JP4984091B2 - Single crystal diameter detection method and single crystal pulling apparatus - Google Patents

Single crystal diameter detection method and single crystal pulling apparatus Download PDF

Info

Publication number
JP4984091B2
JP4984091B2 JP2008309484A JP2008309484A JP4984091B2 JP 4984091 B2 JP4984091 B2 JP 4984091B2 JP 2008309484 A JP2008309484 A JP 2008309484A JP 2008309484 A JP2008309484 A JP 2008309484A JP 4984091 B2 JP4984091 B2 JP 4984091B2
Authority
JP
Japan
Prior art keywords
single crystal
diameter
cone
correction
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008309484A
Other languages
Japanese (ja)
Other versions
JP2010132490A (en
Inventor
潤也 徳江
隆弘 柳町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2008309484A priority Critical patent/JP4984091B2/en
Publication of JP2010132490A publication Critical patent/JP2010132490A/en
Application granted granted Critical
Publication of JP4984091B2 publication Critical patent/JP4984091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はチョクラルスキー法によって育成される単結晶の直径を検出する方法および単結晶引上げ装置に関する。   The present invention relates to a method for detecting the diameter of a single crystal grown by the Czochralski method and a single crystal pulling apparatus.

半導体シリコン単結晶育成方法としてチョクラルスキー法(Czochralski
Method、以下CZ法)が知られている。この方法では、種結晶を融液につけ、回転させながらゆっくり上方に引き上げることにより、単結晶を育成する。単結晶は、ある口径を狙って製造される。例えば最終製品が8インチ(200mm)のウェーハであれば、その径より少し大きい202から210mmで結晶を製造するのが一般的である。その後、結晶は、円筒状に外周研削され、ウェーハ状にスライスされた後、面取りや研磨工程等を経て、最終的な目標のウェーハ直径となる。従って、単結晶製造における目標の直径は、最終製品のウェーハ直径より大きくなければならない。しかし、あまり大きいと、研削研磨しろが増えて、経済的ではなくなる。したがってウェーハより大きく、かつ、なるべく小さい直径の単結晶が求められる。
Czochralski method (Czochralski method) as a method for growing semiconductor silicon single crystals
Method (hereinafter, CZ method) is known. In this method, a single crystal is grown by attaching a seed crystal to a melt and slowly pulling it upward while rotating. Single crystals are manufactured with a certain diameter. For example, if the final product is an 8-inch (200 mm) wafer, it is common to produce crystals at 202 to 210 mm, which is slightly larger than the diameter. Thereafter, the outer periphery of the crystal is ground into a cylindrical shape, sliced into a wafer, and then subjected to a chamfering, a polishing process, and the like to reach a final target wafer diameter. Therefore, the target diameter in single crystal manufacturing must be larger than the final product wafer diameter. However, if it is too large, the amount of grinding and polishing increases, which is not economical. Therefore, a single crystal having a diameter larger than that of the wafer and as small as possible is required.

CZ法において直径を制御する方法として、主に光学式(カメラ方式)と重量方式(ロードセル方式)の2通りがある。光学式では、炉外に取り付けたカメラにより、石英ガラスを通して炉内の育成結晶を観測する。カメラで捉えた画像を処理し、結晶の端の位置を割り出し、その位置を座標化して直径に換算する。また、光学式には、結晶の両端をはかる方法、結晶の片側をはかる方法、円弧の曲率から直径を割り出す方法等がある。   There are two main methods for controlling the diameter in the CZ method: an optical method (camera method) and a weight method (load cell method). In the optical system, the grown crystal inside the furnace is observed through quartz glass by a camera attached outside the furnace. The image captured by the camera is processed, the position of the end of the crystal is determined, the position is coordinated and converted into a diameter. Optical methods include a method of measuring both ends of a crystal, a method of measuring one side of a crystal, and a method of determining a diameter from the curvature of an arc.

しかし、カメラで結晶の両端をはかる方法は、結晶の大口径化に伴い、図11に示すような直径D全体を捉えることが困難となってくる。また、全体を捉えたとしても、解像度が劣化するという問題がある。また、例えば(特許文献1)に示されるように、引上げ装置に設置するカメラを2つとして、各々のカメラを用いて両端を見る方法もあるが、カメラの相対位置のずれによる誤差が問題となる。   However, the method of measuring both ends of the crystal with a camera makes it difficult to capture the entire diameter D as shown in FIG. 11 as the diameter of the crystal increases. Moreover, even if the whole is caught, there exists a problem that the resolution deteriorates. In addition, for example, as shown in (Patent Document 1), there is a method in which two cameras are installed in a pulling device and both ends are viewed using each camera. However, there is a problem of an error due to a relative position shift of the cameras. Become.

また、結晶の片側をはかる方法として、図12に示すように仮想中心点からの距離Rで直径を割り出す方法が挙げられるが、カメラの位置ずれにより、仮想点がずれることにより、測定誤差を生じてしまう。   Further, as a method of measuring one side of the crystal, there is a method of calculating the diameter by the distance R from the virtual center point as shown in FIG. 12, but a measurement error occurs due to the shift of the virtual point due to the positional deviation of the camera. End up.

また、光学式には、図13に示すように円弧の曲率から中心点からの距離Rを算出し、直径を割り出す方法もあるが、この方法にも、結晶が大口径化するに伴い、曲率が小さくなり、測定誤差が大きくなるという問題がある。   Further, as shown in FIG. 13, the optical method includes a method of calculating the distance R from the center point from the curvature of the arc and determining the diameter, but this method also has a curvature as the crystal becomes larger in diameter. There is a problem that the measurement error is increased and the measurement error is increased.

以上のように、光学式による単結晶直径の検出方法では、結晶の大口径化や、検出用カメラのずれにより、測定誤差が発生するという問題がある。例えば、結晶直径がずれた場合、直径不足による不良品の製造、直径過多による削り代の増加による歩留まりの低下という問題が発生する。また、結晶の成長条件は、結晶成長方向に条件を変化させながら品質の均一化を達成しているが、結晶の直径が目標からずれることにより、ルツボ内のシリコン融液の量が目標からずれ、それに伴う品質のずれという問題をも引き起こす結果となる。   As described above, the optical single crystal diameter detection method has a problem that a measurement error occurs due to an increase in the diameter of the crystal or a shift of the detection camera. For example, when the crystal diameter is deviated, problems such as production of a defective product due to insufficient diameter and a decrease in yield due to an increase in machining allowance due to excessive diameter occur. In addition, the crystal growth conditions achieve uniform quality while changing the conditions in the crystal growth direction, but the amount of silicon melt in the crucible deviates from the target due to the crystal diameter deviating from the target. As a result, it also causes the problem of quality deviation.

一方、重量方式では、例えば(特許文献2)に示されるようなロードセルと呼ばれる重量計を上軸につけ、成長する結晶の重量を測定する方法(ロードセル方式)が一般的である。ロードセル方式は、単位長さあたりの重量の増分から、結晶の直径を算出する方法である。この方法は、光学式のような誤差は発生せず、ロードセル単体の誤差を把握しておけば、直径の測定は可能であるはずである。しかし、結晶の高重量化により、ロードセルの最大許容重量を大きくとる必要があり、その際、測定誤差が増大してしまう、あるいは感度が低下し、短時間で直径を算出することが出来なくなり、短時間で直径が大きくなった場合、結晶の成長速度を上げて直径を目標に戻す必要があるが、短時間での制御ができず、凸凹の結晶を製造してしまうという問題がある。また、育成する単結晶が凸凹の結晶の場合、その凸凹の部分での品質のバラツキが大きくなる、あるいは、凹の部分で直径不足による不良品の製造という問題が発生していた。   On the other hand, in the weight method, for example, a method (load cell method) in which a weight meter called a load cell as shown in (Patent Document 2) is attached to the upper shaft and the weight of a growing crystal is measured (load cell method) is common. The load cell method is a method for calculating the diameter of a crystal from an increase in weight per unit length. This method does not generate an error as in the optical type, and if the error of a single load cell is grasped, it should be possible to measure the diameter. However, due to the higher weight of the crystal, it is necessary to increase the maximum allowable weight of the load cell. At that time, the measurement error increases or the sensitivity decreases, and the diameter cannot be calculated in a short time. When the diameter increases in a short time, it is necessary to increase the crystal growth rate and return the diameter to the target. However, there is a problem in that it cannot be controlled in a short time and an uneven crystal is produced. In addition, when the single crystal to be grown is an uneven crystal, there has been a problem that the unevenness of quality at the uneven portion becomes large, or that a defective product is produced due to insufficient diameter at the recessed portion.

特開2004−35352号公報JP 2004-35352 A 特開平9−175893号公報JP-A-9-175893

本発明は、大口径、高重量結晶の直径の測定精度を向上し、単結晶の歩留まりの向上と品質ばらつきの低減を達成することができる単結晶直径の検出方法および単結晶引上げ装置を提供することを目的としている。   The present invention provides a single crystal diameter detection method and a single crystal pulling apparatus capable of improving the measurement accuracy of large diameter and high weight crystal diameters, and achieving improvement in single crystal yield and reduction in quality variation. The purpose is that.

