JP4496723B2 - Single crystal manufacturing method and single crystal manufacturing apparatus - Google Patents

Single crystal manufacturing method and single crystal manufacturing apparatus Download PDF

Info

Publication number
JP4496723B2
JP4496723B2 JP2003183672A JP2003183672A JP4496723B2 JP 4496723 B2 JP4496723 B2 JP 4496723B2 JP 2003183672 A JP2003183672 A JP 2003183672A JP 2003183672 A JP2003183672 A JP 2003183672A JP 4496723 B2 JP4496723 B2 JP 4496723B2
Authority
JP
Japan
Prior art keywords
single crystal
raw material
material melt
crystal
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003183672A
Other languages
Japanese (ja)
Other versions
JP2005015287A (en
Inventor
亮二 星
亘 佐藤
泉 布施川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2003183672A priority Critical patent/JP4496723B2/en
Publication of JP2005015287A publication Critical patent/JP2005015287A/en
Application granted granted Critical
Publication of JP4496723B2 publication Critical patent/JP4496723B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、チョクラルスキー法による単結晶の製造方法に関し、特に所望の欠陥領域を有する大口径の単結晶を製造する方法に関する。さらに、本発明は、そのような単結晶の製造方法に用いることのできる単結晶製造装置に関する。
【0002】
【従来の技術】
メモリーやCPUなど半導体デバイスの基板として用いられる単結晶には、例えばシリコン単結晶等があり、主にチョクラルスキー法(Czochralski Method、以下CZ法と略称する)により製造されている。
【0003】
CZ法では、まず、ルツボ内に所望の高純度多結晶原料を充填し、ヒーターによって多結晶原料の融点(シリコンであれば約1420°C)以上に加熱して溶融して原料融液とし、該原料融液の表面略中心部に種結晶の先端を接触又は浸漬させる。そして、種結晶を引き上げることにより、単結晶の育成が開始される。単結晶の育成は、先ず、無転位化するために直径の細い部分(絞り部)を形成した後、所定の直径になるまで結晶を太らせ(コーン部)、その後肩部を形成して所望直径の直胴部を成長させる。直胴部の成長中には、結晶化したことにより減少する原料融液の融液面の高さの降下分を、ルツボを押し上げることによって補償し、原料融液面の高さを一定に保つ様にして引上げを行っている。
尚、本明細書中で「コーン部」とは、上記のように絞り部から直胴の始まる肩部までの拡径部の事を指す。
【0004】
近年、半導体デバイスでは高集積化が促進され、素子の微細化が進んでいる。それに伴い、単結晶の結晶成長中に導入されるグローンイン(Grown−in)欠陥の問題がより重要となっている。
【0005】
ここで、グローンイン欠陥について図4を参照しながら説明する。
一般に、シリコン単結晶を成長させるときに、結晶成長速度V(結晶引上げ速度)が比較的高速の場合には、空孔型の点欠陥が集合したボイド起因とされているFPD(Flow Pattern Defect)やCOP(Crystal Originated Particle)等のグローンイン欠陥が結晶径方向全域に高密度に存在する。これらのボイド起因の欠陥が存在する領域はV(Vacancy)領域と呼ばれている。
【0006】
また、結晶成長速度を低くしていくと成長速度の低下に伴いOSF(酸化誘起積層欠陥、Oxidation Induced Stacking Fault)領域が結晶の周辺からリング状に発生し、さらに成長速度を低速にすると、OSFリングがウエーハの中心に収縮して消滅する。一方、さらに成長速度を低速にすると格子間シリコンが集合した転位ループ起因と考えられているLSEPD(Large Secco Etch Pit Defect)、LFPD(Large Flow Pattern Defect)等の欠陥が低密度に存在し、これらの欠陥が存在する領域はI(Interstitial)領域と呼ばれている。
【0007】
近年、V領域とI領域の中間でOSFリングの外側に、ボイド起因のFPD、COP等の欠陥も、格子間シリコン起因のLSEPD、LFPD等の欠陥も存在しない領域の存在が発見されている。この領域はN(ニュートラル、Neutral)領域と呼ばれる。また、このN領域をさらに分類すると、OSFリングの外側に隣接するNv領域(空孔の多い領域)とI領域に隣接するNi領域(格子間シリコンが多い領域)とがあり、Nv領域では、熱酸化処理をした際に酸素析出量が多く、Ni領域では酸素析出が殆ど無いことがわかっている。
【0008】
さらに、熱酸化処理後、酸素析出が発生し易いNv領域の一部に、Cuデポジション処理で検出される欠陥が著しく発生する領域(以下、Cuデポ欠陥領域という)があることが見出されており、これは酸化膜耐圧特性のような電気特性を劣化させる原因になることがわかっている。
【0009】
これらのグローンイン欠陥は、単結晶を成長させるときの引上げ速度V(mm/min)と固液界面近傍のシリコンの融点から1400℃の間の引上げ軸方向の結晶温度勾配G(℃/mm)の比であるV/G(mm/℃・min)というパラメーターにより、その導入量が決定されると考えられている(例えば、非特許文献1参照)。すなわち、V/Gを所定の値で一定に制御しながら単結晶の育成を行うことにより、所望の欠陥領域を有する単結晶を製造することが可能となる。
【0010】
例えば特許文献1では、シリコン単結晶を育成する際に、結晶中心でV/G値を所定の範囲内(例えば、0.112〜0.142mm/℃・min)に制御して単結晶を引上げることによって、ボイド起因の欠陥及び転位ループ起因の欠陥が存在しないシリコン単結晶ウエーハを得ることができることが示されている。また、近年では、Cuデポ欠陥領域を含まないN領域の無欠陥結晶に対する要求が高まりつつあり、V/Gを所望の無欠陥領域に高精度に制御しながら単結晶を引上げる単結晶の製造が要求されてきている。
【0011】
従来、引上げ軸方向の結晶温度勾配Gは、単結晶の育成が行われる単結晶製造装置のHZ(ホットゾーン:炉内構造)により一義的に決まるものとされていた。しかしながら、単結晶引上げ中にHZを変更することは極めて困難であることから、上記のようにV/Gを制御して単結晶の育成を行う場合、結晶温度勾配Gを単結晶引上げ中に制御することは行われず、引上げ速度Vを調節することによってV/Gを制御して所望の欠陥領域を有する単結晶を製造することが行われてきた。
【0012】
ところで、結晶温度勾配Gに最も大きな影響を及ぼす要素のひとつは、原料融液の融液面と原料融液面に対向配置された遮熱部材との距離である。この距離は、遮熱部材の位置は機械的に一定であるのが一般的であるため、主として原料融液の融液面の位置に依存する。従って、原料融液の融液面の位置を正確に把握し、調整することは非常に重要である。
【0013】
従来は、例えば、単結晶を引上げるワイヤーの熱による伸び等を補正して、原料融液の融液面の初期位置を正確に調整する方法や(例えば、特許文献2参照。)、原料融液の温度が目標温度になるように制御し、かつ、直径変化率と直径変化率の目標値との差に基づいて、目標温度を補正することで、コーン部を再現性よく形成する方法が提案されており(例えば、特許文献3参照。)、これらを利用して、融液面初期位置を調整し、コーン部を形成することで、原料融液面の位置を調整し、単結晶の直胴部を成長させていた。
しかしながら、このように原料融液面の位置を調整した場合であっても、実際の原料融液の融液面と遮熱部材との距離は、各製造単結晶間でバラツキが大きいという問題があった。このように、原料融液の融液面と遮熱部材との距離を正確に調整することができないと、結晶温度勾配Gを、正確に調整することができない。従って、単結晶の直胴部を成長させる前に、結晶温度勾配Gを、正確に調整することができず、単結晶の直胴部の成長においてV/Gを正確に制御できないこととなり、所望の欠陥領域を有する単結晶を製造することが困難なため、不良率が高いという問題につながった。
【0014】
さらに、位置検出装置からの光の投射により、ガス整流筒と原料融液の表面との距離をそれぞれ測定し、単結晶の引上げ中に原料融液の融液面の位置がずれた場合に、そのずれを検出する方法が提案されている(例えば、特許文献4参照。)。
しかしながら、この方法は、原料融液の融液面と遮熱部材との距離を補正して、結晶温度勾配Gを正確に調整するためのものではなく、そもそも、ガス整流筒と原料融液の表面との距離を補正して、ドーパント、酸素、炭素等の不純物濃度を調整して所望品質の結晶を育成するための方法であるし、結晶温度勾配Gを調整するためにこの方法を用いたとしても、原料融液の融液面と遮熱部材との距離は、光学的方法により検出されるため、結晶引上げ中の融液面が波立つなどして平面でないため正確に測定されず、各製造単結晶間でバラツキが生じてしまい、やはり、所望の欠陥領域を有する単結晶を確実に育成することはできなかった。
【0015】
また、V/Gを引上げ速度Vで制御する場合、引上げ速度Vを制御するために許される制御幅は非常に狭い。特に、径方向の全面にわたってN領域の単結晶を得るためには、わずかな成長速度のずれがあっても、結晶欠陥が発生し、不良率が高くなるというのが現状である。そのため、単結晶の直胴部を成長させる前に、原料融液の融液面と遮熱部材との距離を正確に調整するなどして、結晶温度勾配Gを正確に調整し、単結晶の直胴部を成長させることのできる方法が求められていた。
【0016】
【特許文献1】
特開平11−147786号公報
【特許文献2】
特開平9−235182号公報
【特許文献3】
特開平4−149092号公報
【特許文献4】
特開平6−293590号公報
【非特許文献1】
V.V.Voronkov,Journal of CrystalGrowth,59(1982),625〜643
【0017】
