狭いカメラを設置することが可能である。
Further, in the above manufacturing apparatus, one or two cameras are installed as described above for detecting the diameter of the straight body when forming the straight body portion of the single crystal, and in addition to this, when forming the cone portion of the single crystal. It is also possible to install one camera for detecting the cone diameter.
In this way, by installing cameras for different applications for detecting the cone diameter of a single crystal and for detecting the diameter of a straight cylinder, it is possible to improve the resolution of detecting the diameter when forming the straight cylinder, It can be set as the apparatus which can detect the diameter of a single crystal accurately. In addition, it is possible to install a camera with a narrower measurement field of view than when measuring the diameter of a single crystal with a single camera regardless of the application.

本発明では、例えばこのような単結晶の製造装置を用いて、CZ(チョクラルスキー)法によりルツボ内の融液からシリコン単結晶を引上げる際に、次のように、単結晶の直径を検出する。   In the present invention, for example, when the silicon single crystal is pulled from the melt in the crucible by the CZ (Czochralski) method using such a single crystal manufacturing apparatus, the diameter of the single crystal is set as follows. To detect.

まず、単結晶の直径が最大となる成長点と炉内構造物の内径が最大となる基準点との距離を、炉外からカメラを用いて測定する。ここで、図3は本発明の単結晶製造装置のカメラの測定範囲を示す図である。図3における距離a、bは、カメラを用いて測定した距離である。そして、その測定した距離と炉内構造物の内径との差から、単結晶の直径を算出する。これにより、得られた値を単結晶の直径として、間接的に検出することができる。   First, the distance between the growth point at which the diameter of the single crystal is maximum and the reference point at which the inner diameter of the in-furnace structure is maximized is measured from outside the furnace using a camera. Here, FIG. 3 is a diagram showing the measurement range of the camera of the single crystal manufacturing apparatus of the present invention. The distances a and b in FIG. 3 are distances measured using a camera. Then, the diameter of the single crystal is calculated from the difference between the measured distance and the inner diameter of the in-furnace structure. Thereby, the obtained value can be indirectly detected as the diameter of the single crystal.

また、単結晶の直径が最大となる成長点と炉内構造物の基準点との距離の測定は、図2に示すように、単結晶の直径が最大となる成長点の位置に正対するように設置したカメラを用いて行うことが好ましい。
これにより、単結晶の直径が最大となる成長点は、測定方向が直角となるカメラによって測定される。そのため、測定した単結晶の直径が最大となる成長点と炉内構造物の基準点との距離を用いて、単結晶の直径を算出する際に近似する必要がなく、より正確に単結晶の直径を検出することができる。
Further, the measurement of the distance between the growth point at which the diameter of the single crystal is maximum and the reference point of the in-furnace structure is as shown in FIG. 2 so as to face the position of the growth point at which the diameter of the single crystal is maximum. It is preferable to use a camera installed in
Thereby, the growth point at which the diameter of the single crystal is maximum is measured by a camera whose measurement direction is a right angle. Therefore, there is no need to approximate the single crystal diameter by calculating the single crystal diameter by using the distance between the growth point at which the measured single crystal diameter is the maximum and the reference point of the in-furnace structure. The diameter can be detected.

さらに、単結晶の直径が最大となる成長点の両端に設置した2台のカメラを用いて測定することもできる。具体的には、図2のように、単結晶の直径が最大となる成長点の両端の位置にそれぞれ正対するように設置した2台のカメラを用いて測定を行い、この2台のカメラで測定された各距離a、bを用いて、単結晶の直径を算出する。   Furthermore, it can also measure using two cameras installed in the both ends of the growth point where the diameter of a single crystal becomes the maximum. Specifically, as shown in FIG. 2, measurement is performed using two cameras placed so as to face the positions of both ends of the growth point where the diameter of the single crystal is maximum, and these two cameras are used. The diameter of the single crystal is calculated using the measured distances a and b.

図2および図3における距離a、bのうち、単結晶の直径が最大となる成長点の両端における一方の成長点と炉内構造物の基準点との距離を(a)、他方の成長点と炉内構造物の基準点との距離(b)とすると、炉内構造物の内径(c)を用いて、下記式(1)によって単結晶の直径(D)を算出することができる。
D=c−(a+b)・・・・・(1)
2 and 3, the distance between one growth point at both ends of the growth point at which the diameter of the single crystal is maximum and the reference point of the in-furnace structure is (a), and the other growth point. And the reference point of the in-furnace structure, the diameter (D) of the single crystal can be calculated by the following formula (1) using the inner diameter (c) of the in-furnace structure.
D = c- (a + b) (1)

このような式(1)により単結晶の直径を算出することで、間接的にまた容易に単結晶の直径を検出することができる。また、2台のカメラで測定した距離を用いて、式(1)により単結晶の直径を算出することで、より精度良く単結晶の直径を検出することができる。   By calculating the diameter of the single crystal by such an expression (1), the diameter of the single crystal can be detected indirectly and easily. Moreover, the diameter of a single crystal can be detected with higher accuracy by calculating the diameter of the single crystal according to Equation (1) using the distance measured by two cameras.