上記課題を解決するため、本発明は、チョクラルスキー法により育成される単結晶の直径を検出する方法であって、カメラとロードセルの両方によってそれぞれ単結晶の直径を検出し、カメラ検出直径とロードセルにより算出した直径との差と、前記単結晶の成長速度に応じて予め求められた補正係数αと、前記単結晶のコーン部の形状を表すパラメータと予め育成した単結晶の直胴部の直径との関係から求められたコーン形状補正とによって前記カメラ検出直径を補正し、該補正によって得られた値を前記単結晶の直径とすることを特徴とする単結晶直径の検出方法を提供する(請求項1)。   In order to solve the above problems, the present invention is a method for detecting the diameter of a single crystal grown by the Czochralski method, which detects the diameter of a single crystal by both a camera and a load cell, The difference between the diameter calculated by the load cell, the correction coefficient α obtained in advance according to the growth rate of the single crystal, the parameter representing the shape of the cone portion of the single crystal, and the straight body portion of the single crystal grown in advance. Provided is a method for detecting a diameter of a single crystal, wherein the camera-detected diameter is corrected by cone shape correction obtained from a relationship with the diameter, and the value obtained by the correction is used as the diameter of the single crystal. (Claim 1).

このように、チョクラルスキー法により単結晶を育成する際に、カメラとロードセルの両方によってそれぞれ単結晶の直径を検出し、カメラ検出直径とロードセルにより算出した直径との差と、単結晶の成長速度に応じて予め求められた補正係数αと、単結晶のコーン部の形状を表すパラメータと予め育成した単結晶の直胴部の直径との関係から求められたコーン形状補正とによってカメラ検出直径を補正し、その補正によって得られた値を単結晶の直径とすることで、大口径、高重量結晶の直径の測定精度を向上した単結晶直径の検出方法とすることができる。そのため、単結晶の直胴部の前半部分における直径のばらつきを抑制して、単結晶の歩留まりの向上と品質ばらつきの低減を達成することができる。   Thus, when growing a single crystal by the Czochralski method, the diameter of the single crystal is detected by both the camera and the load cell, and the difference between the camera detected diameter and the diameter calculated by the load cell is determined. Camera detection diameter by correction coefficient α obtained in advance according to speed, cone shape correction obtained from the relationship between the parameter representing the shape of the cone part of the single crystal and the diameter of the straight body of the single crystal grown in advance. Is corrected, and the value obtained by the correction is used as the diameter of the single crystal, whereby the single crystal diameter detection method can be improved with improved measurement accuracy of the diameter of the large diameter and high weight crystal. Therefore, it is possible to suppress the variation in diameter in the first half portion of the straight body portion of the single crystal, and to improve the yield of the single crystal and reduce the variation in quality.

また、本発明の検出方法では、前記補正は、前記カメラ検出直径とロードセルにより算出した直径との差に前記補正係数αを掛け合わせるか、加算した値と、前記コーン形状補正とを前記カメラ検出直径に加算して行うことが好ましい(請求項2)。   In the detection method of the present invention, the correction is performed by multiplying the difference between the camera detection diameter and the diameter calculated by the load cell by the correction coefficient α or adding the value and the cone shape correction. It is preferable to carry out by adding to the diameter (claim 2).

このように、カメラ検出直径とロードセルにより算出した直径との差に補正係数αを掛け合わせるか、加算した値と、コーン形状補正とをカメラ検出直径に加算して、カメラ検出直径を補正することで、直径の絶対値の精度を向上させることができ、大口径、高重量結晶の直径の測定精度を向上した単結晶直径の検出方法とすることができる。そのため、単結晶の直胴部の前半部分における直径のばらつきを抑制して、効果的に単結晶の歩留まりの向上と品質ばらつきの低減を達成することができる。   As described above, the difference between the camera detection diameter and the diameter calculated by the load cell is multiplied by the correction coefficient α, or the added value and the cone shape correction are added to the camera detection diameter to correct the camera detection diameter. Thus, the accuracy of the absolute value of the diameter can be improved, and the single crystal diameter detection method can be improved by improving the measurement accuracy of the diameter of the large diameter and heavy crystal. Therefore, it is possible to suppress the variation in diameter in the first half of the straight body portion of the single crystal, and to effectively improve the yield of the single crystal and reduce the quality variation.

また、本発明の検出方法では、前記パラメータは、前記単結晶のコーン部の長さ、前記単結晶のコーン部の重量、前記単結晶のコーン部の長さおよび重量より求められる形状定数のいずれか1つとすることが好ましい(請求項3)。
このように、単結晶のコーン部の長さ、単結晶のコーン部の重量、単結晶のコーン部の長さおよび重量より求められる形状定数のいずれか1つを単結晶のコーン部の形状を表すパラメータとすることで、単結晶のコーン部の形状を容易に定義することができる。そのため、このパラメータを用いて、容易にコーン形状補正を導くことができる。
In the detection method of the present invention, the parameter may be any one of a length of the cone portion of the single crystal, a weight of the cone portion of the single crystal, a length of the cone portion of the single crystal, and a shape constant obtained from the weight. It is preferable to use one (Claim 3).
Thus, any one of the shape constants determined from the length of the cone portion of the single crystal, the weight of the cone portion of the single crystal, the length of the cone portion of the single crystal, and the weight is used as the shape of the cone portion of the single crystal. By using the parameters to represent, the shape of the cone portion of the single crystal can be easily defined. Therefore, cone shape correction can be easily derived using this parameter.

この場合、前記形状定数(C)は、前記単結晶のコーン部の長さ(Lc)、前記単結晶のコーン部の重量(Wc)を用いて下記式(1)により求めることができる(請求項4)。
C=Lc/Wc・・・・・(1)
このような式(1)により形状定数を求めることで、単結晶のコーン部の大きさに左右されることなくコーン部の形状を定義することができ、また、単結晶のコーン部形成直後の結晶界面の形状を反映することができる。
In this case, the shape constant (C) can be obtained by the following formula (1) using the length (Lc) of the cone portion of the single crystal and the weight (Wc) of the cone portion of the single crystal (claim) Item 4).
C = Lc 3 / Wc (1)
By obtaining the shape constant by such an expression (1), the shape of the cone can be defined without being influenced by the size of the cone of the single crystal. The shape of the crystal interface can be reflected.

また、本発明の検出方法では、前記コーン形状補正は、前記単結晶直径の検出方法において、前記カメラ検出直径とロードセルにより算出した直径との差と、前記単結晶の成長速度に応じて予め求められた補正係数αのみによって前記カメラ検出直径を補正し、該補正によって得られた値を前記単結晶の直径として単結晶の直径を検出しつつ、単結晶を予め育成し、その後、該予め育成した単結晶の直胴部0mm〜120mmの任意の点における実直径と前記単結晶のコーン部の形状を表すパラメータとの関係から最小二乗法を用いて求めることが好ましい(請求項5)。
このように、カメラ検出直径とロードセルにより算出した直径との差と、単結晶の成長速度に応じて予め求められた補正係数αのみによってカメラ検出直径を補正し、その補正によって得られた値を単結晶の直径として検出ししつ、予め単結晶を育成し、その育成した単結晶の直胴部0mm〜120mmの任意の点における実直径と単結晶のコーン部の形状を表すパラメータとの関係から最小二乗法を用いて、コーン形状補正を求めることで、コーン部の形状を確実に反映した補正を行うことができる。そのため、単結晶の直胴部の前半部分における直径のばらつきを確実に抑制して、単結晶の歩留まりの向上と品質ばらつきの低減を達成することができる。
In the detection method of the present invention, the cone shape correction is obtained in advance according to the difference between the camera detection diameter and the diameter calculated by the load cell and the growth rate of the single crystal in the single crystal diameter detection method. The camera-detected diameter is corrected only by the correction coefficient α obtained, and the single crystal is grown in advance while detecting the diameter of the single crystal using the value obtained by the correction as the diameter of the single crystal, and then the pre-grown It is preferable to obtain by using the least square method from the relationship between the actual diameter at an arbitrary point of the straight body portion of 0 mm to 120 mm of the single crystal and the parameter representing the shape of the cone portion of the single crystal.
Thus, the camera detection diameter is corrected only by the correction coefficient α obtained in advance according to the difference between the camera detection diameter and the diameter calculated by the load cell and the growth rate of the single crystal, and the value obtained by the correction is obtained. Detecting the diameter of a single crystal, growing a single crystal in advance, and the relationship between the actual diameter at an arbitrary point of the straight body portion of the grown single crystal from 0 mm to 120 mm and the parameter representing the shape of the cone portion of the single crystal From the above, by obtaining the cone shape correction using the least square method, it is possible to perform the correction that surely reflects the shape of the cone portion. Therefore, the variation in diameter in the first half portion of the straight body portion of the single crystal can be reliably suppressed, and the yield of the single crystal can be improved and the quality variation can be reduced.

また、本発明は、チョクラルスキー法による単結晶育成のための単結晶引上げ装置であって、少なくとも引上げる単結晶の直径を検出するためのカメラとロードセルの両方を具備し、上記のいずれかに記載の単結晶直径の検出方法によって単結晶の直径の検出が行われるものであることを特徴とする単結晶引上げ装置を提供する(請求項6)。   The present invention is also a single crystal pulling apparatus for growing a single crystal by the Czochralski method, comprising at least both a camera and a load cell for detecting the diameter of the single crystal to be pulled, and any of the above A single crystal pulling apparatus is provided, wherein the single crystal diameter is detected by the method for detecting a single crystal diameter described in (6).