【発明が解決しようとする課題】
本発明はこのような問題点に鑑みてなされたもので、CZ法によってチャンバ内で単結晶を原料融液から引上げる際に、単結晶の直胴部を成長させる時に、原料融液の融液面と遮熱部材との距離を正確に所定値に補正し、単結晶の直胴部を成長させることができ、それにより、例えば、全面無欠陥といった所望の欠陥領域を有する単結晶をより確実に製造することのできる単結晶の製造方法を提供することを目的とする。また、本発明は、そのような単結晶の製造方法に用いることのできる単結晶製造装置を提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたもので、チョクラルスキー法によってチャンバ内で単結晶を原料融液から引上げて製造する方法において、少なくとも、前記単結晶の直胴部を成長させる前に、前記単結晶のコーン部の重量を測定し、該測定結果に基づいて、前記原料融液の融液面と前記チャンバ内で原料融液面に対向配置された遮熱部材との距離を、ルツボ移動速度を変更可能なルツボ駆動手段及び/又は遮熱部材を移動可能な遮熱部材駆動手段により所定値に補正し、単結晶の直胴部を成長させることを特徴とする単結晶の製造方法を提供する
【0019】
このように、単結晶の直胴部を成長させる前に、単結晶のコーン部の重量を測定し、該測定結果に基づいて、原料融液の融液面とチャンバ内で原料融液面に対向配置された遮熱部材との距離を、ルツボ移動速度を変更可能なルツボ駆動手段及び/又は遮熱部材を移動可能な遮熱部材駆動手段により所定値に補正し、単結晶の直胴部を成長させることによって、単結晶の直胴部を成長させる時に、原料融液の融液面と遮熱部材との距離を正確に所定値に補正して、例えば、固液界面近傍の引上げ軸方向の結晶温度勾配G(℃/mm)を正確に調整することができ、それによって正確に所望欠陥領域の単結晶を成長させることになる。
尚、ここで「単結晶の直胴部を成長させる」とは、必ずしも単結晶の直胴部全体を成長させることのみを意味するものではなく、直胴部の一部、例えば、結晶欠陥を制御したい部分(重要な部分)のみを成長させることを含む意味である。
【0020】
この時、前記単結晶の直胴部を成長させるときの引上げ速度をV(mm/min)、固液界面近傍の引上げ軸方向の結晶温度勾配をG(℃/mm)で表したとき、引上げ速度Vと結晶温度勾配Gの比V/G(mm/℃・min)を所望の欠陥領域を有する単結晶が育成できるように制御することができる
【0021】
本発明によれば、単結晶の直胴部を成長させる前のコーン部の重量を測定して、結晶温度勾配Gを正確に調整することができるので、直胴部を成長させるときには、V/G(mm/℃・min)を所望の欠陥領域を有する単結晶が育成できるように正確に制御することが可能となり、より確実に所望の欠陥領域を有する単結晶を育成できる。これにより、製造する単結晶の不良率が大幅に低下し、歩留り及び生産性が向上することから、製造コストの低減にもつながる。
【0022】
この場合、前記単結晶のコーン部の重量の測定結果に基づいて、さらに、前記チャンバ内に配置された移動可能なヒーターの位置を補正するのが好ましい
【0023】
結晶温度勾配Gは、チャンバ内に配置された移動可能なヒーターの位置を補正することによっても調整することができる。従って、単結晶の直胴部を成長させる前に、単結晶のコーン部の重量の測定結果に基づいて、さらに、チャンバ内に配置された移動可能なヒーターの位置を補正することで、結晶温度勾配Gをより正確に調整することができる。これによって、コーン部の重量に基づいて、原料融液面と遮熱部材間の距離のみならず、ヒーターの位置も調整して単結晶の直胴部を成長させることで、より確実に所望の欠陥領域を有する単結晶を育成できる。
【0024】
この場合、前記原料融液を収容するルツボの直径を、前記単結晶の直胴部の直径の4倍未満にすることができる
【0025】
ルツボの直径に単結晶の直胴部の直径が近いほど、単結晶のコーン部の重量のバラツキが、原料融液の融液面と遮熱部材との距離のバラツキに与える影響も大きくなる。本発明によれば、ルツボの直径が、単結晶の直胴部の直径の4倍未満と、単結晶の直径に近いものであっても、単結晶のコーン部の重量のバラツキによる原料融液の融液面と遮熱部材との距離のバラツキを補正により小さくすることができる。結果として、成長させる単結晶の直胴部の結晶温度勾配Gのバラツキを小さくできることとなる。尚、ルツボの直径を、直胴部の直径の1倍以下とすることは実際上できないので、ルツボの直径は、少なくとも直胴部の直径の1倍より大きい範囲である必要がある。また、ルツボの直径を直胴部の直径の2倍以上とすることで、商業的に生産可能な、ある程度長尺の単結晶が得られる。
【0026】
この場合、前記V/Gを、前記育成する単結晶の欠陥領域が径方向の全面にわたってN領域となるように制御することが好ましい
【0027】
このように、本発明ではV/Gのバラツキを小さくできるので、V/Gを単結晶の欠陥領域が径方向全面でN領域となるように制御することによって、FPDやCOP等のボイド起因の欠陥も、またLSEPD、LFPD等の転位ループ起因の欠陥も存在しない非常に高品質の単結晶をより確実に製造することができる。
【0028】
この場合、前記単結晶の直胴部の直径を、200mm以上とすることができる
【0029】
本発明の単結晶の製造方法によれば、特にコーン重量のバラツキが大きくなる200mm以上の大口径結晶においても、コーン部の重量のずれにより発生する原料融液の融液面と遮熱部材との距離のずれを補正することが可能であり、原料融液の融液面と遮熱部材との距離を正確に調整することができる。したがって、より確実に所望欠陥領域を有する大口径の単結晶を育成することが可能となる。
【0030】
この場合、前記製造する単結晶をシリコン単結晶とすることができる
【0031】
このように、本発明の単結晶の製造方法は、近年特に需要の高いシリコン単結晶を製造する場合に特に好適に用いることができ、V/Gを制御して、所望の欠陥領域を有するシリコン単結晶をより確実に製造することができる。
【0032】
さらに、本発明は、チョクラルスキー法により原料融液から単結晶を引き上げる際に使用する単結晶製造装置であって、少なくとも、原料融液を収容するルツボと、該ルツボの移動速度を変更可能なルツボ駆動手段と、原料融液を加熱するヒーターと、原料融液面に対向配置され、固定されているか又は遮熱部材駆動手段により移動可能な遮熱部材と、ワイヤーまたはシャフトにより原料融液から単結晶を回転させながら引上げるための引上げ手段と、前記ワイヤー又はシャフトにより引上げられる単結晶のコーン部の重量を測定する重量検出手段と、該重量検出手段によるコーン部の重量の測定結果を前記ルツボ内の原料融液面の位置に換算し、該換算結果に基づいて、前記ルツボ駆動手段及び/又は前記遮熱部材駆動手段により、前記原料融液の融液面と前記遮熱部材との距離を所定値に補正する制御手段を具備するものであることを特徴とする単結晶製造装置を提供する
【0033】
このように構成した単結晶製造装置を使用して単結晶を製造すれば、単結晶の直胴部を成長させる前のコーン部の重量測定結果に基づいて、原料融液の融液面と遮熱部材との距離を、ルツボ駆動手段及び/又は遮熱部材駆動手段により、自動的かつ正確に所定値に補正して、例えば、結晶温度勾配Gを正確に調整して、単結晶の直胴部を成長させることができる。したがって、V/Gを正確に制御して所望欠陥領域を有する単結晶を育成することが可能となり、製造する単結晶の不良率が低下し、歩留り及び生産性が向上して、製造コストの低減につながる。
【0034】
この場合、前記ヒーターが移動可能なものであり、前記制御手段が、重量検出手段によるコーン部の重量の測定結果に基づいて、さらに、前記ヒーターの位置を補正することができる
【0035】
このように、制御手段が、重量検出手段によるコーン部の重量の測定結果に基づいて、さらに、前記ヒーターの位置を補正するものであれば、結晶温度勾配Gをより正確に調整し、単結晶の直胴部を成長させることができる。したがって、より確実に所望欠陥領域を有する単結晶を得ることができる。
【0036】
以下、本発明についてより詳細に説明する。
本発明者らは、従来の方法により、原料融液面の位置を調整した上で製造した結晶に品質上のバラツキが生じてしまい、製造する単結晶の不良率が高くなってしまう要因の解析を行ったところ、単結晶のコーン部の重量との相関があることを見出した。特に、製造する単結晶の結晶欠陥制御が厳しく要求されている直径200mm以上といった大口径の単結晶では、コーン部の重量も高重量化されており、このコーン部の重量のバラツキによる原料融液の融液面の位置のバラツキが無視できないほど大きくなっていることが判った。そこで、本発明者らは、単結晶の直胴部を成長させる前に、単結晶のコーン部の重量を測定し、この測定したコーン部の重量から導き出される原料融液の融液面と遮熱部材との距離と所定値との誤差を、少なくとも直胴部の開始初期の段階で補正することで、原料融液の融液面と遮熱部材との距離を正確に所定値に維持し、単結晶の直胴部を成長させることができることに想到し、本発明を完成させた。
【0037】
【発明の実施の形態】
以下、本発明の実施の形態について説明するが、本発明はこれらに限定されるものではない。
先ず、本発明の単結晶の製造方法で用いることができる単結晶製造装置について説明する。本発明の単結晶製造装置は、チョクラルスキー法により原料融液から単結晶を引き上げる際に使用する単結晶製造装置であって、少なくとも、原料融液を収容するルツボと、該ルツボの移動速度を変更可能なルツボ駆動手段と、原料融液を加熱するヒーターと、原料融液面に対向配置され、固定されているか又は遮熱部材駆動手段により移動可能な遮熱部材と、ワイヤーまたはシャフトにより原料融液から単結晶を回転させながら引上げるための引上げ手段と、前記ワイヤー又はシャフトにより引上げられる単結晶のコーン部の重量を測定する重量検出手段と、該重量検出手段によるコーン部の重量の測定結果を前記ルツボ内の原料融液面の位置に換算し、該換算結果に基づいて、前記ルツボ駆動手段及び/又は前記遮熱部材駆動手段により、前記原料融液の融液面と前記遮熱部材との距離を所定値に補正する制御手段を具備するものである。
【0038】
また、前記ヒーターが移動可能なものであり、前記制御手段が、重量検出手段によるコーン部の重量の測定結果に基づいて、さらに、前記ヒーターの位置を補正するものとすることができる。
【0039】
このような単結晶製造装置としては、例えば、図1に示すような単結晶製造装置がある。
図1に示した単結晶製造装置24は、メインチャンバ1内に、原料融液4を収容する石英ルツボ5と、この石英ルツボ5を保護する黒鉛ルツボ6とがルツボ駆動手段15によって回転・昇降自在に保持軸16で支持されており、またこれらのルツボ5、6を取り囲むように加熱ヒーター7と断熱材8が配置され、さらに加熱ヒーター7の位置を独立して調節できるようにヒーター駆動手段17が設けられている。
【0040】