また、単結晶の直径が最大となる成長点と炉内構造物の基準点との距離の測定は、1台のカメラで行うことができる。
この場合、単結晶の直径(D)は、単結晶の直径が最大となる成長点の両端における一方の成長点と炉内構造物の基準点との距離(a)、炉内構造物の内径(c)を用いて、下記式(2)によって算出することができる。
D=c−2a・・・・・・・・(2)
Further, the distance between the growth point at which the diameter of the single crystal is maximum and the reference point of the in-furnace structure can be measured with a single camera.
In this case, the diameter (D) of the single crystal is the distance (a) between one growth point at both ends of the growth point where the diameter of the single crystal is maximum and the reference point of the in-furnace structure, and the inner diameter of the in-furnace structure. Using (c), it can be calculated by the following equation (2).
D = c-2a (2)

このような式(2)により単結晶の直径を算出することで、2台のカメラを使用しなくても、間接的にまた容易に単結晶の直径を検出することができる。   By calculating the diameter of the single crystal according to the equation (2), the diameter of the single crystal can be detected indirectly and easily without using two cameras.

また、単結晶のコーン部形成時には、コーン部直径検出用の1台のカメラを用いて、単結晶の直径の測定を行い、単結晶の直胴部形成時には、直胴直径検出用の1台または2台のカメラを用いて、単結晶の直径の測定を行うこともできる。
このように、単結晶のコーン部形成時と直胴部形成時において、異なるカメラを用いて単結晶の直径を測定することで、直胴部形成時の直径の検出分解能を向上することができる。また、測定視野の狭いカメラを用いて測定した場合であっても、大口径の単結晶の直径を精度良く検出することができる。
In addition, when forming a single crystal cone part, the diameter of the single crystal is measured using one camera for detecting the cone part diameter. When forming a single crystal straight body part, one unit for detecting the straight cylinder diameter is used. Alternatively, the diameter of a single crystal can be measured using two cameras.
In this way, by measuring the diameter of the single crystal using different cameras when forming the cone portion and the straight body portion of the single crystal, it is possible to improve the resolution of detecting the diameter when forming the straight body portion. . Even when measurement is performed using a camera having a narrow measurement field of view, the diameter of a single crystal having a large diameter can be detected with high accuracy.

そして、このように単結晶の直径を検出することで、大口径の単結晶の直径を精度良く検出することができる。そして、この検出結果に基づいて、単結晶の直径を制御しつつ、単結晶を引き上げることで、たとえば、高精度の直径制御が必要な無欠陥結晶の育成を歩留まり良く工業的に安定して育成することができ、所望の高品質のシリコン単結晶を効率的に高い生産性で製造することができる。   And by detecting the diameter of a single crystal in this way, the diameter of a large-diameter single crystal can be detected with high accuracy. Based on this detection result, the single crystal is pulled up while controlling the diameter of the single crystal, for example, to grow a defect-free crystal that requires high-precision diameter control with high yield and industrial stability. The desired high quality silicon single crystal can be efficiently manufactured with high productivity.

次に本発明の実施例、比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
図1に示すような単結晶製造装置を用いて、ルツボ内にシリコン原料を充填し、そのシリコン原料をヒーターで溶解して、シリコン融液とした。そして、図2に示すように2台のカメラを使用して単結晶直径を検出し、その検出結果に基づいて、単結晶直径を制御しつつ、直径300mmのシリコン単結晶を引上げて製造した。その後、製造した単結晶の直径を炉外に出して実際に測定した。ここで、図4に単結晶の実直径と検出結果を示す。
Next, the present invention will be described more specifically with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these.
(Example)
A silicon raw material was filled in a crucible using a single crystal manufacturing apparatus as shown in FIG. 1, and the silicon raw material was melted with a heater to obtain a silicon melt. Then, as shown in FIG. 2, the single crystal diameter was detected using two cameras, and the silicon single crystal having a diameter of 300 mm was pulled up and manufactured based on the detection result while controlling the single crystal diameter. Thereafter, the diameter of the produced single crystal was measured outside the furnace. FIG. 4 shows the actual diameter of the single crystal and the detection result.