このように、チョクラルスキー法による単結晶育成のための単結晶引上げ装置が、少なくとも引上げる単結晶の直径を検出するためのカメラとロードセルの両方を具備するものであり、また、上記のいずれかに記載の単結晶直径の検出方法によって単結晶の直径の検出が行われるものであることで、カメラおよびロードセル方式のそれぞれの単結晶直径の検出方法の長所を生かし、かつ、相互の短所を補うことができる単結晶引上げ装置とすることができる。そのため、効果的に大口径、高重量結晶の直径の測定精度を向上し、特に単結晶の直胴部の前半部分における直径のばらつきを抑制して、単結晶の歩留まりの向上と品質ばらつきの低減を達成することができる単結晶引上げ装置とすることができる。   Thus, a single crystal pulling apparatus for growing a single crystal by the Czochralski method includes at least both a camera and a load cell for detecting the diameter of the single crystal to be pulled. By detecting the diameter of the single crystal by the method for detecting the single crystal diameter as described above, the advantages of the single crystal diameter detection methods of the camera and the load cell method are utilized, and the mutual disadvantages are A single crystal pulling apparatus that can be supplemented can be provided. Therefore, the measurement accuracy of the diameter of large diameter and heavy crystal is effectively improved, and the variation in diameter in the first half of the straight body of the single crystal is suppressed, thereby improving the yield of single crystal and reducing the quality variation. The single crystal pulling apparatus can achieve the above.

以上説明したように、本発明の単結晶直径の検出方法は、カメラとロードセルの両方によって単結晶の直径を検出し、カメラ検出直径とロードセルにより算出した直径との差と、単結晶の成長速度に応じて予め求められた補正係数αと、コーン形状補正とによってカメラ検出直径を補正し、得られた値を単結晶の直径とすることで、大口径、高重量結晶の直径の測定精度を向上し、単結晶の直胴部の前半部分における直径のばらつきを抑制することができる。そして、この検出方法によって、単結晶の直径の検出が行われることで、単結晶の歩留まりの向上と品質ばらつきの低減を達成することができる単結晶引上げ装置を提供することができる。   As described above, the single crystal diameter detection method of the present invention detects the diameter of a single crystal by both the camera and the load cell, the difference between the camera detected diameter and the diameter calculated by the load cell, and the growth rate of the single crystal. By correcting the camera detection diameter with the correction coefficient α and the cone shape correction determined in advance, and using the obtained value as the diameter of the single crystal, the measurement accuracy of the diameter of the large diameter and heavy crystal is improved. It is possible to improve the diameter variation in the first half of the straight body of the single crystal. Then, by detecting the diameter of the single crystal by this detection method, it is possible to provide a single crystal pulling apparatus that can achieve improvement in yield of single crystals and reduction in quality variation.

以下、本発明についてより具体的に説明する。
前述のように、CZ法において単結晶の直径を制御する方法として、カメラを用いる方式とロードセルを用いる方式の2通りがあるが、それぞれ、カメラ方式は絶対値精度が低い、また、ロードセル方式は短時間の変動を制御することが困難であるという問題が生じていた。
Hereinafter, the present invention will be described more specifically.
As described above, there are two methods for controlling the diameter of a single crystal in the CZ method: a method using a camera and a method using a load cell. Each of the camera methods has a low absolute value accuracy. There has been a problem that it is difficult to control short-time fluctuations.

そこで、カメラとロードセルの両方によって単結晶の直径を検出し、カメラ検出直径とロードセルにより算出した直径との差と、単結晶の成長速度に応じて予め求められた補正係数αとによってカメラ検出直径を補正して得られた値を単結晶の直径とする単結晶直径の検出方法を試みたが、特に単結晶の直胴部の前半部分で結晶の直径が目標からずれるという問題が発生することがわかった。   Therefore, the diameter of the single crystal is detected by both the camera and the load cell, and the camera detected diameter is determined by the difference between the camera detected diameter and the diameter calculated by the load cell, and the correction coefficient α determined in advance according to the growth rate of the single crystal. Attempts were made to detect the diameter of a single crystal using the value obtained by correcting the diameter as a single crystal, but there is a problem that the diameter of the crystal deviates from the target, particularly in the first half of the straight body of the single crystal. I understood.

そこで、本発明者らは、単結晶の直胴部の前半部分で結晶の直径が目標からずれるという問題がコーン部の形状の影響を受けて発生していることに着目し、コーン形状に起因する誤差を補正することを試みた。   Therefore, the present inventors pay attention to the fact that the problem that the diameter of the crystal deviates from the target in the first half of the straight body portion of the single crystal is caused by the influence of the shape of the cone portion. Tried to correct the error.

具体的には、カメラとロードセルの両方によってそれぞれ単結晶の直径を検出し、カメラ検出直径とロードセルにより算出した直径との差と、単結晶の成長速度に応じて予め求められた補正係数αと、単結晶のコーン部の形状を表すパラメータと予め育成した単結晶の直胴部の直径との関係から求められたコーン形状補正とによってカメラ検出直径を補正し、補正によって得られた値を単結晶の直径として、単結晶の直径を検出しつつ、単結晶を育成した。   Specifically, the diameter of the single crystal is detected by both the camera and the load cell, the difference between the camera detected diameter and the diameter calculated by the load cell, and the correction coefficient α determined in advance according to the growth rate of the single crystal, Then, the camera detection diameter is corrected by the cone shape correction obtained from the relationship between the parameter representing the shape of the cone portion of the single crystal and the diameter of the straight body portion of the single crystal grown in advance, and the value obtained by the correction is corrected. The single crystal was grown while detecting the diameter of the single crystal as the diameter of the crystal.

その結果、育成された単結晶は、図1に示すように、従来の単結晶直径の検出方法を用いた場合よりも、単結晶の直胴部の前半部分での直径のばらつきが改善していることがわかった。また、図2に示すように、育成した単結晶の直胴部の前半部分(80mm)における実直径からも、従来の単結晶直径の検出方法よりも直径のばらつきが改善していることがわかった。なお、図1は本発明の単結晶直径の検出方法における単結晶の直胴部の前半部分での直径のばらつきの改善を示す図であり、図2は本発明の単結晶直径の検出方法を用いて育成した単結晶の直胴部の前半部分(80mm)における実直径を示す図である。   As a result, as shown in FIG. 1, the grown single crystal has improved variation in diameter in the first half of the straight body of the single crystal, compared to the case where the conventional single crystal diameter detection method is used. I found out. In addition, as shown in FIG. 2, it can be seen from the actual diameter in the first half (80 mm) of the straight body of the grown single crystal that the variation in diameter is improved as compared with the conventional method for detecting the diameter of single crystal. It was. FIG. 1 is a diagram showing improvement in diameter variation in the first half of the straight body of a single crystal in the method for detecting a single crystal diameter according to the present invention, and FIG. 2 shows the method for detecting a single crystal diameter according to the present invention. It is a figure which shows the actual diameter in the first half part (80 mm) of the straight body part of the single crystal grown using it.

また、このときの補正は、カメラ検出直径とロードセルにより算出した直径との差に補正係数αを掛け合わせるか、加算した値と、コーン形状補正とをカメラ検出直径に加算して行うことで、直径の絶対値の精度を向上させることができることがわかった。   Further, the correction at this time is performed by multiplying the difference between the camera detection diameter and the diameter calculated by the load cell by the correction coefficient α or adding the value and the cone shape correction to the camera detection diameter. It was found that the accuracy of the absolute value of the diameter can be improved.

また、単結晶のコーン部の形状を表すパラメータは、単結晶のコーン部の長さ、単結晶のコーン部の重量、単結晶のコーン部の長さおよび重量より求められる形状定数のいずれか1つとすることで、単結晶のコーン部の形状を容易に定義することができ、特に、単結晶のコーン部の長さおよび重量より求められる形状定数(C)は、単結晶のコーン部の長さ(Lc)、単結晶のコーン部の重量(Wc)を用いて下記式(1)により求めることができることがわかった。なお、この形状定数は、単位の次元が密度(g/mm)の逆数になっているため、シリコン結晶の密度が2.33g/cmであることを考慮すると、この定数は無次元量であり結晶のサイズによらないことがわかった。
C=Lc/Wc・・・・・(1)
The parameter representing the shape of the cone portion of the single crystal is any one of the shape constant determined from the length of the cone portion of the single crystal, the weight of the cone portion of the single crystal, and the length and weight of the cone portion of the single crystal. Therefore, the shape of the cone portion of the single crystal can be easily defined. In particular, the shape constant (C) obtained from the length and weight of the cone portion of the single crystal is the length of the cone portion of the single crystal. (Lc), it was found that it can be obtained by the following formula (1) using the weight (Wc) of the cone portion of the single crystal. In addition, since the unit dimension is the reciprocal of the density (g / mm 3 ), this shape constant is a dimensionless amount considering that the density of the silicon crystal is 2.33 g / cm 3. It was found to be independent of the crystal size.
C = Lc 3 / Wc (1)

ここで、図3は単結晶のコーン部形成直後の結晶界面の形状を示す図である。一般に、単結晶の直胴部では結晶の中心部は保温されるため、結晶界面の形状は上側に凸になるが、コーン部形成直後はコーン上部からの除熱が多いため、図3のように、界面は下側に凸の形状になる。図3中に示した下凸量は、コーン部の肩の高さから結晶の中心までの成長軸方向の高さの差である。また、図4は下凸量と形状定数の関係を示す図である。図4より、下凸量と形状定数には相関があることがわかった。そのため、上記式(1)で定義した形状定数は、コーン部形成終了直後の結晶界面の下凸量を表すパラメータとして用いることができることがわかった。   Here, FIG. 3 is a diagram showing the shape of the crystal interface immediately after the formation of the cone portion of the single crystal. In general, since the center part of the crystal is kept warm in the straight body part of the single crystal, the shape of the crystal interface is convex upward, but since the heat is removed from the upper part of the cone immediately after forming the cone part, as shown in FIG. In addition, the interface is convex downward. The downward convex amount shown in FIG. 3 is the difference in height in the growth axis direction from the shoulder height of the cone portion to the center of the crystal. FIG. 4 is a diagram showing the relationship between the downward convex amount and the shape constant. FIG. 4 indicates that there is a correlation between the downward convex amount and the shape constant. Therefore, it was found that the shape constant defined by the above formula (1) can be used as a parameter representing the downward convex amount of the crystal interface immediately after the cone portion formation is completed.