メインチャンバ1の上部には育成した単結晶3を収容し、取り出すための引上げチャンバ2が連接されている。引上げチャンバ2の上部には、ボックス13が設けられており、該ボックス13には、単結晶3をワイヤー18で回転させながら引上げる引上げ手段22と、ワイヤー18により引上げられる単結晶3の重量を測定する重量検出手段(ロードセル)23が収容されている。
【0041】
さらに、メインチャンバ1の内部にはガス整流筒11が設けられており、このガス整流筒11の下部には原料融液4の融液面と対向するように遮熱部材12を設置して、原料融液4の表面からの輻射をカットするとともに原料融液4の表面を保温するようにしている。また、ガス整流筒11の上部には、ガス整流筒11を昇降させて遮熱部材12の位置を上下に調整できる遮熱部材駆動手段21が設置されている。尚、本発明において、遮熱部材12の形状や材質等は特に限定されるものではなく、必要に応じて適宜変更することができる。さらに、本発明の遮熱部材12は、融液面に対向配置されたものであれば良く、必ずしも上記のようにガス整流筒の下部に設置されているものに限定されない。
【0042】
また、引上げチャンバ2の上部に設けられたガス導入口10からはアルゴンガス等の不活性ガスを導入でき、引上げ中の単結晶3とガス整流筒11との間を通過させた後、遮熱部材12と原料融液4の融液面との間を通過させ、ガス流出口9から排出することができる。
【0043】
さらに、上記の重量検出手段23、ルツボ駆動手段15、遮熱部材駆動手段21、ヒーター駆動手段17は、制御手段14に接続されている。そして、この制御手段14に、例えばルツボ5,6の位置、遮熱部材12の位置、加熱ヒーター7の位置、重量検出手段23から得られる単結晶のコーン部の重量の情報がフィードバックされることにより、ルツボ駆動手段15、遮熱部材駆動手段21、ヒーター駆動手段17の駆動を単結晶のコーン部の重量に応じて調節して、原料融液の融液面と遮熱部材との距離L1、原料融液を加熱する加熱ヒーター7の位置(加熱ヒーター7の発熱中心位置と原料融液面との相対距離L2)をそれぞれ精度良く制御して、補正することができるようになっている。
【0044】
このような単結晶引上げ装置24を用いて、CZ法により例えばシリコン単結晶を育成する場合、ガス導入口10から引上げチャンバ2及びメインチャンバ1に不活性ガス(例えば、アルゴンガス)を導入しながら、種ホルダー19に固定された種結晶20を石英ルツボ5中の原料融液4に浸漬し、その後回転させながら静かに引上げて種絞りを形成した後所望の直径まで拡径するコーン部を形成し、略円柱形状の直胴部を有するシリコン単結晶3を成長させることができる。
【0045】
本発明は、このような単結晶製造装置を用いて、以下のような方法で単結晶を製造する。すなわち、本発明の単結晶の製造方法は、チョクラルスキー法によってチャンバ内で単結晶を原料融液から引上げて製造する方法において、少なくとも、前記単結晶の直胴部を成長させる前に、前記単結晶のコーン部の重量を測定し、該測定結果に基づいて、前記原料融液の融液面と前記チャンバ内で原料融液面に対向配置された遮熱部材との距離を、ルツボ移動速度を変更可能なルツボ駆動手段及び/又は遮熱部材を移動可能な遮熱部材駆動手段により所定値に補正し、単結晶の直胴部を成長させるものである。
【0046】
具体的に図1に示した装置により説明すると、単結晶3の直胴部を成長させる前に、単結晶3のコーン部の重量を重量検出手段23により測定し、その測定結果を制御手段14に送る。制御手段14は、測定結果の設定重量に対するズレ量から原料融液の融液面と遮熱部材の距離L1の補正量を計算し、その計算結果に基づいて、ルツボ駆動手段15及び/又は遮熱部材駆動手段21を制御して、原料融液の融液面と遮熱部材の距離L1を所定の設定値に補正する。ルツボ駆動手段15での制御は、石英ルツボ5及び黒鉛ルツボ6を結晶成長による融液面低下分とは異なる速度で押し上げることによって原料融液面の高さを結晶成長軸方向で上昇・下降させたりすることで行う。また、遮熱部材駆動手段21での制御は、ガス整流筒11を昇降させて遮熱部材12の位置を上下に移動させることで行う。これらの制御により、原料融液の融液面と遮熱部材の距離L1を、容易にまた高精度で補正することができる。
【0047】
この時、単結晶の直胴部を成長させるときの引上げ速度をV(mm/min)、固液界面近傍の引上げ軸方向の結晶温度勾配をG(℃/mm)で表したとき、引上げ速度Vと結晶温度勾配Gの比V/G(mm/℃・min)を所望の欠陥領域を有する単結晶が育成できるように制御することができる。
【0048】
前述のように、本発明では、単結晶の直胴部を成長させる前に、コーン部の重量に基づいて、原料融液の融液面と遮熱部材の距離L1を正確に所定値に補正することができ、結晶温度勾配Gを正確に調整することができる。例えば、コーン部の重量が設定値よりも小さければ、原料融液の融液面と遮熱部材の距離L1が所定値より小さくなり、結晶温度勾配Gが大きくなっており、一方、コーン部の重量が設定値よりも大きければ、原料融液の融液面と遮熱部材の距離L1が所定値より大きくなり、結晶温度勾配Gは小さくなっているので、コーン部の重量に基づいて、原料融液の融液面と遮熱部材の距離L1を正確に所定値に補正することで、結晶温度勾配Gを正確に調整する。したがって、少なくとも単結晶の直胴部の初期の段階で補正することで、結晶温度勾配Gのバラツキが少なく正確になるので、V/Gを所望の欠陥領域を有する単結晶が育成できるように正確に制御することが可能となり、より確実に所望の欠陥領域を有する単結晶を育成できる。本発明の方法は、従来のように、結晶温度勾配Gを一定にし、引上げ速度Vを調整することによってV/Gを制御して単結晶の直胴部を成長させるときに有効であることはもちろんだが、これに限らず、単結晶直胴部の直径、単結晶の回転速度、不活性ガスの流量、ヒーターの位置、原料融液面と遮熱部材間の距離等の引上げ条件を変更して結晶温度勾配Gを調整することによってV/Gを制御して単結晶の直胴部を成長させるときにも、直胴部成長初期の結晶温度勾配Gのバラツキを抑制して正確に補正することができるので有効である。そして、これにより、製造する単結晶の不良率が大幅に低下して、歩留り及び生産性が向上することから、製造コストの低減にもつながる。
【0049】
尚、原料融液の融液面と遮熱部材の距離L1の値は、実際に単結晶の製造が行われる製造環境での結晶温度勾配Gの状態や、原料融液の融液面と遮熱部材の距離L1と結晶温度勾配Gとの関係などを予めシミュレーション解析、あるいは実生産等の試験を行って明らかにし、そこで得られた情報を基に所望欠陥領域となる値を求めておく。そして、その選択した原料融液の融液面と遮熱部材の距離L1の所定値に補正することによって、結晶温度勾配Gを高精度に自動調整することが可能となり、所望の欠陥領域を有する単結晶を非常に安定して製造することができる。
ここで、シミュレーション解析は、例えば、総合伝熱解析ソフトFEMAG(F.Dupret, P.Nicodeme, Y.Ryckmans, P.Wouters, and M.J.Crochet, Int.J.HeatMass Transfer,33,1849(1990))を用いて行うことができる。
【0050】
また、本発明の方法では、単結晶のコーン部の重量の測定結果に基づいて、さらに、前記チャンバ内に配置された移動可能なヒーターの位置を補正するのが好ましい。
【0051】
具体的に図1に示した装置により説明すると、制御手段14に送られた単結晶のコーン部の重量の測定結果に基づいて、さらに、制御手段14により加熱ヒーター7の位置をヒーター駆動手段17により補正することで、結晶温度勾配Gを調整する。例えば、結晶温度勾配Gを大きくする調整は、加熱ヒーター7の発熱中心位置と原料融液面との相対距離L2が大きくなるように加熱ヒーター7の位置をヒーター駆動手段17によって補正する(ヒーターの位置を下げる)ことによって行うことができる。また逆に、結晶温度勾配Gを小さくする調整は、加熱ヒーター7の発熱中心位置と原料融液面との相対距離L2が小さくなるように加熱ヒーター7の位置を補正する(ヒーターの位置を上げる)ことによって行うことができる。
尚、上記では、原料融液面の位置よりヒーター発熱中心が下となる場合を例として説明しているが、もちろんヒーター発熱中心を融液面より上となるように制御することも可能である。
【0052】
このように、単結晶の直胴部を成長させる前に、単結晶のコーン部の重量を測定し、その測定結果に基づいて、チャンバ内に配置された移動可能なヒーターの位置を補正することで、結晶温度勾配Gをより正確に微調整することができ、より確実に所望の欠陥領域を有する単結晶が育成できる。また、このようにヒーターの位置を調整することで、含有酸素濃度等のその他の品質項目についてもバラツキを低減できるという利点もある。
【0053】
また、ルツボの直径に単結晶の直胴部の直径が近いほど、単結晶のコーン部の重量のバラツキが原料融液の融液面と遮熱部材との距離のバラツキに与える影響も大きくなる。これに対して本発明によれば、ルツボの直径が、単結晶の直胴部の直径の4倍未満と、単結晶の直径に近いものであっても、単結晶のコーン部の重量のバラツキによる原料融液の融液面と遮熱部材との距離のバラツキを補正により小さくすることができる。そして、さらには、結晶温度勾配Gのバラツキを小さくできることとなる。尚、ルツボの直径を、直胴部の直径の1倍以下とすることは実際上できないので、ルツボの直径が、直胴部の直径の1倍より大きい範囲である必要がある。また、商業的に生産可能な、ある程度長尺の単結晶を製造するために、ルツボの直径は直胴部の直径の2倍以上が好ましい。
【0054】
さらに、単結晶の直胴部を成長させる前にコーン部の重量を測定し、本発明のようにして原料融液の融液面と遮熱部材との距離を補正するなどして、結晶温度勾配Gを正確に調整し、単結晶の直胴部を成長させることになるため、結晶成長中のV/Gの制御性を向上させることができる。そのため、V/Gを、例えば図4に示すような、単結晶の欠陥領域が径方向全面でN領域、さらにはCuデポ欠陥領域を含まないNv領域やNi領域といった狭い領域になるように高精度に制御することが可能となり、FPDやCOP等のボイド起因の欠陥も、またLSEPD、LFPD等の転位ループ起因の欠陥も存在しない非常に高品質の単結晶を安定して得ることができる。
【0055】
本発明の単結晶の製造方法によれば、特にコーン重量のバラツキが大きくなる200mm以上の大口径結晶においても、コーン部の重量のずれにより発生する原料融液の融液面と遮熱部材との距離のずれを補正することが可能であり、原料融液の融液面と遮熱部材との距離を正確に調整することができるので有益である。したがって、より確実に所望欠陥領域を有する大口径単結晶を育成することが可能となる。
【0056】
そして、本発明の単結晶の製造方法は、近年特に需要の高いシリコン単結晶を製造する場合に特に好適に用いることができ、V/Gを制御して、所望の欠陥領域を有するシリコン単結晶をより確実に製造することができる。
【0057】