図4より、単結晶の引上げ時における単結晶直径の検出結果と実際の単結晶直径とは、ほぼ同じになり、誤差は最大でも0.5mmφであった。
また、得られたシリコン単結晶の欠陥測定をしたところ、所望の無欠陥結晶が得られ、高品質のシリコン単結晶を効率的に高い生産性で製造することができた。
From FIG. 4, the detection result of the single crystal diameter at the time of pulling the single crystal was almost the same as the actual single crystal diameter, and the error was 0.5 mmφ at the maximum.
Moreover, when the defect of the obtained silicon single crystal was measured, a desired defect-free crystal was obtained, and a high-quality silicon single crystal could be efficiently produced with high productivity.

また、このときの湯面の位置変化について、図5に概略図を示す。湯面が変化した場合、単結晶直径が変化しないときでも、図5のように、単結晶の成長点は、縦方向に移動してしまう。しかし、横方向、すなわち成長点と炉内構造物との距離は変化していないことがわかる。このように、カメラを単結晶の直径が最大となる成長点の位置に正対するように設置することにより、横方向の変化は実際の単結晶の直径の変化のみを反映するようになる。このことにより、本発明では湯面の位置変化は、単結晶直径の検出に影響しないことがわかる。   Moreover, about the position change of the hot_water | molten_metal surface at this time, a schematic diagram is shown in FIG. When the molten metal surface changes, even when the single crystal diameter does not change, the growth point of the single crystal moves in the vertical direction as shown in FIG. However, it can be seen that the lateral direction, that is, the distance between the growth point and the in-furnace structure does not change. In this way, by setting the camera so as to face the position of the growth point where the diameter of the single crystal is maximum, the change in the lateral direction reflects only the change in the actual diameter of the single crystal. From this, it can be seen that in the present invention, the position change of the molten metal surface does not affect the detection of the single crystal diameter.

さらに、2台のカメラを用いて、単結晶の成長点の両端を測定したために、引上げワイヤーが振れても、片側の検出が大きくなると反対側の検出が小さくなり、ワイヤー振れによる測定誤差をキャンセルすることができ、単結晶直径の検出に影響しないと考えられる。   In addition, since the two ends of the single crystal growth point were measured using two cameras, even if the pulling wire was shaken, the detection on the opposite side was reduced when the detection on one side was increased, and the measurement error due to wire shake was canceled. It is considered that it does not affect the detection of the single crystal diameter.

また、このときの単結晶直径の検出に使用したカメラの測定視野は、100mmであった。表1にカメラの測定視野長、カメラの検出直径、カメラの検出値(bit)との関係を示す。   Moreover, the measurement visual field of the camera used for the detection of the single crystal diameter at this time was 100 mm. Table 1 shows the relationship between the measurement field length of the camera, the detection diameter of the camera, and the detection value (bit) of the camera.

Figure 0004930488
Figure 0004930488

表1より、カメラの測定視野長が0mmのとき、カメラの検出直径は250mmφであり、カメラの検出値は0bitである。また、炉内構造物の基準点をカメラの測定視野に入れるため、カメラの測定視野長を100mmとし、このときのカメラの最大検出直径は450mmφとなり、カメラの検出値は4000bitである。従って、この場合の単結晶直径の検出分解能は、単結晶直径の差200mmφ(=450mmφ−250mmφ)とカメラの検出値4000bit(=4000bit−0bit)から、200mmφ/4000bit=0.05mmφ/bitである。   From Table 1, when the measurement visual field length of the camera is 0 mm, the detected diameter of the camera is 250 mmφ, and the detected value of the camera is 0 bit. Further, since the reference point of the in-furnace structure is placed in the measurement field of the camera, the measurement field length of the camera is 100 mm, the maximum detection diameter of the camera at this time is 450 mmφ, and the detection value of the camera is 4000 bits. Therefore, the detection resolution of the single crystal diameter in this case is 200 mmφ / 4000 bit = 0.05 mmφ / bit from the difference of the single crystal diameter of 200 mmφ (= 450 mmφ−250 mmφ) and the detected value of 4000 bits (= 4000 bit−0 bit). .