また、コーン形状補正は、単結晶のコーン部の形状を表すパラメータと予め育成した単結晶の直胴部の直径との関係から最小二乗法を用いて求めることができ、コーン部の形状を確実に反映した補正を行うことができることもわかった。   The cone shape correction can be obtained by using the least square method from the relationship between the parameters representing the shape of the cone portion of the single crystal and the diameter of the straight body portion of the single crystal grown in advance, and the shape of the cone portion is reliably determined. It was also found that the correction reflected in can be performed.

本発明は、上記の知見および発見に基づいて完成されたものであり、以下、本発明について図面を参照しながらさらに詳細に説明するが、本発明はこれらに限定されるものではない。
図5は本発明の単結晶引上げ装置の概略図である。
The present invention has been completed based on the above findings and discoveries. Hereinafter, the present invention will be described in more detail with reference to the drawings, but the present invention is not limited thereto.
FIG. 5 is a schematic view of the single crystal pulling apparatus of the present invention.

この単結晶引上げ装置20は、中空円筒状のチャンバー1を具備し、その中心部にルツボ5が配設されている。このルツボは二重構造であり、有底円筒状をなす石英製の内側保持容器(以下、単に「石英ルツボ5a」という)と、その石英ルツボ5aの外側を保持すべく適合された同じく有底円筒状の黒鉛製の外側保持容器(「黒鉛ルツボ5b」)とから構成されている。   The single crystal pulling apparatus 20 includes a hollow cylindrical chamber 1, and a crucible 5 is disposed at the center thereof. This crucible has a double structure, and is an inner holding container made of quartz having a bottomed cylindrical shape (hereinafter simply referred to as “quartz crucible 5a”), and also has a bottomed structure adapted to hold the outside of the quartz crucible 5a. It is composed of a cylindrical graphite outer holding container (“graphite crucible 5b”).

これらのルツボ5は、回転および昇降が可能になるように支持軸6の上端部に固定されていて、ルツボ5の外側には抵抗加熱式ヒーター8が概ね同心円状に配設されている。さらに、ヒーター8の外側周辺には断熱材9が同心円状に配設されている。そして、ヒーター8により、シリコン原料を溶融したシリコン原料融液2が石英ルツボ5a内に収容されている。   These crucibles 5 are fixed to the upper end of the support shaft 6 so as to be able to rotate and move up and down, and a resistance heating heater 8 is arranged substantially concentrically outside the crucible 5. Further, a heat insulating material 9 is concentrically arranged around the outside of the heater 8. And the silicon raw material melt 2 which melt | dissolved the silicon raw material with the heater 8 is accommodated in the quartz crucible 5a.

シリコン原料融液2を充填した石英ルツボ5aの中心軸には、支持軸6と同一軸上で逆方向または同方向に所定の速度で回転する引上ワイヤー(または引上シャフト、以下両者を合わせて「引上軸7」という)が配設され、引上軸7の下端には種結晶4が保持されている。そして、種結晶4の下端面には、図3に示すようなコーン部13、直胴部14からなるシリコン単結晶3が形成される。   At the center axis of the quartz crucible 5a filled with the silicon raw material melt 2, the pulling wire (or pulling shaft, which is the same as the support shaft 6) is rotated in the reverse direction or in the same direction at the predetermined speed. And the seed crystal 4 is held at the lower end of the pulling shaft 7. A silicon single crystal 3 including a cone portion 13 and a straight body portion 14 as shown in FIG. 3 is formed on the lower end surface of the seed crystal 4.

また、単結晶引上げ装置20は、単結晶3の引き上げ中の重量を測定する引上軸7に取り付けたロードセル12、炉外から単結晶3の直径を検出するカメラ11、さらに、ロードセル12の測定値から単結晶3の直径を算出して、カメラ11の検出直径とロードセル12により算出した直径との差と、単結晶の成長速度に応じて予め求められた補正係数αと、単結晶のコーン部13の形状を表すパラメータと予め育成した単結晶の直胴部14の直径との関係から求められたコーン形状補正とにより、カメラ11で検出した単結晶3の直径を補正する演算装置10を具備する。また、この演算装置10は、支持軸6および引上軸7あるいはヒーター8に信号を出力して、ルツボ位置、ルツボ上昇速度、種結晶位置、引上速度、あるいはヒーターパワー等を制御する。   The single crystal pulling device 20 includes a load cell 12 attached to a pulling shaft 7 for measuring the weight of the single crystal 3 during pulling, a camera 11 for detecting the diameter of the single crystal 3 from the outside of the furnace, and measurement of the load cell 12. The diameter of the single crystal 3 is calculated from the value, the difference between the detected diameter of the camera 11 and the diameter calculated by the load cell 12, the correction coefficient α determined in advance according to the growth rate of the single crystal, and the cone of the single crystal An arithmetic unit 10 that corrects the diameter of the single crystal 3 detected by the camera 11 by correcting the cone shape obtained from the relationship between the parameter representing the shape of the portion 13 and the diameter of the straight body portion 14 of the single crystal grown in advance. It has. The arithmetic unit 10 outputs signals to the support shaft 6 and the pulling shaft 7 or the heater 8 to control the crucible position, the crucible rising speed, the seed crystal position, the pulling speed, or the heater power.

このような本発明の単結晶引上げ装置20は、以下説明する本発明の単結晶直径の検出方法に従って制御されることで、カメラおよびロードセル方式のそれぞれの単結晶直径の検出方法の長所を生かし、かつ、相互の短所を補うことができる単結晶引上げ装置とすることができる。また、演算装置10により、カメラ11で検出した単結晶3の直径を補正することで、効果的に大口径、高重量結晶の直径の測定精度を向上し、特に単結晶の直胴部の前半部分における直径のばらつきを抑制して、単結晶の歩留まりの向上と品質ばらつきの低減を達成することができる単結晶引上げ装置とすることができる。   Such a single crystal pulling apparatus 20 of the present invention is controlled according to the single crystal diameter detection method of the present invention described below, thereby taking advantage of the single crystal diameter detection method of the camera and the load cell system, And it can be set as the single crystal pulling apparatus which can supplement a mutual shortcoming. Further, by correcting the diameter of the single crystal 3 detected by the camera 11 by the arithmetic unit 10, the measurement accuracy of the diameter of the large diameter and heavy crystal is effectively improved, and in particular, the first half of the straight body portion of the single crystal. It is possible to provide a single crystal pulling apparatus capable of suppressing the variation in diameter in the portion and improving the yield of single crystal and reducing the quality variation.

本発明では、例えばこのような単結晶引上げ装置を用いて、次のように、単結晶の直径を検出する。
以下に、本発明における単結晶直径の検出方法を説明する。
In the present invention, for example, using such a single crystal pulling apparatus, the diameter of the single crystal is detected as follows.
The method for detecting the single crystal diameter in the present invention will be described below.

図6は本発明の単結晶直径の検出方法のフローを示す図である。図6に示すように、本発明の単結晶直径の検出方法は、コーン形状補正の算出と直胴部の直径の補正に大きく分けることができる。そして、コーン形状補正の算出をする前に、コーン形状補正の算出に用いる補正式を求めるために、予め単結晶を育成する。その後、育成した直胴部の実直径を測定して、単結晶のコーン部の形状を表すパラメータとの関係からコーン形状補正に用いる補正式を求める。例えば、コーン部の形状を表すパラメータとして、コーン部の長さを用いる場合、コーン部の長さは、コーン部形成中の引上ワイヤーの巻き取り量とルツボ位置の変化量から湯面に対して結晶がどれだけ引き上げられたかを換算した長さを用いる。   FIG. 6 is a diagram showing a flow of the method for detecting a single crystal diameter according to the present invention. As shown in FIG. 6, the method for detecting a single crystal diameter according to the present invention can be broadly divided into calculation of cone shape correction and correction of the diameter of the straight body portion. Then, before calculating the cone shape correction, a single crystal is grown in advance in order to obtain a correction formula used for calculating the cone shape correction. Thereafter, the actual diameter of the grown straight body portion is measured, and a correction formula used for cone shape correction is obtained from the relationship with the parameter representing the shape of the single crystal cone portion. For example, when the length of the cone portion is used as a parameter representing the shape of the cone portion, the length of the cone portion is determined from the amount of winding of the pulling wire during the formation of the cone portion and the amount of change in the crucible position with respect to the molten metal surface. The length converted to how much the crystal was pulled up is used.