【実施例】
以下、本発明を実施例および比較例を挙げて具体的に説明する。
(実施例1)
図1に示した単結晶製造装置24を用いて、直径32インチ(800mm)の石英ルツボに原料多結晶シリコンを360kgチャージし、ガス導入口10からアルゴンガスを流しながら、また、中心磁場強度4000Gの水平磁場を印加しながら、CZ法により、方位<100>となるシリコン単結晶を育成した(単結晶直胴部の長さは約140cm)。尚、単結晶を育成する際の直胴部の直径については、最終的に得られる単結晶が直径12インチ(300mm)となるように結晶育成後に円筒外周面を研削加工する時の加工代を考慮に入れて、300mmより太くなるようにした。
【0058】
また、結晶温度勾配Gの状態や、原料融液4の融液面と遮熱部材12の距離L1と結晶温度勾配Gとの関係等について予めシミュレーション解析を行って、その解析の結果に基づいて決まる原料融液4の融液面と遮熱部材12との距離L1の所定値を求めた(80mm)。そして、コーン部を形成した後、直胴部の成長開始前に、コーン部の重量をロードセル23にて測定し、設定重量と測定重量とのずれ量から、原料融液4の融液面と遮熱部材12の距離L1を、制御手段14によりルツボ駆動手段15、遮熱部材駆動手段12を制御して直胴部10cmまでの間に所定値に自動補正するとともに、コーン部の重量の測定結果に基づいて、加熱ヒーター7の位置(ヒーターの発熱中心位置と原料融液面との相対距離L2)を制御手段14によりヒーター駆動手段17を制御して、補正した。そして、直胴部10cm以降では、径方向の全面にわたって、N領域となるようにV/Gを制御して単結晶を得た。
このようにして、5本の単結晶を得た。
【0059】
次に、上記のようにして育成したそれぞれの単結晶の円筒外周面に研削加工を施して直胴部の直径を300mmに調整した。その後、得られたそれぞれの単結晶の成長軸方向20cm毎の部位から約2mm厚のウエーハを切り出し、平面研削及び研磨を行って検査用のサンプルを作製し、以下に示すような結晶品質特性の検査を行った。
【0060】
(1)FPD(V領域)及びLSEPD(I領域)の検査
検査用のサンプルに30分間のセコエッチングを無攪拌で施した後、ウエーハ面内を顕微鏡で観察することにより結晶欠陥の有無を確認した。
(2)OSFの検査
検査用のサンプルにウエット酸素雰囲気下、1150℃で100分間の熱処理を行った後、ウエーハ面内を顕微鏡で観察することによりOSFの有無を確認した。
【0061】
その結果、得られた5本の単結晶のうち4本は、肩部直後と丸め部直前の品質不安定領域を除いた全長に渡りN領域の単結晶であった(図2(a)参照)。また、残りの1本も直胴部中の一部で結晶欠陥が発生したのみであった。
【0062】
(比較例1)
直胴部の成長開始前に、コーン部の重量をロードセルにて測定し、その測定結果に基づいて、原料融液の融液面と遮熱部材の距離L1、及びヒーターの発熱中心位置と原料融液面との相対距離L2を制御手段14により補正することを行わなかったことを除いては、実施例1と同じ方法で直径12インチ(300mm)のシリコン単結晶を5本育成した。
【0063】
そして、得られたそれぞれの単結晶で、実施例1と同様の結晶品質特性の検査を行った。
その結果、コーン部の重量が設定値よりも約2.5kg軽く、直胴部10cmの時点での原料融液の融液面と遮熱部材との距離L1が所定値よりも約2mm狭くなっていた単結晶では、ほぼ全長に渡りLSEPD(I領域)が観察された(図2(b)参照。)。
また、コーン部の重量が設定値よりも約1.8kg重く、直胴部10cmの時点での原料融液の融液面と遮熱部材との距離L1が所定値よりも約1.4mm広くなっていた単結晶では、数ヶ所でFPD(V領域)が観察された。
残りの3本の単結晶は、コーン部の重量が設定値と比較して±1kgの範囲内であって、直胴部10cmの時点での原料融液の融液面と遮熱部材との距離L1は所定値と比較して±0.8mmの範囲内であった。これらの3本の単結晶中2本は全長にわたりN領域の単結晶であった。そして、残りの1本は直胴部中の一部で結晶欠陥が発生したのみであった。
【0064】
図3に、全長N領域単結晶の引上げ成功率を、実施例1と比較例2で比較したグラフを示す。図3から判るように、全長N領域単結晶の引上げ成功率は、比較例1では、40%であるのに対して、実施例1では、80%であり、大幅に成功率が上がっている。したがって、本発明の方法により、所望の欠陥領域を有する単結晶を育成することで、歩留り及び生産性を大幅に向上させることができることが判る。
【0065】
尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【0066】
例えば、上記実施例では単結晶をN領域で育成する場合を例に挙げて説明を行っているが、本発明はこれに限定されず、V領域またはI領域、あるいはOSF領域といった所望の欠陥領域で単結晶を育成することもできる。また、本発明は、シリコン単結晶を製造する場合に好適に用いることができるが、これに限定されるものではなく、化合物半導体単結晶等を製造する場合にも同様に適用することができる。
【0067】
【発明の効果】
以上説明したように、本発明によれば、単結晶の直胴部を成長させる前に、単結晶のコーン部の重量を測定し、該測定結果に基づいて、原料融液の融液面と遮熱部材の距離などを正確に補正して、単結晶の直胴部を成長させることができる。これにより、単結晶の直胴部を成長させる時に、結晶温度勾配Gを精度良く制御でき、したがって、V/Gを高精度に制御して、所望の欠陥領域を有する単結晶を、より確実に得ることができるので、単結晶製造の生産性が向上し、大幅なコストダウンを図ることが可能となる。
【図面の簡単な説明】
【図1】本発明の単結晶製造装置の一例を示す概略図である。
【図2】実施例1と比較例1の単結晶の、結晶欠陥の発生状況を示す概略図である。
(a)実施例1の単結晶の一例、(b)比較例1の単結晶の一例。
【図3】全長N領域単結晶の引上げ成功率を、実施例1と比較例2で比較したグラフである。
【図4】V/Gと結晶欠陥分布の関係を表す説明図である。
【符号の説明】
1…メインチャンバ、 2…引上げチャンバ、 3…単結晶、
4…原料融液、 5…石英ルツボ、 6…黒鉛ルツボ、 7…加熱ヒーター、
8…断熱材、 9…ガス流出口、 10…ガス導入口、 11…ガス整流筒、
12…遮熱部材、 13…ボックス、14…制御手段、
15…ルツボ駆動手段、 16…保持軸、 17…ヒーター駆動手段、
18…ワイヤー、 19…種ホルダー、 20…種結晶、
21…遮熱部材駆動手段、 22…引上げ手段、
23…重量検出手段(ロードセル)、 24…単結晶製造装置、
L1…原料融液の融液面と遮熱部材との距離
L2…加熱ヒーターの発熱中心位置と原料融液面との相対距離。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a single crystal by the Czochralski method, and more particularly to a method for producing a large-diameter single crystal having a desired defect region. Furthermore, this invention relates to the single crystal manufacturing apparatus which can be used for the manufacturing method of such a single crystal.
[0002]
[Prior art]
As a single crystal used as a substrate of a semiconductor device such as a memory or a CPU, for example, there is a silicon single crystal or the like, and it is mainly manufactured by the Czochralski method (hereinafter abbreviated as CZ method).
[0003]
In the CZ method, first, a desired high-purity polycrystalline raw material is filled in a crucible, heated to a melting point of the polycrystalline raw material (about 1420 ° C in the case of silicon) or higher by a heater and melted to obtain a raw material melt, The tip of the seed crystal is brought into contact with or immersed in the approximate center of the surface of the raw material melt. Then, the growth of the single crystal is started by pulling up the seed crystal. In order to grow a single crystal, first, after forming a thin diameter part (squeezed part) to eliminate dislocation, the crystal is thickened to a predetermined diameter (cone part), and then a shoulder part is formed. Grows a straight body of diameter. During the growth of the straight body part, the drop in the melt surface height of the raw material melt that decreases due to crystallization is compensated by pushing up the crucible, and the height of the raw material melt surface is kept constant. In the same way, we are pulling up.
In the present specification, the “cone portion” refers to a diameter-expanded portion from the throttle portion to the shoulder portion where the straight body starts as described above.