(比較例)
従来の単結晶製造装置を用いて、ルツボ内にシリコン原料を充填し、そのシリコン原料をヒーターで溶解して、シリコン融液とした。そして、実施例と異なり、1台のカメラを使用して結晶成長点の位置変化から単結晶直径の検出し、その検出結果に基づいて、単結晶直径を制御しつつ、直径300mmのシリコン単結晶を引上げて製造した。その後、製造した単結晶の直径を炉外に出して実際に測定した。図6に単結晶の実直径と検出結果を示す。また、図7は単結晶とカメラとの上面構成例を模式的に示す図である。
(Comparative example)
Using a conventional single crystal manufacturing apparatus, a silicon raw material was filled into a crucible, and the silicon raw material was melted with a heater to obtain a silicon melt. Unlike the example, the single crystal diameter is detected from the position change of the crystal growth point using one camera, and the single crystal diameter is controlled based on the detection result. Was manufactured. Thereafter, the diameter of the produced single crystal was measured outside the furnace. FIG. 6 shows the actual diameter and detection result of the single crystal. FIG. 7 is a diagram schematically showing an example of the upper surface configuration of the single crystal and the camera.

図6より、単結晶直径の検出結果はほぼ一定の検出直径になっているが、実直径は引き上げが進むほど太くなる下太りの状況になっていて、最大誤差は3.0mmφであった。
これは湯面位置の変化による測定誤差が原因と考えられる。
また、得られたシリコン単結晶の欠陥測定をしたところ、所望の無欠陥結晶をほとんど得ることはできなかった。
From FIG. 6, the detection result of the single crystal diameter is a substantially constant detection diameter, but the actual diameter is underweight as the pulling progresses, and the maximum error is 3.0 mmφ.
This is considered to be caused by a measurement error due to a change in the molten metal surface position.
Moreover, when the defect measurement of the obtained silicon single crystal was carried out, a desired defect-free crystal could hardly be obtained.

ここで、このときの湯面の位置変化について、図8に概略図を示す。また、図9は単結晶製造装置のカメラの測定範囲を示す図である。図8のように、カメラの設置角度を45度とした場合、湯面が1mm変化すると単結晶の直径は2mmφ変化する。すなわち、湯面が1mm下降した場合には、単結晶の実直径は2mmφ細く制御される。これは、図9のようにカメラが単結晶の片側だけを測定し、その湯面の位置変化により単結晶直径の検出値が影響されているためと考えられる。   Here, about the position change of the hot_water | molten_metal surface at this time, a schematic diagram is shown in FIG. Moreover, FIG. 9 is a figure which shows the measurement range of the camera of a single crystal manufacturing apparatus. As shown in FIG. 8, when the installation angle of the camera is 45 degrees, the diameter of the single crystal changes by 2 mmφ when the molten metal surface changes by 1 mm. That is, when the molten metal surface is lowered by 1 mm, the actual diameter of the single crystal is controlled to be 2 mmφ thin. This is presumably because the camera measures only one side of the single crystal as shown in FIG. 9, and the detected value of the single crystal diameter is affected by the position change of the molten metal surface.

さらに、1台のカメラを用いて単結晶の片側だけを測定したために、単結晶の引き上げ中に引上げワイヤーが振れて湯面の位置が変化すると、その位置変化がそのまま単結晶直径の検出に影響して誤差を生じたと考えられる。   Furthermore, since only one side of the single crystal was measured using a single camera, if the pulling wire swings during the pulling of the single crystal and the position of the molten metal surface changes, the change in position directly affects the detection of the single crystal diameter. It is thought that an error occurred.

このとき、単結晶直径の検出に使用したカメラの測定視野は、図7に示すように200mmであった。表2にカメラの測定視野長、カメラの検出直径、カメラの検出値(bit)との関係を示す。   At this time, the measurement visual field of the camera used for the detection of the single crystal diameter was 200 mm as shown in FIG. Table 2 shows the relationship between the measurement field length of the camera, the detection diameter of the camera, and the detection value (bit) of the camera.

Figure 0004930488
Figure 0004930488

表2より、カメラの測定視野長が0mmのとき、カメラの検出直径は0mmφであり、カメラの検出値は0bitである。また、カメラの測定視野長が200mmのとき、カメラの検出直径は400mmφであり、カメラの検出値は4000bitである。従って、この場合の単結晶直径の検出分解能は、単結晶直径の差400mmφ(=400mmφ−0mmφ)とカメラの検出値4000bit(=4000bit−0bit)から、400mmφ/4000bit=0.1mmφ/bitである。   From Table 2, when the measurement visual field length of the camera is 0 mm, the detected diameter of the camera is 0 mmφ, and the detected value of the camera is 0 bit. When the measurement field length of the camera is 200 mm, the detection diameter of the camera is 400 mmφ, and the detection value of the camera is 4000 bits. Therefore, the detection resolution of the single crystal diameter in this case is 400 mmφ / 4000 bit = 0.1 mmφ / bit from the difference of the single crystal diameter of 400 mmφ (= 400 mmφ−0 mmφ) and the detected value of 4000 bits (= 4000 bit−0 bit). .