その後、予め求めたコーン形状補正に用いる補正式を図5に示すような演算装置10に組み込んだ後に、図6のフロー図のように、単結晶のコーン部の形成を開始し、コーン形状補正の算出を行う。このとき、単結晶のコーン部の形成を開始したときの単結晶の重量(Wc1)を図5に示すようなロードセル12で測定する(図6(a))。次に、単結晶のコーン部形成終了直後の単結晶の重量(Wc2)およびコーン部の長さ(Lc)を測定する(図6(b))。その後、単結晶のコーン部の形状を表すパラメータと予め育成した単結晶の直胴部の直径との関係からコーン形状補正を求める(図6(c))。具体的には、コーン部の形状を表すパラメータとして、コーン部の長さを用いる場合、予め育成した単結晶の直胴部の実直径とコーン部の長さとの関係から求めた補正式に、図6(b)で測定したコーン部の長さ(Lc)を代入してコーン形状補正を求める。   Thereafter, after the correction formula used for the cone shape correction obtained in advance is incorporated into the arithmetic unit 10 as shown in FIG. 5, the formation of the single crystal cone portion is started as shown in the flowchart of FIG. Is calculated. At this time, the weight (Wc1) of the single crystal when the formation of the cone portion of the single crystal is started is measured with the load cell 12 as shown in FIG. 5 (FIG. 6 (a)). Next, the weight (Wc2) and the length (Lc) of the single crystal immediately after completion of the formation of the single crystal cone are measured (FIG. 6B). Thereafter, the cone shape correction is obtained from the relationship between the parameter representing the shape of the cone portion of the single crystal and the diameter of the straight body portion of the single crystal grown in advance (FIG. 6C). Specifically, when using the length of the cone part as a parameter representing the shape of the cone part, the correction formula obtained from the relationship between the actual diameter of the straight body of the single crystal grown in advance and the length of the cone part, The cone shape correction is obtained by substituting the length (Lc) of the cone portion measured in FIG.

このとき、コーン部の長さ(Lc)、コーン部の重量(Wc2−Wc1)、単結晶のコーン部の長さ(Lc)および重量(Wc2−Wc1)より求められる形状定数のいずれか1つを単結晶のコーン部の形状を表すパラメータとすることができる。
このことにより、単結晶のコーン部の形状を容易に定義することができ、このパラメータを用いて、容易にコーン形状補正を導くことができる。
At this time, any one of the shape constants obtained from the length (Lc) of the cone part, the weight (Wc2-Wc1) of the cone part, the length (Lc) and the weight (Wc2-Wc1) of the cone part of the single crystal Can be used as a parameter representing the shape of the cone portion of the single crystal.
Thus, the shape of the cone portion of the single crystal can be easily defined, and cone shape correction can be easily derived using this parameter.

また、形状定数は、コーン部の長さ(Lc)、コーン部の重量(Wc2−Wc1)を用いてLc/(Wc2−Wc1)で求めることができる。
このことにより、単結晶のコーン部の大きさに左右されることなくコーン部の形状を定義することができ、また、単結晶のコーン部形成終了直後の結晶界面の形状を反映することができる。なお、形状定数は、単位の次元が密度(g/mm)の逆数になっているため、シリコン結晶の密度が2.33g/cmであることを考慮すると、この定数は無次元量であり、結晶のサイズによらない。すなわち、コーン部の形状をコーン部の長さ(Lc)、コーン部の重量(Wc2−Wc1)のみで表した場合、図3に示すような結晶界面の下凸量が反映できない場合がある。しかし、この形状定数は、図4に示すように、下凸量と比例の関係がある。そのため、コーン部の形状を表すパラメータとして、導入することができる。
Further, the shape constant can be obtained by Lc 3 / (Wc2-Wc1) using the length of the cone part (Lc) and the weight of the cone part (Wc2-Wc1).
As a result, the shape of the cone portion can be defined without being influenced by the size of the cone portion of the single crystal, and the shape of the crystal interface immediately after the end of the formation of the cone portion of the single crystal can be reflected. . The shape constant is a reciprocal of the density (g / mm 3 ). Therefore, considering that the density of the silicon crystal is 2.33 g / cm 3 , this constant is a dimensionless quantity. Yes, regardless of crystal size. That is, when the shape of the cone portion is expressed only by the length of the cone portion (Lc) and the weight of the cone portion (Wc2-Wc1), the downward convex amount of the crystal interface as shown in FIG. 3 may not be reflected. However, this shape constant is proportional to the downward convex amount as shown in FIG. Therefore, it can be introduced as a parameter representing the shape of the cone portion.

また、コーン形状補正は、カメラとロードセルの両方によって単結晶の直径を検出する方法を用いて、カメラ検出直径とロードセルにより算出した直径との差と、単結晶の成長速度に応じて予め求められた補正係数αのみによってカメラ検出直径を補正し、補正によって得られた値を単結晶の直径として単結晶の直径を検出しつつ、単結晶を予め育成し、その後、予め育成した単結晶の直胴部0mm〜120mmの任意の点における実直径と、単結晶のコーン部の形状を表すパラメータ(Lc等)との関係から、図6(c)に示す補正式を用いて、最小二乗法により求めることができる。
このことにより、コーン部の形状を確実に反映した補正を行うことができる。そのため、単結晶の直胴部の前半部分における直径のばらつきを確実に抑制して、単結晶の歩留まりの向上と品質ばらつきの低減を達成することができる。
The cone shape correction is obtained in advance according to the difference between the camera detection diameter and the diameter calculated by the load cell and the growth rate of the single crystal using a method of detecting the diameter of the single crystal by both the camera and the load cell. The diameter detected by the camera is corrected only with the correction coefficient α, and the single crystal is grown in advance while detecting the diameter of the single crystal using the value obtained by the correction as the diameter of the single crystal. From the relationship between the actual diameter at an arbitrary point of the body part 0 mm to 120 mm and the parameter (Lc etc.) representing the shape of the cone part of the single crystal, using the correction formula shown in FIG. Can be sought.
This makes it possible to perform correction that reliably reflects the shape of the cone portion. Therefore, the variation in diameter in the first half portion of the straight body portion of the single crystal can be reliably suppressed, and the yield of the single crystal can be improved and the quality variation can be reduced.

なお、補正係数αは単結晶の成長速度に応じて予め求められた数値であり、また、ロードセルにより測定した重量は、静止状態で単結晶を吊下げたときに測定できる重量である。ここで、実際の結晶製造の際は、結晶成長界面形状や表面張力の存在等でロードセルによる重量からの換算直径と実際の直径との食い違いが生じる。すなわち、成長界面の形状は、結晶成長速度が大きいほど、上凸形状が大きくなる。この誤差は、実際の結晶を製造し、引上げ装置ごとに測定することによって求めることができるが、この上凸形状を予想できれば、重量からの換算直径と実際の直径との食い違いはある程度予測することが可能である。そこで、単結晶引上げ装置のルツボ口径毎および号機別に、成長速度と補正係数の関係を予め求めて、補正係数αを算出する。   The correction coefficient α is a numerical value obtained in advance according to the growth rate of the single crystal, and the weight measured by the load cell is a weight that can be measured when the single crystal is suspended in a stationary state. Here, in actual crystal production, there is a discrepancy between the converted diameter from the weight by the load cell and the actual diameter due to the shape of the crystal growth interface and the presence of surface tension. That is, the shape of the growth interface becomes larger as the crystal growth rate increases. This error can be obtained by manufacturing an actual crystal and measuring it for each pulling device, but if this upward convex shape can be predicted, the discrepancy between the converted diameter from the weight and the actual diameter should be predicted to some extent. Is possible. Therefore, the relationship between the growth rate and the correction coefficient is obtained in advance for each crucible diameter of the single crystal pulling apparatus and for each machine, and the correction coefficient α is calculated.

次に、直胴部の直径の補正を行って、単結晶直径を検出する。直胴部の直径の補正は、図6に示すように、まず、単結晶の直胴部を形成して、計算を開始する単結晶の直胴長(L1)において(図6(d))、ロードセルによって単結晶の重量(Wt1)を測定する(図6(e))。その後、直胴長(L2)まで単結晶を引上げ(図6(f))、再びロードセルによって単結晶の重量(Wt2)を測定する(図6(g))。次に、ロードセルによって測定した単結晶の重量(Wt1、Wt2)から、単結晶の直胴長(L2−L1)までの平均区間内の直径の平均(Dw)を算出する(図6(h))。このとき、ロードセル重量からの換算直径(Dw)を算出するための計算式は、Dw=2√((Wt2−Wt1)/(π×(L2−L1)×2.33))とすることができる(ここで、上記計算式に用いる単位は、Wt1、Wt2がg、L2、L1がcm、Dwがcm、2.33はシリコンの比重でg/cmとする)。 Next, the diameter of the straight body portion is corrected to detect the single crystal diameter. As shown in FIG. 6, the diameter of the straight body portion is corrected by first forming the straight body portion of the single crystal and starting the calculation with the straight body length (L1) of the single crystal (FIG. 6D). Then, the weight (Wt1) of the single crystal is measured with a load cell (FIG. 6E). Thereafter, the single crystal is pulled up to the straight body length (L2) (FIG. 6 (f)), and the weight (Wt2) of the single crystal is measured again by the load cell (FIG. 6 (g)). Next, the average (Dw) of the diameter in the average section from the single crystal weight (Wt1, Wt2) measured by the load cell to the straight body length (L2-L1) of the single crystal is calculated (FIG. 6 (h)). ). At this time, the calculation formula for calculating the converted diameter (Dw) from the load cell weight is Dw = 2√ ((Wt2−Wt1) / (π × (L2−L1) × 2.33)). (Wt1, Wt2 are g, L2, L1 are cm, Dw is cm, 2.33 is silicon specific gravity, g / cm 3 ).