[0004]
In recent years, high integration has been promoted in semiconductor devices, and miniaturization of elements has progressed. Accordingly, the problem of grown-in defects introduced during single crystal growth has become more important.
[0005]
Here, the grow-in defect will be described with reference to FIG.
In general, when a silicon single crystal is grown, if the crystal growth rate V (crystal pulling rate) is relatively high, FPD (Flow Pattern Defect), which is caused by voids in which hole-type point defects are gathered, is assumed. Grown-in defects such as COP (Crystal Originated Particle) and the like exist in high density throughout the crystal diameter direction. A region where defects due to these voids exist is called a V (vacancy) region.
[0006]
Further, when the crystal growth rate is lowered, an OSF (Oxidation Induced Stacking Fault) region is generated in a ring shape from the periphery of the crystal as the growth rate is lowered, and when the growth rate is further lowered, the OSF is reduced. The ring shrinks to the center of the wafer and disappears. On the other hand, when the growth rate is further reduced, defects such as LSEPD (Large Secco Etch Pit Defect) and LFPD (Large Flow Pattern Defect), which are considered to be caused by dislocation loops in which interstitial silicon has gathered, exist at low density. The region where the defect exists is called an I (Interstitial) region.
[0007]
In recent years, it has been discovered that there is an area outside the OSF ring between the V region and the I region, where there are no defects such as FPD and COP caused by voids and no defects such as LSEPD and LFPD caused by interstitial silicon. This region is called an N (neutral) region. Further, this N region is further classified into an Nv region (region with many vacancies) adjacent to the outside of the OSF ring and a Ni region (region with a lot of interstitial silicon) adjacent to the I region. In the Nv region, It is known that the amount of precipitated oxygen is large when the thermal oxidation treatment is performed, and there is almost no oxygen precipitation in the Ni region.
[0008]
Furthermore, after thermal oxidation treatment, it has been found that there is a region (hereinafter referred to as Cu deposition defect region) in which defects detected by Cu deposition treatment are remarkably generated in a part of the Nv region where oxygen precipitation is likely to occur. This has been found to cause deterioration of electrical characteristics such as oxide film breakdown voltage characteristics.
[0009]
These grow-in defects are caused by a pulling rate V (mm / min) when growing a single crystal and a crystal temperature gradient G (° C / mm) in the pulling axial direction between 1400 ° C and the melting point of silicon near the solid-liquid interface. Ratio V / G (mm2The introduction amount is considered to be determined by a parameter of / ° C./min) (see, for example, Non-Patent Document 1). That is, it is possible to manufacture a single crystal having a desired defect region by growing the single crystal while controlling V / G to be constant at a predetermined value.
[0010]
For example, in Patent Document 1, when a silicon single crystal is grown, the V / G value is within a predetermined range (for example, 0.112 to 0.142 mm) at the crystal center.2It has been shown that a silicon single crystal wafer free from defects due to voids and defects due to dislocation loops can be obtained by pulling up the single crystal under the control of / ° C./min). In recent years, there has been an increasing demand for defect-free crystals in the N region that do not include the Cu deposition defect region, and production of a single crystal that pulls up the single crystal while controlling V / G to a desired defect-free region with high accuracy. Has been required.
[0011]
Conventionally, the crystal temperature gradient G in the pulling axis direction is uniquely determined by the HZ (hot zone: in-furnace structure) of a single crystal manufacturing apparatus in which single crystals are grown. However, since it is extremely difficult to change HZ during pulling of the single crystal, when the single crystal is grown by controlling V / G as described above, the crystal temperature gradient G is controlled during pulling of the single crystal. In other words, V / G is controlled by adjusting the pulling rate V to produce a single crystal having a desired defect region.
[0012]
By the way, one of the elements that has the greatest influence on the crystal temperature gradient G is the distance between the melt surface of the raw material melt and the heat shielding member disposed opposite to the raw material melt surface. This distance depends mainly on the position of the melt surface of the raw material melt because the position of the heat shield member is generally mechanically constant. Therefore, it is very important to accurately grasp and adjust the position of the melt surface of the raw material melt.
[0013]
Conventionally, for example, a method for accurately adjusting the initial position of the melt surface of the raw material melt by correcting the elongation of the wire that pulls up the single crystal, etc. (see, for example, Patent Document 2), There is a method of controlling the liquid temperature to be the target temperature and correcting the target temperature based on the difference between the diameter change rate and the target value of the diameter change rate to form the cone portion with high reproducibility. (See, for example, Patent Document 3). Using these, the initial position of the melt surface is adjusted, the cone portion is formed, and the position of the raw material melt surface is adjusted. The straight body was growing.
However, even when the position of the raw material melt surface is adjusted in this way, there is a problem that the distance between the actual melt surface of the raw material melt and the heat shielding member varies greatly between the manufactured single crystals. there were. Thus, if the distance between the melt surface of the raw material melt and the heat shielding member cannot be adjusted accurately, the crystal temperature gradient G cannot be adjusted accurately. Therefore, the crystal temperature gradient G cannot be adjusted accurately before growing the straight body of the single crystal, and V / G cannot be accurately controlled in the growth of the straight body of the single crystal. This makes it difficult to manufacture a single crystal having a defect region, which leads to a high defect rate.
[0014]
Furthermore, by projecting light from the position detection device, the distance between the gas rectifying cylinder and the surface of the raw material melt is measured, and when the position of the melt surface of the raw material melt is shifted during the pulling of the single crystal, A method for detecting the deviation has been proposed (see, for example, Patent Document 4).
However, this method is not for accurately adjusting the crystal temperature gradient G by correcting the distance between the melt surface of the raw material melt and the heat shield member. This is a method for growing a crystal of a desired quality by correcting the distance to the surface and adjusting the impurity concentration of dopant, oxygen, carbon, etc., and this method was used to adjust the crystal temperature gradient G. However, since the distance between the melt surface of the raw material melt and the heat shield member is detected by an optical method, the melt surface during the pulling of the crystal is not flat because it is not flat and is not accurately measured, Variations occurred between the manufactured single crystals, and it was impossible to reliably grow a single crystal having a desired defect region.
[0015]
In addition, when V / G is controlled by the pulling speed V, the control width allowed for controlling the pulling speed V is very narrow. In particular, in order to obtain a single crystal in the N region over the entire surface in the radial direction, even if there is a slight difference in growth rate, crystal defects occur and the defect rate increases. Therefore, before growing the straight body portion of the single crystal, the crystal temperature gradient G is adjusted accurately by adjusting the distance between the melt surface of the raw material melt and the heat shield member, etc. There has been a demand for a method capable of growing the straight body portion.
[0016]
[Patent Document 1]
JP-A-11-147786
[Patent Document 2]
JP-A-9-235182
[Patent Document 3]
JP-A-4-149092
[Patent Document 4]
JP-A-6-293590
[Non-Patent Document 1]
V. V. Voronkov, Journal of Crystal Growth, 59 (1982), 625-643
[0017]
[Problems to be solved by the invention]
The present invention has been made in view of such problems, and when the single crystal is pulled up from the raw material melt in the chamber by the CZ method, the raw material melt is melted when the straight body portion of the single crystal is grown. The distance between the liquid surface and the heat shielding member can be accurately corrected to a predetermined value, and a straight body of the single crystal can be grown. It is an object to provide a method for producing a single crystal that can be reliably produced. Another object of the present invention is to provide an apparatus for producing a single crystal that can be used in such a method for producing a single crystal.
[0018]
[Means for Solving the Problems]
  The present invention has been made to solve the above problems, and in a method for producing a single crystal by pulling it from a raw material melt in a chamber by the Czochralski method, at least the straight body portion of the single crystal is grown. Before measuring the weight of the cone portion of the single crystal, based on the measurement result, the distance between the melt surface of the raw material melt and the heat shield member disposed opposite to the raw material melt surface in the chamber Is corrected to a predetermined value by the crucible driving means capable of changing the crucible moving speed and / or the heat shielding member driving means capable of moving the heat shield member, and a single crystal is grown. Providing a manufacturing method.
[0019]
Thus, before growing the straight body portion of the single crystal, the weight of the cone portion of the single crystal is measured, and based on the measurement result, the melt surface of the raw material melt and the raw material melt surface in the chamber are measured. The distance from the opposing heat shield member is corrected to a predetermined value by the crucible driving means capable of changing the crucible moving speed and / or the heat shield member driving means capable of moving the heat shield member, and the straight body portion of the single crystal When the straight body portion of the single crystal is grown, the distance between the melt surface of the raw material melt and the heat shield member is accurately corrected to a predetermined value, for example, a pulling shaft near the solid-liquid interface. The crystal temperature gradient G (° C./mm) in the direction can be adjusted accurately, so that a single crystal of a desired defect region can be accurately grown.
Here, “growing a straight body of a single crystal” does not necessarily mean that only the entire body of the single crystal is grown. This includes growing only the part (the important part) that you want to control.
[0020]
  At this time, the pulling speed when growing the straight body of the single crystal is expressed as V (mm / min), and the crystal temperature gradient in the pulling axis direction near the solid-liquid interface is expressed as G (° C./mm). Ratio V / G (mm of velocity V and crystal temperature gradient G)2/ ° C./min) can be controlled so that a single crystal having a desired defect region can be grown..
[0021]
According to the present invention, the weight of the cone portion before growing the straight body portion of the single crystal can be measured to accurately adjust the crystal temperature gradient G. Therefore, when growing the straight body portion, V / G (mm2/ ° C./min) can be accurately controlled so that a single crystal having a desired defect region can be grown, and a single crystal having a desired defect region can be grown more reliably. As a result, the defect rate of the single crystal to be manufactured is greatly reduced, and the yield and productivity are improved, leading to a reduction in manufacturing cost.
[0022]
  In this case, it is preferable to further correct the position of the movable heater arranged in the chamber based on the measurement result of the weight of the cone portion of the single crystal..
[0023]
The crystal temperature gradient G can also be adjusted by correcting the position of a movable heater located in the chamber. Therefore, before growing the straight body of the single crystal, based on the measurement result of the weight of the cone of the single crystal, the crystal temperature is further corrected by correcting the position of the movable heater disposed in the chamber. The gradient G can be adjusted more accurately. Thus, based on the weight of the cone portion, not only the distance between the raw material melt surface and the heat shielding member but also the position of the heater is adjusted to grow the straight body portion of the single crystal, thereby ensuring the desired result. A single crystal having a defect region can be grown.