以上より、実施例では、単結晶の直胴部の始めから終わりまで、最大0.5mmφの範囲内の誤差で単結晶直径を安定して検出することができ、所望の無欠陥結晶を得ることができたが、比較例では、単結晶直径の検出誤差が最大3.0mmφと大きく、所望の無欠陥結晶を得ることができないことがわかる。また、実施例の検出分解能は0.05mmφ/bitであり、比較例の0.1mmφ/bitよりも向上していることがわかる。   As described above, in the examples, the single crystal diameter can be stably detected with an error within a range of a maximum of 0.5 mmφ from the start to the end of the straight body of the single crystal, and a desired defect-free crystal can be obtained. However, in the comparative example, it can be seen that the detection error of the single crystal diameter is as large as 3.0 mmφ at the maximum, and a desired defect-free crystal cannot be obtained. In addition, it can be seen that the detection resolution of the example is 0.05 mmφ / bit, which is higher than the comparative example of 0.1 mmφ / bit.

このように、本発明の単結晶直径の検出方法によれば、大口径の単結晶の直径を精度良く検出することができる。そして、本発明の単結晶の製造方法及び単結晶製造装置によれば、精度良く単結晶の直径を検出し、その検出結果に基づいて、単結晶の直径を制御しつつ、単結晶を引き上げることができるため、高精度に単結晶の直径を制御することができるため、たとえば無欠陥結晶の育成を歩留まり良く工業的に安定して育成することができ、所望の高品質のシリコン単結晶を効率的に高い生産性で製造することができる。   Thus, according to the method for detecting a single crystal diameter of the present invention, the diameter of a single crystal having a large diameter can be detected with high accuracy. According to the single crystal manufacturing method and single crystal manufacturing apparatus of the present invention, the diameter of the single crystal is accurately detected, and the single crystal is pulled up while controlling the diameter of the single crystal based on the detection result. Therefore, it is possible to control the diameter of the single crystal with high accuracy. For example, it is possible to grow a defect-free crystal stably with good yield and industrially, and efficiently produce a desired high-quality silicon single crystal. Can be manufactured with high productivity.

尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

本発明の単結晶製造装置の一例を示す概略図である。It is the schematic which shows an example of the single crystal manufacturing apparatus of this invention. 本発明における単結晶とカメラとの上面構成例を模式的に示す図である。It is a figure which shows typically the example of an upper surface structure of the single crystal and camera in this invention. 本発明の単結晶製造装置のカメラの測定範囲を示す図である。It is a figure which shows the measurement range of the camera of the single crystal manufacturing apparatus of this invention. 実施例における単結晶の実直径と検出結果を示す図である。It is a figure which shows the actual diameter and detection result of the single crystal in an Example. 実施例における湯面の位置変化について示す概略図である。It is the schematic shown about the position change of the hot_water | molten_metal surface in an Example. 比較例における単結晶の実直径と検出結果を示す図である。It is a figure which shows the actual diameter and detection result of the single crystal in a comparative example. 比較例における単結晶とカメラとの上面構成例を模式的に示す図である。It is a figure which shows typically the upper surface structural example of the single crystal and camera in a comparative example. 比較例における湯面の位置変化の影響について示す概略図である。It is the schematic shown about the influence of the position change of the hot_water | molten_metal surface in a comparative example. 比較例の単結晶製造装置のカメラの測定範囲を示す図である。It is a figure which shows the measurement range of the camera of the single crystal manufacturing apparatus of a comparative example.

符号の説明Explanation of symbols

1…チャンバー、 2…シリコン融液、 3…シリコン単結晶、 4…種結晶、 5…ルツボ、 5a…石英ルツボ、 5b…黒鉛ルツボ、 6…支持軸、 7…引上軸、 8…ヒーター、 9…断熱材、 10…炉内構造物、 11…カメラ、 12…直径制御装置、 20…単結晶製造装置。   DESCRIPTION OF SYMBOLS 1 ... Chamber, 2 ... Silicon melt, 3 ... Silicon single crystal, 4 ... Seed crystal, 5 ... Crucible, 5a ... Quartz crucible, 5b ... Graphite crucible, 6 ... Supporting shaft, 7 ... Pulling up shaft, 8 ... Heater, DESCRIPTION OF SYMBOLS 9 ... Thermal insulation material 10 ... Furnace structure, 11 ... Camera, 12 ... Diameter control apparatus, 20 ... Single crystal manufacturing apparatus.