さらに、ロードセルによる単結晶の重量測定と並行して、カメラによって、単結晶の直胴長の直径を数回検出し、得られた直径を積算し、積算値(T1)を算出する(図6(i))。また、この時、積算した回数をカウントしておき(図6(j))、算出された積算値(T1)をカウントした積算回数(C1)で割ることでカメラ検出直径(Do)を算出する(図6(k))。   Further, in parallel with the weight measurement of the single crystal by the load cell, the diameter of the straight body length of the single crystal is detected several times by the camera, the obtained diameters are integrated, and an integrated value (T1) is calculated (FIG. 6). (I)). At this time, the number of times of integration is counted (FIG. 6 (j)), and the camera detection diameter (Do) is calculated by dividing the calculated integration value (T1) by the counted number of integrations (C1). (FIG. 6 (k)).

次に、カメラ検出直径(Do)とロードセルにより算出した直径(Dw)との差を求め、その差に単結晶の成長速度に応じて予め求められた補正係数αを掛け合わせるか加算した値と、上記のようにして求めたコーン形状補正とをカメラ検出直径に加算する補正を行い(図6(l))、この補正によって得られた値に直径を制御して単結晶の引上げを行う。また、2回目以降の補正は、次の補正演算開始長さまで到達したら、同様の演算を繰り返すことで行う(図6(m))。   Next, the difference between the camera detection diameter (Do) and the diameter (Dw) calculated by the load cell is obtained, and the difference is multiplied or added by a correction coefficient α obtained in advance according to the growth rate of the single crystal. The cone shape correction obtained as described above is added to the camera detection diameter (FIG. 6 (l)), and the diameter is controlled to the value obtained by this correction, and the single crystal is pulled up. The second and subsequent corrections are performed by repeating the same calculation when the next correction calculation start length is reached (FIG. 6 (m)).

このように、図6のフロー図のように、単結晶の直径を検出することで、大口径、高重量結晶の直径の測定精度を向上した単結晶直径の検出方法とすることができる。そのため、単結晶の直胴部の前半部分における直径のばらつきを抑制して、単結晶の歩留まりの向上と品質ばらつきの低減を達成することができる。   Thus, as shown in the flowchart of FIG. 6, by detecting the diameter of the single crystal, it is possible to provide a single crystal diameter detection method that improves the measurement accuracy of the diameters of large diameter and heavy crystal. Therefore, it is possible to suppress the variation in diameter in the first half portion of the straight body portion of the single crystal, and to improve the yield of the single crystal and reduce the variation in quality.

次に本発明の実施例、比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
まず、コーン形状補正を求めるために、予め、目標直径306mmのシリコン単結晶の育成を次の手順で繰り返し行った。図5に示すような単結晶引上げ装置20を用いて、直径が800mmの石英ルツボ5aに多結晶シリコンを410kg充填し、ヒーター8に通電して多結晶シリコンを溶融して、シリコン原料融液2を形成した。
Next, the present invention will be described more specifically with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these.
Example 1
First, in order to obtain cone shape correction, a silicon single crystal having a target diameter of 306 mm was repeatedly grown in advance by the following procedure. Using a single crystal pulling apparatus 20 as shown in FIG. 5, 410 kg of polycrystalline silicon is filled in a quartz crucible 5a having a diameter of 800 mm, the heater 8 is energized to melt the polycrystalline silicon, and the silicon raw material melt 2 Formed.

その後、シリコン原料融液2に種結晶4を浸し、引上軸7でルツボ5の回転方向とは逆向きに回転させて単結晶3を引き上げて予め単結晶を育成した。このとき、単結晶直径の検出は、カメラ11とロードセル12の両方で行い、図6中の直胴部の直径の補正の工程において、単結晶の直胴部の長さ0mmから50mmをL1、L2として、補正係数α=6.5mmを用いて、コーン形状補正を行うことなく、直胴部の直径の補正を行って、単結晶直径を検出し、直胴部を形成した。その後、育成された単結晶の直胴部80mmにおける実直径を測定した。   Thereafter, the seed crystal 4 was immersed in the silicon raw material melt 2, and the single crystal 3 was pulled up by rotating the pulling shaft 7 in the direction opposite to the rotation direction of the crucible 5 to grow a single crystal in advance. At this time, the single crystal diameter is detected by both the camera 11 and the load cell 12, and in the step of correcting the diameter of the straight body part in FIG. A correction coefficient α = 6.5 mm was used as L2, and the diameter of the straight body portion was corrected without correcting the cone shape, and the single crystal diameter was detected to form the straight body portion. Then, the actual diameter in the straight body part 80mm of the grown single crystal was measured.

このとき使用した単結晶引上げ装置および引上条件においては、コーン部の長さと予め育成した単結晶の直胴部の直径との相関が非常に強いことがわかったために、単結晶のコーン部の形状を表すパラメータとして、コーン部の長さを用いた。図7にコーン形状補正を求めるために予め育成した単結晶のコーン部の長さと直胴部の直径の目標値からの誤差を示す。図7中に示すように、R=−0.0229Lc+5.24の近似直線をコーン形状補正に用いる補正式として求めた。   In the single crystal pulling apparatus and pulling conditions used at this time, it was found that the correlation between the length of the cone portion and the diameter of the straight body portion of the single crystal grown in advance was very strong. The length of the cone was used as a parameter representing the shape. FIG. 7 shows an error from the target values of the length of the cone portion and the diameter of the straight body portion of the single crystal grown in advance for obtaining the cone shape correction. As shown in FIG. 7, an approximate straight line of R = −0.0229Lc + 5.24 was obtained as a correction formula used for cone shape correction.

その後、求めた補正式を単結晶引上げ装置20の演算装置10に組み込んだ後に、図6のフロー図に示すように、単結晶直径を検出して、単結晶を育成した。このとき、上記の単結晶育成時と同じ単結晶引上げ装置および引上条件において、コーン部の形成を開始して、コーン部の長さLcを測定し、そのLcを上記補正式に代入して、コーン形状補正を求めて、直胴部の直径の補正を行い、目標直径306mmの単結晶を15回育成した。また、単結晶の直胴部100mmにおける実直径を測定して、ばらつきを求めた。   Thereafter, after the obtained correction formula was incorporated into the arithmetic unit 10 of the single crystal pulling apparatus 20, the single crystal diameter was detected and the single crystal was grown as shown in the flowchart of FIG. At this time, under the same single crystal pulling apparatus and pulling conditions as in the above single crystal growth, formation of the cone portion is started, the length Lc of the cone portion is measured, and the Lc is substituted into the correction equation. The cone shape was corrected, the diameter of the straight body was corrected, and a single crystal having a target diameter of 306 mm was grown 15 times. Moreover, the actual diameter in the straight body part 100mm of a single crystal was measured, and the dispersion | variation was calculated | required.

(比較例1)
上記実施例1の単結晶の育成において、コーン形状補正を行うことなく、目標直径306mmの単結晶を15回育成し、単結晶の直胴部100mmにおける実直径を測定して、ばらつきを求めた。
(Comparative Example 1)
In the growth of the single crystal of Example 1, the single crystal having the target diameter of 306 mm was grown 15 times without correcting the cone shape, and the actual diameter of the single crystal in the straight body portion of 100 mm was measured to obtain variation. .

ここで、表1は実施例1および比較例1の単結晶の直胴部100mmにおける実直径の測定結果である。また、図8は実施例1および比較例1のコーン部の長さと単結晶の直胴部100mmにおける実直径を示す図である。   Here, Table 1 shows the measurement results of the actual diameter in the straight body portion 100 mm of the single crystal of Example 1 and Comparative Example 1. FIG. 8 is a diagram showing the length of the cone portion of Example 1 and Comparative Example 1 and the actual diameter of the single crystal straight body portion 100 mm.

Figure 0004984091
Figure 0004984091

表1より、実施例1の標準偏差は比較例よりも小さいため、実施例1の単結晶の直胴部のばらつきは、比較例1よりも小さいことがわかる。また、図8より、実施例1の単結晶の直胴部の直径は、比較例1よりも目標直径に近い範囲でばらついていることがわかる。   As can be seen from Table 1, since the standard deviation of Example 1 is smaller than that of the comparative example, the variation of the straight body portion of the single crystal of Example 1 is smaller than that of Comparative Example 1. Further, it can be seen from FIG. 8 that the diameter of the straight body of the single crystal of Example 1 varies in a range closer to the target diameter than that of Comparative Example 1.