[0024]
  In this case, the diameter of the crucible containing the raw material melt can be less than 4 times the diameter of the straight body of the single crystal..
[0025]
As the diameter of the straight body of the single crystal is closer to the diameter of the crucible, the influence of the variation in the weight of the cone portion of the single crystal on the variation in the distance between the melt surface of the raw material melt and the heat shield member increases. According to the present invention, even if the diameter of the crucible is less than four times the diameter of the straight body of the single crystal and is close to the diameter of the single crystal, the raw material melt is caused by the variation in the weight of the cone of the single crystal. The variation in the distance between the melt surface and the heat shield member can be reduced by correction. As a result, the variation in the crystal temperature gradient G in the straight body portion of the single crystal to be grown can be reduced. In addition, since it is practically impossible to make the diameter of the crucible 1 times or less of the diameter of the straight body portion, the diameter of the crucible needs to be at least larger than the diameter of the straight body portion. Further, by making the diameter of the crucible to be twice or more the diameter of the straight body part, a single crystal having a certain length which can be produced commercially can be obtained.
[0026]
  In this case, it is preferable to control the V / G so that the defect region of the single crystal to be grown becomes an N region over the entire surface in the radial direction..
[0027]
Thus, in the present invention, the variation in V / G can be reduced. Therefore, by controlling the V / G so that the defect region of the single crystal becomes the N region over the entire radial direction, it is caused by voids such as FPD and COP. A very high quality single crystal without defects and defects due to dislocation loops such as LSEPD and LFPD can be more reliably produced.
[0028]
  In this case, the diameter of the straight body portion of the single crystal can be 200 mm or more..
[0029]
According to the method for producing a single crystal of the present invention, particularly in a large-diameter crystal having a diameter of 200 mm or more in which the variation in cone weight increases, The distance between the melt surface of the raw material melt and the heat shield member can be accurately adjusted. Therefore, it becomes possible to grow a large-diameter single crystal having a desired defect region more reliably.
[0030]
  In this case, the single crystal to be manufactured can be a silicon single crystal..
[0031]
As described above, the method for producing a single crystal according to the present invention can be particularly preferably used in the case of producing a silicon single crystal which is particularly in high demand in recent years, and silicon having a desired defect region by controlling V / G. A single crystal can be manufactured more reliably.
[0032]
  Furthermore, the present invention is a single crystal manufacturing apparatus used when pulling up a single crystal from a raw material melt by the Czochralski method, and at least the crucible containing the raw material melt and the moving speed of the crucible can be changed. A crucible driving means, a heater for heating the raw material melt, a heat shielding member disposed opposite to the raw material melt surface and fixed or movable by the heat shielding member driving means, and a raw material melt by a wire or a shaft A pulling means for pulling up the single crystal while rotating it, a weight detecting means for measuring the weight of the cone portion of the single crystal pulled by the wire or the shaft, and a result of measuring the weight of the cone portion by the weight detecting means. Converted to the position of the raw material melt surface in the crucible, and based on the conversion result, the crucible driving means and / or the heat shield member driving means Providing a single crystal manufacturing apparatus, wherein a distance between the heat insulating member and the melt surface of the melt is to include a control means for correcting the predetermined value.
[0033]
If a single crystal is manufactured using the single crystal manufacturing apparatus configured as described above, the melt surface of the raw material melt and the shielding surface are blocked based on the weight measurement result of the cone portion before the straight body portion of the single crystal is grown. The distance from the heat member is automatically and accurately corrected to a predetermined value by the crucible drive means and / or the heat shield member drive means, for example, the crystal temperature gradient G is adjusted accurately, and the straight body of the single crystal Can grow parts. Therefore, it becomes possible to grow a single crystal having a desired defect region by accurately controlling V / G, the defect rate of the manufactured single crystal is lowered, the yield and productivity are improved, and the manufacturing cost is reduced. Leads to.
[0034]
  In this case, the heater is movable, and the control means can further correct the position of the heater based on the measurement result of the weight of the cone portion by the weight detection means..
[0035]
Thus, if the control means further corrects the position of the heater based on the measurement result of the weight of the cone portion by the weight detection means, the crystal temperature gradient G is adjusted more accurately, and the single crystal It is possible to grow the straight body part. Therefore, a single crystal having a desired defect region can be obtained more reliably.
[0036]
Hereinafter, the present invention will be described in more detail.
The present inventors analyzed the factors that caused the quality variation in the produced crystal after adjusting the position of the raw material melt surface by the conventional method and increased the defect rate of the produced single crystal. As a result, it was found that there was a correlation with the weight of the cone part of the single crystal. In particular, in the case of a single crystal having a large diameter of 200 mm or more in which the crystal defect control of the single crystal to be produced is strictly required, the weight of the cone portion is increased, and the raw material melt due to the variation in the weight of the cone portion It was found that the variation in the position of the melt surface was so large that it could not be ignored. Therefore, the present inventors measured the weight of the cone portion of the single crystal before growing the straight body portion of the single crystal and blocked the melt surface of the raw material melt derived from the measured weight of the cone portion. By correcting the error between the distance to the heat member and the predetermined value at least at the initial stage of the straight body portion, the distance between the melt surface of the raw material melt and the heat shield member is accurately maintained at the predetermined value. The inventors have conceived that a straight body of a single crystal can be grown and completed the present invention.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, although embodiment of this invention is described, this invention is not limited to these.
First, a single crystal production apparatus that can be used in the method for producing a single crystal of the present invention will be described. The single crystal production apparatus of the present invention is a single crystal production apparatus used when pulling up a single crystal from a raw material melt by the Czochralski method, and at least a crucible containing the raw material melt, and a moving speed of the crucible By means of a crucible driving means capable of changing the temperature, a heater for heating the raw material melt, a heat shielding member disposed opposite to the raw material melt surface, fixed or movable by the heat shielding member driving means, and a wire or a shaft Pulling means for pulling up the single crystal from the raw material melt, weight detecting means for measuring the weight of the cone of the single crystal pulled by the wire or shaft, and the weight of the cone part by the weight detecting means The measurement result is converted into the position of the raw material melt surface in the crucible, and based on the conversion result, the crucible driving means and / or the heat shield member driving means. Those having a control means for correcting the distance between the heat insulating member and the melt surface of the raw material melt to a predetermined value.
[0038]
In addition, the heater can be moved, and the control unit can further correct the position of the heater based on the measurement result of the weight of the cone portion by the weight detection unit.
[0039]
An example of such a single crystal manufacturing apparatus is a single crystal manufacturing apparatus as shown in FIG.
In the single crystal manufacturing apparatus 24 shown in FIG. 1, a quartz crucible 5 containing a raw material melt 4 and a graphite crucible 6 protecting the quartz crucible 5 are rotated and moved up and down by a crucible driving means 15 in a main chamber 1. A heater driving means is supported by the holding shaft 16 freely, and a heater 7 and a heat insulating material 8 are disposed so as to surround the crucibles 5 and 6, and the position of the heater 7 can be adjusted independently. 17 is provided.
[0040]
A pulling chamber 2 for accommodating and taking out the grown single crystal 3 is connected to the upper portion of the main chamber 1. A box 13 is provided in the upper part of the pulling chamber 2. The box 13 has a pulling means 22 for pulling up the single crystal 3 while rotating the single crystal 3 by the wire 18, and the weight of the single crystal 3 pulled by the wire 18. A weight detection means (load cell) 23 to be measured is accommodated.
[0041]
Further, a gas rectifying cylinder 11 is provided inside the main chamber 1, and a heat shield member 12 is installed at the lower part of the gas rectifying cylinder 11 so as to face the melt surface of the raw material melt 4. Radiation from the surface of the raw material melt 4 is cut and the surface of the raw material melt 4 is kept warm. Further, on the upper part of the gas rectifying cylinder 11, a heat shielding member driving means 21 capable of adjusting the position of the heat shielding member 12 up and down by raising and lowering the gas rectifying cylinder 11 is installed. In the present invention, the shape, material, and the like of the heat shield member 12 are not particularly limited, and can be changed as appropriate. Furthermore, the heat shield member 12 of the present invention may be any member as long as it is disposed so as to face the melt surface, and is not necessarily limited to the member installed at the lower portion of the gas rectifying cylinder as described above.
[0042]
Further, an inert gas such as argon gas can be introduced from the gas inlet 10 provided in the upper part of the pulling chamber 2, and after passing between the single crystal 3 being pulled and the gas rectifying cylinder 11, It can be passed between the member 12 and the melt surface of the raw material melt 4 and discharged from the gas outlet 9.
[0043]
Further, the weight detection means 23, the crucible driving means 15, the heat shield member driving means 21, and the heater driving means 17 are connected to the control means 14. Then, for example, information on the position of the crucibles 5 and 6, the position of the heat shield member 12, the position of the heater 7, and the weight of the single crystal cone obtained from the weight detection means 23 are fed back to the control means 14. Thus, the distance L1 between the melt surface of the raw material melt and the heat shield member is adjusted by adjusting the driving of the crucible drive means 15, the heat shield member drive means 21 and the heater drive means 17 according to the weight of the cone portion of the single crystal. The position of the heater 7 for heating the raw material melt (relative distance L2 between the heat generation center position of the heater 7 and the raw material melt surface) can be controlled and corrected with high accuracy.
[0044]
For example, when a silicon single crystal is grown by the CZ method using such a single crystal pulling apparatus 24, an inert gas (for example, argon gas) is introduced into the pulling chamber 2 and the main chamber 1 from the gas inlet 10. Then, the seed crystal 20 fixed to the seed holder 19 is immersed in the raw material melt 4 in the quartz crucible 5 and then gently rotated while being rotated to form a seed constriction, and then a cone portion that expands to a desired diameter is formed. Then, the silicon single crystal 3 having a substantially cylindrical straight body portion can be grown.