Claims (13)

チョクラルスキー法により、ルツボ内に収容したシリコン融液から単結晶を引き上げる際に、単結晶の直径を検出する方法であって、少なくとも、前記単結晶と融液面との接点である単結晶の成長点において単結晶の直径が最大となる成長点と前記単結晶を包囲している炉内構造物の内径が最大となる基準点との距離を、炉外からカメラを用いて測定し、該測定した距離と前記炉内構造物の内径との差から、前記単結晶の直径を算出し、該算出して得られた値を前記単結晶の直径とすることを特徴とする単結晶直径の検出方法。   A method for detecting the diameter of a single crystal when pulling up the single crystal from a silicon melt contained in a crucible by the Czochralski method, wherein the single crystal is at least a contact point between the single crystal and the melt surface. The distance between the growth point at which the diameter of the single crystal is maximum at the growth point and the reference point at which the inner diameter of the in-furnace structure surrounding the single crystal is maximum is measured from outside the furnace using a camera, From the difference between the measured distance and the inner diameter of the furnace structure, the diameter of the single crystal is calculated, and the value obtained by calculating the single crystal diameter is the single crystal diameter. Detection method. 前記単結晶の直径が最大となる成長点と前記炉内構造物の基準点との距離の測定は、前記単結晶の直径が最大となる成長点に正対するように設置したカメラを用いて行うことを特徴とする請求項1に記載の単結晶直径の検出方法。   The distance between the growth point at which the diameter of the single crystal is maximum and the reference point of the in-furnace structure is measured using a camera installed so as to face the growth point at which the diameter of the single crystal is maximum. The method for detecting a single crystal diameter according to claim 1. 前記単結晶の直径が最大となる成長点と前記炉内構造物の基準点との距離の測定は、前記単結晶の直径が最大となる成長点の両端に設置した2台のカメラを用いて行うことを特徴とする請求項1または請求項2に記載の単結晶直径の検出方法。   The distance between the growth point where the diameter of the single crystal is maximum and the reference point of the in-furnace structure is measured using two cameras installed at both ends of the growth point where the diameter of the single crystal is maximum. The method for detecting a single crystal diameter according to claim 1 or 2, wherein the method is performed. 前記単結晶の直径(D)は、前記単結晶の直径が最大となる成長点の両端における一方の成長点と前記炉内構造物の基準点との距離(a)、他方の成長点と前記炉内構造物の基準点との距離(b)、前記炉内構造物の内径(c)を用いて、下記式(1)によって算出することを特徴とする請求項1ないし請求項3のいずれか1項に記載の単結晶直径の検出方法。
D=c−(a+b)・・・・・(1)
The diameter (D) of the single crystal is the distance (a) between one growth point at both ends of the growth point where the diameter of the single crystal is maximum and the reference point of the in-furnace structure, and the other growth point and the 4. The calculation according to claim 1, wherein the distance (b) from the reference point of the furnace internal structure and the inner diameter (c) of the furnace internal structure are used to calculate according to the following formula (1): The method for detecting a single crystal diameter according to claim 1.
D = c- (a + b) (1)
前記単結晶の直径(D)は、前記単結晶の直径が最大となる成長点の両端における一方の成長点と前記炉内構造物の基準点との距離(a)、前記炉内構造物の内径(c)を用いて、下記式(2)によって算出することを特徴とする請求項1または請求項2に記載の単結晶直径の検出方法。
D=c−2a・・・・・・・・(2)
The diameter (D) of the single crystal is the distance (a) between one growth point at both ends of the growth point at which the diameter of the single crystal is maximum and the reference point of the in-furnace structure, The method for detecting a single crystal diameter according to claim 1 or 2, wherein the inner diameter (c) is used to calculate the single crystal diameter according to the following formula (2).
D = c-2a (2)
前記単結晶のコーン部形成時には、コーン部直径検出用の1台のカメラを用いて、前記単結晶の直径の測定を行い、前記単結晶の直胴部形成時には、直胴直径検出用の1台または2台のカメラを用いて、前記単結晶の直径の測定を行うことを特徴とする請求項1から請求項5のいずれか1項に記載の単結晶直径の検出方法。   When forming the cone portion of the single crystal, the diameter of the single crystal is measured using one camera for detecting the cone portion diameter. When forming the straight body portion of the single crystal, 1 for detecting the diameter of the straight cylinder is used. 6. The method for detecting a single crystal diameter according to claim 1, wherein the diameter of the single crystal is measured using a stand or two cameras. 少なくとも、請求項1ないし請求項6のいずれか1項に記載の方法により単結晶の直径を検出し、該検出結果に基づいて、前記単結晶の直径を制御しつつ、単結晶を引き上げて製造することを特徴とする単結晶の製造方法。   The diameter of the single crystal is detected by at least the method according to any one of claims 1 to 6, and the single crystal is pulled up while controlling the diameter of the single crystal based on the detection result. A method for producing a single crystal, comprising: チョクラルスキー法により、ルツボ内に収容したシリコン融液から単結晶を引き上げてシリコン単結晶を製造する単結晶製造装置であって、少なくとも、前記シリコン融液を収容するルツボと、前記単結晶を包囲する炉内構造物と、前記単結晶と融液面との接点である単結晶の成長点において単結晶の直径が最大となる成長点と前記炉内構造物の内径が最大となる基準点との距離を炉外から測定するカメラと、前記単結晶の直径を制御する直径制御装置とを備え、前記カメラで測定した前記単結晶の直径が最大となる成長点と前記炉内構造物の基準点との距離と前記炉内構造物の内径との差から、前記単結晶の直径を算出することで検出し、該検出結果に基づいて、前記直径制御装置によって前記単結晶の直径を制御するものであることを特徴とする単結晶製造装置。   