(実施例2)
上記実施例1の単結晶の育成において、上記実施例1と同一のルツボ口径の石英ルツボを装備した上記実施例1とは異なる号機の単結晶引上げ装置を用い、単結晶のコーン部の形状を表すパラメータとして、コーン部の重量(Wc2−Wc1)を用いて、単結晶を23回育成した。このとき、R=−0.0005(Wc2−Wc1)+308.52を補正式として、コーン形状補正を求めるときに用いた。なお、Wc1はコーン部形成開始時の単結晶の重量、Wc2はコーン部形成終了直後の単結晶の重量である。また、育成した単結晶の直胴部100mmにおける実直径を測定して、ばらつきを求めた。
(Example 2)
In the growth of the single crystal of Example 1, the cone shape of the single crystal was changed using a single crystal pulling apparatus of a different machine from that of Example 1 equipped with a quartz crucible having the same crucible diameter as in Example 1. The single crystal was grown 23 times using the weight of the cone part (Wc2-Wc1) as a parameter to be expressed. At this time, R = −0.0005 (Wc2−Wc1) +308.52 was used as a correction formula, and used when obtaining cone shape correction. Wc1 is the weight of the single crystal at the start of cone portion formation, and Wc2 is the weight of the single crystal immediately after the cone portion formation is completed. Moreover, the actual diameter in the straight body part 100mm of the grown single crystal was measured, and the dispersion | variation was calculated | required.

(比較例2)
上記実施例2の単結晶の育成において、コーン形状補正を行うことなく、単結晶を23回育成した。また、育成した単結晶の直胴部100mmにおける実直径を測定して、ばらつきを求めた。
(Comparative Example 2)
In the growth of the single crystal of Example 2, the single crystal was grown 23 times without performing cone shape correction. Moreover, the actual diameter in the straight body part 100mm of the grown single crystal was measured, and the dispersion | variation was calculated | required.

ここで、表2は実施例2および比較例2の単結晶の直胴部100mmにおける実直径の目標直径に対する誤差を測定した結果である。また、図9は実施例2および比較例2のコーン部の重量と単結晶の直胴部100mmにおける実直径の目標直径に対する誤差を示す図である。   Here, Table 2 shows the result of measuring the error of the actual diameter with respect to the target diameter in the straight body 100 mm of the single crystal of Example 2 and Comparative Example 2. FIG. 9 is a diagram showing the error of the actual diameter of the cone part weight and the actual diameter of the straight crystal part 100 mm of Example 2 and Comparative Example 2 with respect to the target diameter.

Figure 0004984091
Figure 0004984091

表2より、実施例2の標準偏差は比較例2よりもはるかに小さいため、実施例2の単結晶の直胴部のばらつきは、比較例2よりも小さいことがわかる。また、図9より、実施例2の単結晶の直胴部の直径は、目標直径に対する誤差が小さく、比較例2よりも目標直径に近いことがわかる。   As can be seen from Table 2, since the standard deviation of Example 2 is much smaller than that of Comparative Example 2, the variation of the straight body of the single crystal of Example 2 is smaller than that of Comparative Example 2. Further, FIG. 9 shows that the diameter of the straight body portion of the single crystal of Example 2 has a small error with respect to the target diameter, and is closer to the target diameter than Comparative Example 2.

(実施例3)
上記実施例1の単結晶の育成において、上記実施例1と同一のルツボ口径の石英ルツボを装備した上記実施例1とは異なる号機の単結晶引上げ装置を用い、単結晶のコーン部の形状を表すパラメータとして、コーン部の長さおよび重量より求められる形状定数(Lc/(Wc2−Wc1))を用いて、単結晶を24回育成した。
このとき、R=−0.0009(Lc/(Wc2−Wc1))+307を補正式として、コーン形状補正を求めるときに用いた。また、育成した単結晶の直胴部100mmにおける実直径を測定して、ばらつきを求めた。
Example 3
In the growth of the single crystal of Example 1, the cone shape of the single crystal was changed using a single crystal pulling apparatus of a different machine from that of Example 1 equipped with a quartz crucible having the same crucible diameter as in Example 1. A single crystal was grown 24 times using a shape constant (Lc 3 / (Wc 2 −Wc 1)) determined from the length and weight of the cone part as a parameter to be expressed.
At this time, R = −0.0009 (Lc 3 / (Wc2−Wc1)) + 307 was used as a correction formula, and this was used when obtaining cone shape correction. Moreover, the actual diameter in the straight body part 100mm of the grown single crystal was measured, and the dispersion | variation was calculated | required.

(比較例3)
上記実施例3の単結晶の育成において、コーン形状補正を行うことなく、単結晶を24回育成した。また、育成した単結晶の直胴部100mmにおける実直径を測定して、ばらつきを求めた。
(Comparative Example 3)
In the growth of the single crystal of Example 3, the single crystal was grown 24 times without performing cone shape correction. Moreover, the actual diameter in the straight body part 100mm of the grown single crystal was measured, and the dispersion | variation was calculated | required.

ここで、表3は実施例3および比較例3の単結晶の直胴部100mmにおける実直径の目標直径に対する誤差を測定した結果である。また、図10は実施例3および比較例3のコーン形状定数と単結晶の直胴部100mmにおける実直径の目標直径に対する誤差を示す図である。   Here, Table 3 shows the result of measuring the error of the actual diameter with respect to the target diameter in the straight body 100 mm of the single crystal of Example 3 and Comparative Example 3. FIG. 10 is a diagram showing the cone shape constant of Example 3 and Comparative Example 3 and the error of the actual diameter in the single crystal straight body 100 mm with respect to the target diameter.

Figure 0004984091
Figure 0004984091

表3より、実施例3の標準偏差は比較例3の半分であり、実施例3の単結晶の直胴部のばらつきは、比較例3よりも小さいことがわかる。また、図10より、実施例3の単結晶の直胴部の直径は、目標直径に対する誤差が小さく、目標直径±0.5mmの範囲にあることがわかる。   From Table 3, it can be seen that the standard deviation of Example 3 is half that of Comparative Example 3, and the variation of the straight body portion of the single crystal of Example 3 is smaller than that of Comparative Example 3. Further, it can be seen from FIG. 10 that the diameter of the straight body portion of the single crystal of Example 3 has a small error with respect to the target diameter and is in the range of the target diameter ± 0.5 mm.

このように、本発明の単結晶直径の検出方法によれば、大口径、高重量結晶の直径の測定精度を向上した単結晶直径の検出方法とすることができる。そして、本発明の単結晶引上げ装置によれば、大口径、高重量結晶の直径の測定精度を向上することができ、単結晶の直胴部の前半部分における直径のばらつきを抑制して、単結晶の歩留まりの向上と品質ばらつきの低減を達成することができる。   Thus, according to the method for detecting the diameter of a single crystal of the present invention, it is possible to provide a method for detecting the diameter of a single crystal with improved accuracy in measuring the diameter of a large diameter and heavy crystal. According to the single crystal pulling apparatus of the present invention, it is possible to improve the measurement accuracy of the diameter of the large diameter and high weight crystal, and to suppress the variation in diameter in the first half portion of the straight body of the single crystal. Improvement of crystal yield and reduction of quality variation can be achieved.

尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

本発明の単結晶直径の検出方法における単結晶の直胴部の前半部分での直径のばらつきの改善を示す図である。It is a figure which shows the improvement of the dispersion | variation in the diameter in the first half part of the straight body part of a single crystal in the detection method of the single crystal diameter of this invention. 本発明の単結晶直径の検出方法を用いて育成した単結晶の直胴部の前半部分(80mm)における実直径を示す図である。It is a figure which shows the actual diameter in the front half part (80 mm) of the straight body part of the single crystal grown using the detection method of the single crystal diameter of this invention. 単結晶のコーン部形成終了直後の結晶界面の形状を示す図である。It is a figure which shows the shape of the crystal | crystallization interface immediately after completion | finish of cone part formation of a single crystal. 下凸量と形状定数の関係を示す図である。It is a figure which shows the relationship between a downward convex amount and a shape constant. 本発明の単結晶引上げ装置の概略図である。It is the schematic of the single crystal pulling apparatus of this invention. 本発明の単結晶直径の検出方法のフローを示す図である。It is a figure which shows the flow of the detection method of the single crystal diameter of this invention. コーン形状補正を求めるために予め育成した単結晶のコーン部の長さと直胴部の直径の目標値からの誤差を示す図である。It is a figure which shows the difference | error from the target value of the length of the cone part of a single crystal and the diameter of a straight body part which were grown beforehand in order to obtain | require cone shape correction | amendment. 実施例1および比較例1のコーン部の長さと単結晶の直胴部100mmにおける実直径を示す図である。It is a figure which shows the length of the cone part of Example 1 and the comparative example 1, and the actual diameter in 100 mm of straight body parts of a single crystal. 実施例2および比較例2のコーン部の重量と単結晶の直胴部100mmにおける実直径の目標直径に対する誤差を示す図である。It is a figure which shows the difference | error with respect to the target diameter of the actual diameter in the weight of the cone part of Example 2 and the comparative example 2, and the straight body part of 100 mm of a single crystal. 実施例3および比較例3のコーン形状定数と単結晶の直胴部100mmにおける実直径の目標直径に対する誤差を示す図である。It is a figure which shows the difference | error with respect to the target diameter of the cone diameter of Example 3 and the comparative example 3, and the actual diameter in the straight body part 100mm of a single crystal. 従来の光学式によるカメラで結晶の両端をはかる方法を示す図である。It is a figure which shows the method of measuring the both ends of a crystal | crystallization with the camera by the conventional optical system. 従来の光学式によるカメラで結晶の片側をはかる方法を示す図である。It is a figure which shows the method of measuring one side of a crystal | crystallization with the camera by the conventional optical system. 従来の光学式による円弧の曲率から直径を割り出す方法を示す図である。It is a figure which shows the method of calculating | requiring a diameter from the curvature of the circular arc by the conventional optical system.