[0045]
In the present invention, a single crystal is manufactured by the following method using such a single crystal manufacturing apparatus. That is, the method for producing a single crystal of the present invention is a method for producing a single crystal by pulling it from a raw material melt in a chamber by the Czochralski method, and at least before growing the straight body portion of the single crystal. The weight of the single crystal cone is measured, and based on the measurement result, the distance between the melt surface of the raw material melt and the heat shield member disposed opposite to the raw material melt surface in the chamber is moved to a crucible. The crucible driving means capable of changing the speed and / or the heat shielding member driving means capable of moving the heat shielding member is corrected to a predetermined value to grow the straight body portion of the single crystal.
[0046]
Specifically, referring to the apparatus shown in FIG. 1, before the straight body portion of the single crystal 3 is grown, the weight of the cone portion of the single crystal 3 is measured by the weight detection means 23, and the measurement result is controlled by the control means 14. Send to. The control means 14 calculates the correction amount of the distance L1 between the melt surface of the raw material melt and the heat shield member from the deviation amount with respect to the set weight of the measurement result, and based on the calculation result, the crucible driving means 15 and / or the shield. The heat member driving means 21 is controlled to correct the distance L1 between the melt surface of the raw material melt and the heat shield member to a predetermined set value. The crucible driving means 15 controls the quartz crucible 5 and the graphite crucible 6 at a speed different from the melt surface drop caused by crystal growth, thereby raising and lowering the height of the raw material melt surface in the crystal growth axis direction. To do. Further, the control by the heat shield member driving means 21 is performed by moving the gas rectifying cylinder 11 up and down and moving the position of the heat shield member 12 up and down. By these controls, the distance L1 between the melt surface of the raw material melt and the heat shielding member can be easily and accurately corrected.
[0047]
At this time, the pulling speed when growing the straight body of the single crystal is expressed as V (mm / min), and the crystal temperature gradient in the pulling axis direction near the solid-liquid interface is expressed as G (° C./mm). Ratio of V to crystal temperature gradient G V / G (mm2/ ° C./min) can be controlled so that a single crystal having a desired defect region can be grown.
[0048]
As described above, in the present invention, before growing the straight body portion of the single crystal, the distance L1 between the melt surface of the raw material melt and the heat shield member is accurately corrected to a predetermined value based on the weight of the cone portion. The crystal temperature gradient G can be adjusted accurately. For example, if the weight of the cone portion is smaller than the set value, the distance L1 between the melt surface of the raw material melt and the heat shield member is smaller than a predetermined value, and the crystal temperature gradient G is large, while the cone portion If the weight is larger than the set value, the distance L1 between the melt surface of the raw material melt and the heat shield member is larger than a predetermined value, and the crystal temperature gradient G is small. The crystal temperature gradient G is accurately adjusted by accurately correcting the distance L1 between the melt surface of the melt and the heat shield member to a predetermined value. Therefore, by correcting at least the initial stage of the straight body of the single crystal, the variation in the crystal temperature gradient G is small and accurate, so the V / G can be accurately adjusted so that a single crystal having a desired defect region can be grown. Therefore, it is possible to grow a single crystal having a desired defect region more reliably. The method of the present invention is effective when a straight body portion of a single crystal is grown by controlling the V / G by adjusting the pulling rate V while keeping the crystal temperature gradient G constant as in the prior art. Of course, but not limited to this, the pulling conditions such as the diameter of the straight body of the single crystal, the rotation speed of the single crystal, the flow rate of the inert gas, the position of the heater, and the distance between the raw material melt surface and the heat shield member are changed. Even when the straight body portion of the single crystal is grown by controlling the V / G by adjusting the crystal temperature gradient G, the variation of the crystal temperature gradient G at the initial stage of the straight body portion growth is suppressed and accurately corrected. It is effective because it can. As a result, the defect rate of the single crystal to be manufactured is greatly reduced, and the yield and productivity are improved, leading to a reduction in manufacturing cost.
[0049]
Note that the value of the distance L1 between the melt surface of the raw material melt and the heat shield member depends on the state of the crystal temperature gradient G in the manufacturing environment where the single crystal is actually manufactured, and the melt surface of the raw material melt. The relationship between the distance L1 of the thermal member and the crystal temperature gradient G is clarified by conducting a simulation analysis or a test such as actual production in advance, and a value that becomes a desired defect region is obtained based on the obtained information. And by correcting to the predetermined value of the distance L1 between the melt surface of the selected raw material melt and the heat shield member, it becomes possible to automatically adjust the crystal temperature gradient G with high accuracy and to have a desired defect region. Single crystals can be manufactured very stably.
Here, the simulation analysis is performed by, for example, comprehensive heat transfer analysis software FEMAG (F. Dupret, P. Nicodeme, Y. Ryckmans, P. Waterers, and M. J. Crochet, Int. J. Heat Mass Transfer, 33, 1849 ( 1990)).
[0050]
In the method of the present invention, it is preferable that the position of the movable heater arranged in the chamber is further corrected based on the measurement result of the weight of the cone portion of the single crystal.
[0051]
More specifically, referring to the apparatus shown in FIG. 1, based on the measurement result of the weight of the single crystal cone sent to the control means 14, the control means 14 further moves the position of the heater 7 to the heater driving means 17. The crystal temperature gradient G is adjusted by correcting by the above. For example, adjustment for increasing the crystal temperature gradient G is performed by correcting the position of the heater 7 by the heater driving means 17 so that the relative distance L2 between the heat generation center position of the heater 7 and the raw material melt surface is increased (the heater driving means 17). By lowering the position). Conversely, adjustment to reduce the crystal temperature gradient G corrects the position of the heater 7 so that the relative distance L2 between the heat generation center position of the heater 7 and the raw material melt surface is reduced (the heater position is increased). ) Can be done.
In the above description, the case where the heater heat generation center is lower than the position of the raw material melt surface is described as an example. Of course, it is possible to control the heater heat generation center to be higher than the melt surface. .
[0052]
Thus, before growing the straight body portion of the single crystal, the weight of the cone portion of the single crystal is measured, and the position of the movable heater arranged in the chamber is corrected based on the measurement result. Thus, the crystal temperature gradient G can be finely adjusted more accurately, and a single crystal having a desired defect region can be grown more reliably. In addition, by adjusting the position of the heater in this way, there is also an advantage that variation can be reduced for other quality items such as the concentration of oxygen contained.
[0053]
In addition, the closer the diameter of the single crystal straight body portion is to the diameter of the crucible, the greater the influence of the variation in the weight of the cone portion of the single crystal on the variation in the distance between the melt surface of the raw material melt and the heat shield member. . On the other hand, according to the present invention, even if the diameter of the crucible is less than four times the diameter of the straight body of the single crystal and is close to the diameter of the single crystal, the variation in the weight of the cone portion of the single crystal. Therefore, the variation in the distance between the melt surface of the raw material melt and the heat shield member can be reduced by correction. Further, the variation in the crystal temperature gradient G can be reduced. In addition, since it is practically impossible to make the diameter of the crucible 1 times or less than the diameter of the straight body part, the diameter of the crucible needs to be in a range larger than 1 time of the diameter of the straight body part. Moreover, in order to produce a commercially available single crystal that is somewhat long, the diameter of the crucible is preferably at least twice the diameter of the straight body.
[0054]
Further, before growing the straight body portion of the single crystal, the weight of the cone portion is measured, and the crystal temperature is corrected by correcting the distance between the melt surface of the raw material melt and the heat shield member as in the present invention. Since the gradient G is accurately adjusted and the straight body portion of the single crystal is grown, the controllability of V / G during crystal growth can be improved. Therefore, for example, as shown in FIG. 4, the V / G is increased so that the defect region of the single crystal becomes a narrow region such as the N region over the entire radial direction, and further the Nv region and Ni region not including the Cu deposit defect region. It becomes possible to control with high accuracy, and it is possible to stably obtain a very high quality single crystal free from defects caused by voids such as FPD and COP and defects caused by dislocation loops such as LSEPD and LFPD.
[0055]
According to the method for producing a single crystal of the present invention, particularly in a large-diameter crystal having a diameter of 200 mm or more in which the variation in cone weight increases, This is advantageous because the distance between the melt surface of the raw material melt and the heat shield member can be accurately adjusted. Therefore, it becomes possible to grow a large-diameter single crystal having a desired defect region more reliably.
[0056]
The method for producing a single crystal according to the present invention can be particularly suitably used in the case of producing a silicon single crystal that is particularly in high demand in recent years. A silicon single crystal having a desired defect region by controlling V / G Can be manufactured more reliably.
[0057]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
Example 1
1 is charged into a quartz crucible having a diameter of 32 inches (800 mm) using a single crystal manufacturing apparatus 24 shown in FIG. 1, while argon gas is allowed to flow from the gas inlet 10 and the central magnetic field strength is 4000 G. While applying the horizontal magnetic field, a silicon single crystal having an orientation <100> was grown by the CZ method (the length of the single crystal straight body portion was about 140 cm). Regarding the diameter of the straight body portion when growing the single crystal, the machining allowance when grinding the cylindrical outer peripheral surface after crystal growth so that the finally obtained single crystal has a diameter of 12 inches (300 mm). Taking into consideration, it was made thicker than 300 mm.
[0058]
Further, a simulation analysis is performed in advance on the state of the crystal temperature gradient G, the relationship between the melt surface of the raw material melt 4 and the distance L1 between the heat shield member 12 and the crystal temperature gradient G, and the like based on the results of the analysis. The predetermined value of the distance L1 between the melt surface of the determined raw material melt 4 and the heat shield member 12 was determined (80 mm). And after forming a cone part, before the growth of a straight body part, the weight of a cone part is measured with the load cell 23, From the deviation | shift amount of a setting weight and a measured weight, The distance L1 of the heat shield member 12 is automatically corrected to a predetermined value by controlling the crucible drive means 15 and the heat shield member drive means 12 by the control means 14 up to the straight body portion 10 cm, and the weight of the cone portion is measured. Based on the result, the position of the heater 7 (relative distance L2 between the heating center position of the heater and the raw material melt surface) was corrected by controlling the heater driving means 17 by the control means 14. Then, after the straight body portion of 10 cm, a single crystal was obtained by controlling V / G so as to be an N region over the entire radial direction.
In this way, five single crystals were obtained.