A single crystal manufacturing apparatus for manufacturing a silicon single crystal by pulling up a single crystal from a silicon melt stored in a crucible by the Czochralski method, wherein at least the crucible for storing the silicon melt and the single crystal The surrounding furnace structure, the growth point at which the diameter of the single crystal is the largest at the growth point of the single crystal that is the contact point between the single crystal and the melt surface, and the reference point at which the inner diameter of the furnace structure is maximized And a diameter control device for controlling the diameter of the single crystal, the growth point at which the diameter of the single crystal measured by the camera is maximized, and the structure in the furnace Detection is performed by calculating the diameter of the single crystal from the difference between the distance from the reference point and the inner diameter of the internal structure of the furnace, and the diameter control device controls the diameter of the single crystal based on the detection result. Special features And the single crystal manufacturing apparatus. 前記カメラは、前記単結晶の直径が最大となる成長点に正対するように設置したものであることを特徴とする請求項8に記載の単結晶製造装置。   The single crystal manufacturing apparatus according to claim 8, wherein the camera is installed so as to face a growth point where the diameter of the single crystal is maximum. 前記カメラは、前記単結晶の直径が最大となる成長点の両端に2台設置したものであることを特徴とする請求項8または請求項9に記載の単結晶製造装置。   10. The single crystal manufacturing apparatus according to claim 8, wherein two cameras are installed at both ends of a growth point where the diameter of the single crystal is maximum. 前記単結晶の直径(D)は、前記単結晶の直径が最大となる成長点の両端における一方の成長点と前記炉内構造物の基準点との距離(a)、他方の成長点と前記炉内構造物の基準点との距離(b)、前記炉内構造物の内径(c)を用いて、下記式(1)によって算出するものであることを特徴とする請求項8ないし請求項10のいずれか1項に記載の単結晶製造装置。
D=c−(a+b)・・・・・(1)
The diameter (D) of the single crystal is the distance (a) between one growth point at both ends of the growth point where the diameter of the single crystal is maximum and the reference point of the in-furnace structure, and the other growth point and the The distance from the reference point of the furnace internal structure (b) and the inner diameter (c) of the furnace internal structure are used to calculate by the following formula (1). The single crystal manufacturing apparatus according to any one of 10.
D = c- (a + b) (1)
前記単結晶の直径(D)は、前記単結晶の直径が最大となる成長点の両端における一方の成長点と前記炉内構造物の基準点との距離(a)、前記炉内構造物の内径(c)を用いて、下記式(2)によって算出するものであることを特徴とする請求項8または請求項9に記載の単結晶製造装置。
D=c−2a・・・・・・・・(2)
The diameter (D) of the single crystal is the distance (a) between one growth point at both ends of the growth point at which the diameter of the single crystal is maximum and the reference point of the in-furnace structure, The single-crystal manufacturing apparatus according to claim 8 or 9, wherein the single-crystal manufacturing apparatus is calculated by the following formula (2) using the inner diameter (c).
D = c-2a (2)
前記カメラは、前記単結晶の直胴部形成時の直胴直径検出用に1台または2台設置されたものであり、該カメラの他に、前記単結晶のコーン部形成時のコーン部直径検出用に1台のカメラが設置されたものであることを特徴とする請求項8から請求項12のいずれか1項に記載の単結晶製造装置。   One or two cameras are installed for detecting the diameter of the straight body when the straight body of the single crystal is formed. In addition to the camera, the diameter of the cone when the cone of the single crystal is formed The single crystal manufacturing apparatus according to any one of claims 8 to 12, wherein one camera is installed for detection.
JP2008271225A 2008-10-21 2008-10-21 Single crystal diameter detection method, single crystal manufacturing method using the same, and single crystal manufacturing apparatus Active JP4930488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271225A JP4930488B2 (en) 2008-10-21 2008-10-21 Single crystal diameter detection method, single crystal manufacturing method using the same, and single crystal manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271225A JP4930488B2 (en) 2008-10-21 2008-10-21 Single crystal diameter detection method, single crystal manufacturing method using the same, and single crystal manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2010100453A JP2010100453A (en) 2010-05-06
JP4930488B2 true JP4930488B2 (en) 2012-05-16