符号の説明Explanation of symbols

1…チャンバー、 2…シリコン原料融液、 3…シリコン単結晶、 4…種結晶、 5…ルツボ、 5a…石英ルツボ、 5b…黒鉛ルツボ、 6…支持軸、 7…引上軸、 8…ヒーター、 9…断熱材、 10…演算装置、 11…カメラ、 12…ロードセル、 13…コーン部、 14…直胴部、 20…単結晶製造装置。   DESCRIPTION OF SYMBOLS 1 ... Chamber, 2 ... Silicon raw material melt, 3 ... Silicon single crystal, 4 ... Seed crystal, 5 ... Crucible, 5a ... Quartz crucible, 5b ... Graphite crucible, 6 ... Supporting shaft, 7 ... Pulling up shaft, 8 ... Heater , 9 ... heat insulating material, 10 ... arithmetic device, 11 ... camera, 12 ... load cell, 13 ... cone part, 14 ... straight body part, 20 ... single crystal manufacturing apparatus.

Claims (6)

チョクラルスキー法により育成される単結晶の直径を検出する方法であって、カメラとロードセルの両方によってそれぞれ単結晶の直径を検出し、カメラ検出直径とロードセルにより算出した直径との差と、前記単結晶の成長速度に応じて予め求められた補正係数αと、前記単結晶のコーン部の形状を表すパラメータと予め育成した単結晶の直胴部の直径との関係から求められたコーン形状補正とによって前記カメラ検出直径を補正し、該補正によって得られた値を前記単結晶の直径とすることを特徴とする単結晶直径の検出方法。   A method for detecting the diameter of a single crystal grown by the Czochralski method, wherein the diameter of the single crystal is detected by both the camera and the load cell, respectively, and the difference between the camera detection diameter and the diameter calculated by the load cell, Cone shape correction determined from the relationship between the correction coefficient α determined in advance according to the growth rate of the single crystal, the parameter representing the shape of the cone portion of the single crystal, and the diameter of the straight body portion of the single crystal grown in advance. And correcting the detected diameter by the camera, and using the value obtained by the correction as the diameter of the single crystal. 前記補正は、前記カメラ検出直径とロードセルにより算出した直径との差に前記補正係数αを掛け合わせるか、加算した値と、前記コーン形状補正とを前記カメラ検出直径に加算して行うことを特徴とする請求項1に記載の単結晶直径の検出方法。   The correction is performed by multiplying the difference between the camera detection diameter and the diameter calculated by the load cell by the correction coefficient α or adding the value and the cone shape correction to the camera detection diameter. The method for detecting a single crystal diameter according to claim 1. 前記パラメータは、前記単結晶のコーン部の長さ、前記単結晶のコーン部の重量、前記単結晶のコーン部の長さおよび重量より求められる形状定数のいずれか1つとすることを特徴とする請求項1または請求項2に記載の単結晶直径の検出方法。   The parameter is any one of a length of the cone portion of the single crystal, a weight of the cone portion of the single crystal, and a shape constant obtained from the length and weight of the cone portion of the single crystal. The method for detecting a single crystal diameter according to claim 1 or 2. 前記形状定数(C)は、前記単結晶のコーン部の長さ(Lc)、前記単結晶のコーン部の重量(Wc)を用いて下記式(1)により求めることを特徴とする請求項3に記載の単結晶直径の検出方法。
C=Lc/Wc・・・・・(1)
The shape constant (C) is obtained by the following formula (1) using the length (Lc) of the cone portion of the single crystal and the weight (Wc) of the cone portion of the single crystal. The method for detecting a single crystal diameter according to 1.
C = Lc 3 / Wc (1)
前記コーン形状補正は、前記単結晶直径の検出方法において、前記カメラ検出直径とロードセルにより算出した直径との差と、前記単結晶の成長速度に応じて予め求められた補正係数αのみによって前記カメラ検出直径を補正し、該補正によって得られた値を前記単結晶の直径として単結晶の直径を検出しつつ、単結晶を予め育成し、その後、該予め育成した単結晶の直胴部0mm〜120mmの任意の点における実直径と前記単結晶のコーン部の形状を表すパラメータとの関係から最小二乗法を用いて求めることを特徴とする請求項1から請求項4のいずれか1項に記載の単結晶直径の検出方法。   The cone shape correction is performed by using only the correction coefficient α obtained in advance according to the difference between the camera detection diameter and the diameter calculated by the load cell and the growth rate of the single crystal in the single crystal diameter detection method. The detected diameter is corrected, and the single crystal is grown in advance while detecting the diameter of the single crystal using the value obtained by the correction as the diameter of the single crystal. 5. The method according to claim 1, wherein the distance is obtained using a least square method from a relationship between an actual diameter at an arbitrary point of 120 mm and a parameter representing a shape of a cone portion of the single crystal. For detecting the diameter of a single crystal. チョクラルスキー法による単結晶育成のための単結晶引上げ装置であって、少なくとも引上げる単結晶の直径を検出するためのカメラとロードセルの両方を具備し、請求項1から請求項5のいずれか1項に記載の単結晶直径の検出方法によって単結晶の直径の検出が行われるものであることを特徴とする単結晶引上げ装置。   6. A single crystal pulling apparatus for growing a single crystal by the Czochralski method, comprising at least both a camera and a load cell for detecting the diameter of the single crystal to be pulled, and any one of claims 1 to 5. A single crystal pulling apparatus, wherein the single crystal diameter is detected by the method for detecting a single crystal diameter according to item 1.
JP2008309484A 2008-12-04 2008-12-04 Single crystal diameter detection method and single crystal pulling apparatus Active JP4984091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008309484A JP4984091B2 (en) 2008-12-04 2008-12-04 Single crystal diameter detection method and single crystal pulling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008309484A JP4984091B2 (en) 2008-12-04 2008-12-04 Single crystal diameter detection method and single crystal pulling apparatus

Publications (2)

Publication Number Publication Date
JP2010132490A JP2010132490A (en) 2010-06-17
JP4984091B2 true JP4984091B2 (en) 2012-07-25

Family

ID=42344193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008309484A Active JP4984091B2 (en) 2008-12-04 2008-12-04 Single crystal diameter detection method and single crystal pulling apparatus

Country Status (1)

Country Link
JP (1) JP4984091B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI411709B (en) * 2009-03-27 2013-10-11 Sumco Corp Method for controlling diameter of single crystal
KR101379800B1 (en) * 2012-07-18 2014-04-01 주식회사 엘지실트론 An apparatus for growing silicon single crystal and a method of growing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003176199A (en) * 2001-12-06 2003-06-24 Toshiba Ceramics Co Ltd Apparatus and method for pulling single crystal
JP4955238B2 (en) * 2005-08-12 2012-06-20 Sumco Techxiv株式会社 Single crystal manufacturing apparatus and method

Also Published As

Publication number Publication date
JP2010132490A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP5104129B2 (en) Single crystal diameter detection method and single crystal pulling apparatus
US8349074B2 (en) Method for detecting diameter of single crystal, single-crystal manufacturing method by using the same and single-crystal manufacturing apparatus
JP5167651B2 (en) Method for measuring distance between heat shield member lower end surface and raw material melt surface, and method for controlling the distance
TWI624569B (en) Single crystal pulling method
JP5577873B2 (en) Method for measuring distance between bottom surface of heat shield member and raw material melt surface, control method for distance between bottom surface of heat shield member and raw material melt surface, method for producing silicon single crystal
WO2013125157A1 (en) Method for calculating height position of silicon melt surface, method for drawing up monocrystalline silicon and device for drawing up monocrystalline silicon
JP6465008B2 (en) Method for producing silicon single crystal
TWI776373B (en) Method for calculating liquid-solid interface morphology during growth of ingot
JP4930487B2 (en) Method for measuring distance between melt surface and lower end of in-furnace structure, method for controlling position of melt surface using the same, method for producing single crystal and single crystal production apparatus
JP2019085299A (en) Production method and apparatus of single crystal
JP6248816B2 (en) Single crystal manufacturing method
JP4984091B2 (en) Single crystal diameter detection method and single crystal pulling apparatus
JP6939714B2 (en) Method for measuring the distance between the melt surface and the seed crystal, method for preheating the seed crystal, and method for producing a single crystal
JP5399212B2 (en) Method for producing silicon single crystal
TWI635199B (en) Manufacturing method of single crystal silicon
JP6729470B2 (en) Single crystal manufacturing method and apparatus
JP4930488B2 (en) Single crystal diameter detection method, single crystal manufacturing method using the same, and single crystal manufacturing apparatus
JP6977619B2 (en) A method for estimating the oxygen concentration of a silicon single crystal and a method for producing a silicon single crystal.
JP5716689B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP4496723B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
KR20090125696A (en) Method for manufacturing silicon single crystal
JP2009269802A (en) Method and apparatus for manufacturing single crystal
JP3147069B2 (en) Single crystal growing method, single crystal grown using the method, and single crystal wafer
KR101758983B1 (en) Ingot growing apparatus and growing method by it
JP4815766B2 (en) Silicon single crystal manufacturing apparatus and manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120328

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120410

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4984091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250