Family

ID=42291450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271225A Active JP4930488B2 (en) 2008-10-21 2008-10-21 Single crystal diameter detection method, single crystal manufacturing method using the same, and single crystal manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4930488B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5664573B2 (en) * 2012-02-21 2015-02-04 信越半導体株式会社 Method for calculating height position of silicon melt surface, method for pulling silicon single crystal, and silicon single crystal pulling apparatus
CN108344742B (en) * 2018-04-13 2020-06-05 太原理工大学 Sapphire inoculation detection device and method based on multi-frame image motion information
CN110685007B (en) * 2019-10-11 2021-02-12 浙江晶盛机电股份有限公司 Method for measuring crystal diameter in process of growing silicon single crystal by Czochralski method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19529485A1 (en) * 1995-08-10 1997-02-13 Wacker Siltronic Halbleitermat Method and device for determining the diameter of a growing single crystal
EP0903428A3 (en) * 1997-09-03 2000-07-19 Leybold Systems GmbH Apparatus and method for determining crystal diameters
JP4000988B2 (en) * 2002-10-31 2007-10-31 株式会社Sumco Single crystal diameter measuring method and diameter measuring apparatus
JP4246561B2 (en) * 2003-07-22 2009-04-02 コバレントマテリアル株式会社 Single crystal diameter control method
JP4339282B2 (en) * 2005-05-19 2009-10-07 古河機械金属株式会社 Single crystal diameter measuring device

Also Published As

Publication number Publication date
JP2010100453A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP5109928B2 (en) Single crystal diameter detection method, single crystal manufacturing method using the same, and single crystal manufacturing apparatus
US8187378B2 (en) Silicon single crystal pulling method
KR101901308B1 (en) Method for calculating height position of silicon melt surface, method for drawing up monocrystalline silicon and device for drawing up monocrystalline silicon
US9260796B2 (en) Method for measuring distance between lower end surface of heat insulating member and surface of raw material melt and method for controlling thereof
US8414701B2 (en) Method for manufacturing silicon single crystal in which a crystallization temperature gradient is controlled
JP5104129B2 (en) Single crystal diameter detection method and single crystal pulling apparatus
WO2011158425A1 (en) Methods for measuring and controlling distance between lower end surface of heat-blocking member and surface of starting material melt, and method for manufacturing silicon single crystal
JP4930487B2 (en) Method for measuring distance between melt surface and lower end of in-furnace structure, method for controlling position of melt surface using the same, method for producing single crystal and single crystal production apparatus
CN109750352B (en) Method and apparatus for producing single crystal
CN108570706A (en) The grower and its growing method of heavy caliber CZ monocrystalline
JP4930488B2 (en) Single crystal diameter detection method, single crystal manufacturing method using the same, and single crystal manufacturing apparatus
JP6939714B2 (en) Method for measuring the distance between the melt surface and the seed crystal, method for preheating the seed crystal, and method for producing a single crystal
JP6256284B2 (en) Method for measuring distance between bottom surface of heat shield member and raw material melt surface and method for producing silicon single crystal
JP6365674B2 (en) Method for producing single crystal
JP4984091B2 (en) Single crystal diameter detection method and single crystal pulling apparatus
JP2009269802A (en) Method and apparatus for manufacturing single crystal
JP5333396B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
CN116288660A (en) Control system and method for liquid level spacing for growth of monocrystalline silicon rod
JPH02204389A (en) Production of single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Ref document number: 4930488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250