[0059]
Next, the cylindrical outer peripheral surface of each single crystal grown as described above was ground to adjust the diameter of the straight body portion to 300 mm. Thereafter, a wafer having a thickness of about 2 mm is cut out from each portion of the obtained single crystal in the direction of the growth axis of 20 cm, surface grinding and polishing are performed to prepare a sample for inspection, and the crystal quality characteristics as shown below are obtained. Inspected.
[0060]
(1) Inspection of FPD (V region) and LSEPD (I region)
After inspecting the sample for inspection for 30 minutes without stirring, the inside of the wafer surface was observed with a microscope to confirm the presence or absence of crystal defects.
(2) Inspection of OSF
The sample for inspection was heat-treated at 1150 ° C. for 100 minutes in a wet oxygen atmosphere, and then the presence of OSF was confirmed by observing the wafer surface with a microscope.
[0061]
As a result, four of the obtained five single crystals were single crystals in the N region over the entire length excluding the quality unstable region immediately after the shoulder and immediately before the rounded portion (see FIG. 2A). ). Further, the remaining one had only a crystal defect in a part of the straight body portion.
[0062]
(Comparative Example 1)
Before the growth of the straight body part, the weight of the cone part is measured with a load cell, and based on the measurement result, the distance L1 between the melt surface of the raw material melt and the heat shield member, the heating center position of the heater and the raw material Five silicon single crystals having a diameter of 12 inches (300 mm) were grown in the same manner as in Example 1 except that the control unit 14 did not correct the relative distance L2 from the melt surface.
[0063]
Then, each of the obtained single crystals was inspected for crystal quality characteristics as in Example 1.
As a result, the weight of the cone portion is about 2.5 kg lighter than the set value, and the distance L1 between the melt surface of the raw material melt and the heat shield member at the time of the straight body portion 10 cm is about 2 mm narrower than the predetermined value. In the single crystal, LSEPD (I region) was observed over almost the entire length (see FIG. 2B).
Further, the weight of the cone portion is about 1.8 kg heavier than the set value, and the distance L1 between the melt surface of the raw material melt and the heat shielding member at the time of the straight body portion 10 cm is about 1.4 mm wider than the predetermined value. In the formed single crystal, FPD (V region) was observed in several places.
In the remaining three single crystals, the weight of the cone portion is within a range of ± 1 kg compared to the set value, and the melt surface of the raw material melt at the time of the straight body portion 10 cm and the heat shield member The distance L1 was within a range of ± 0.8 mm compared to a predetermined value. Two of these three single crystals were single crystals in the N region over the entire length. The remaining one had only crystal defects in a part of the straight body.
[0064]
FIG. 3 shows a graph comparing the pulling success rate of the full length N region single crystal in Example 1 and Comparative Example 2. As can be seen from FIG. 3, the pulling success rate of the full-length N region single crystal is 40% in Comparative Example 1, whereas it is 80% in Example 1, and the success rate is significantly increased. . Therefore, it can be seen that the yield and productivity can be significantly improved by growing a single crystal having a desired defect region by the method of the present invention.
[0065]
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
[0066]
For example, in the above embodiment, the case where a single crystal is grown in the N region is described as an example. However, the present invention is not limited to this, and a desired defect region such as a V region, an I region, or an OSF region. A single crystal can also be grown. Further, the present invention can be suitably used in the case of manufacturing a silicon single crystal, but is not limited to this, and can be similarly applied to the case of manufacturing a compound semiconductor single crystal or the like.
[0067]
【The invention's effect】
As described above, according to the present invention, before growing the straight body portion of the single crystal, the weight of the cone portion of the single crystal is measured, and the melt surface of the raw material melt is determined based on the measurement result. The straight body portion of the single crystal can be grown by accurately correcting the distance of the heat shield member. Thereby, when growing the straight body portion of the single crystal, the crystal temperature gradient G can be controlled with high accuracy. Therefore, the V / G can be controlled with high accuracy, and the single crystal having a desired defect region can be more reliably obtained. Therefore, the productivity of single crystal production is improved, and the cost can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a single crystal production apparatus of the present invention.
FIG. 2 is a schematic diagram showing the occurrence of crystal defects in the single crystals of Example 1 and Comparative Example 1.
(A) An example of the single crystal of Example 1, (b) An example of the single crystal of Comparative Example 1.
3 is a graph comparing the pulling success rate of the full length N region single crystal in Example 1 and Comparative Example 2. FIG.
FIG. 4 is an explanatory diagram showing the relationship between V / G and crystal defect distribution.
[Explanation of symbols]
1 ... main chamber, 2 ... pulling chamber, 3 ... single crystal,
4 ... Raw material melt, 5 ... Quartz crucible, 6 ... Graphite crucible, 7 ... Heater,
8 ... Insulating material, 9 ... Gas outlet, 10 ... Gas inlet, 11 ... Gas rectifier,
12 ... Heat shield member, 13 ... Box, 14 ... Control means,
15 ... crucible driving means, 16 ... holding shaft, 17 ... heater driving means,
18 ... Wire, 19 ... Seed holder, 20 ... Seed crystal,
21 ... Heat shield member driving means, 22 ... Pulling means,
23 ... Weight detection means (load cell), 24 ... Single crystal manufacturing apparatus,
L1: Distance between the melt surface of the raw material melt and the heat shielding member
L2: Relative distance between the heat generation center position of the heater and the raw material melt surface.

Claims (5)

チョクラルスキー法によってチャンバ内で単結晶を原料融液から引上げて製造する方法において、前記単結晶の直胴部を成長させる前に、前記単結晶のコーン部の重量をロードセルによって測定し、該測定結果に基づいて、前記原料融液の融液面と前記チャンバ内で原料融液面に対向配置された遮熱部材との距離を、ルツボ移動速度を変更可能なルツボ駆動手段及び/又は遮熱部材を移動可能な遮熱部材駆動手段により所定値に補正し、さらに、該測定結果に基づいて、前記チャンバ内に配置された移動可能なヒーターの発熱中心位置と前記原料融液面との相対距離を、ヒーターの位置を制御することで補正し、前記単結晶の直胴部を成長させるときの引上げ速度をV(mm/min)、固液界面近傍の引上げ軸方向の結晶温度勾配をG(℃/mm)で表したとき、引上げ速度Vと結晶温度勾配Gの比V/G(mm/℃・min)を、径方向の全面にわたってN領域を有する単結晶が育成できるように制御し、単結晶の直胴部を成長させることを特徴とする単結晶の製造方法。A method of producing single crystal Te pulled from a raw material melt in a chamber by the Czochralski method, prior to growing the straight body portion of the previous SL single crystal, the weight of the cone portion of the single crystal were measured by the load cell, Based on the measurement result, the distance between the melt surface of the raw material melt and the heat shielding member disposed opposite to the raw material melt surface in the chamber, the crucible driving means capable of changing the crucible moving speed and / or The heat shield member is corrected to a predetermined value by the movable heat shield member driving means, and based on the measurement result, the heat generation center position of the movable heater disposed in the chamber, the raw material melt surface, The relative distance is corrected by controlling the position of the heater, the pulling speed when growing the straight body of the single crystal is V (mm / min), the crystal temperature gradient in the pulling axis direction near the solid-liquid interface G (° C When expressed in mm), the ratio V / G of pulling rate V and crystal temperature gradient G (mm 2 / ℃ · min ), and controlled so that a single crystal can foster having N region over the entire surface in the radial direction, the single A method for producing a single crystal, comprising growing a straight body portion of a crystal. 前記原料融液を収容するルツボの直径を、前記単結晶の直胴部の直径の4倍未満にすることを特徴とする請求項1に記載の単結晶の製造方法。  2. The method for producing a single crystal according to claim 1, wherein the diameter of the crucible containing the raw material melt is less than four times the diameter of the straight body portion of the single crystal. 前記単結晶の直胴部の直径を、200mm以上とすることを特徴とする請求項1又は請求項2に記載の単結晶の製造方法。  The method for producing a single crystal according to claim 1 or 2, wherein a diameter of the straight body portion of the single crystal is 200 mm or more. 前記製造する単結晶をシリコン単結晶とすることを特徴とする請求項1乃至請求項3のいずれか1項に記載の単結晶の製造方法。  The method for producing a single crystal according to any one of claims 1 to 3, wherein the single crystal to be produced is a silicon single crystal. チョクラルスキー法により原料融液から単結晶を引き上げる際に使用する単結晶製造装置であって、原料融液を収容するルツボと、該ルツボの移動速度を変更可能なルツボ駆動手段と、原料融液を加熱する移動可能なヒーターと、原料融液面に対向配置され、固定されているか又は遮熱部材駆動手段により移動可能な遮熱部材と、ワイヤーまたはシャフトにより原料融液から単結晶を回転させながら引上げるための引上げ手段と、前記ワイヤー又はシャフトにより引上げられる単結晶のコーン部の重量を測定する重量検出手段であるロードセルと、該重量検出手段によるコーン部の重量の測定結果を前記ルツボ内の原料融液面の位置に換算し、該換算結果に基づいて、前記ルツボ駆動手段及び/又は前記遮熱部材駆動手段により、前記原料融液の融液面と前記遮熱部材との距離を所定値に補正し、さらに、該換算結果に基づいて、前記ヒーターの発熱中心位置と前記原料融液面との相対距離を補正するためにヒーターの位置を制御する制御手段を具備し、前記単結晶の直胴部を成長させるときの引上げ速度をV(mm/min)、固液界面近傍の引上げ軸方向の結晶温度勾配をG(℃/mm)で表したとき、引上げ速度Vと結晶温度勾配Gの比V/G(mm/℃・min)を、径方向の全面にわたってN領域を有する単結晶が育成できるように制御するものであることを特徴とする単結晶製造装置。From the material melt by the Czochralski method comprising a single crystal production apparatus used when pulling a single crystal, a crucible for accommodating a raw RyoTorueki, and capable of changing a crucible driving means moving speed of the crucible, the raw material A movable heater that heats the melt, a heat shielding member that is disposed opposite to the raw material melt surface and is fixed or movable by the heat shielding member driving means, and a single crystal from the raw material melt by a wire or a shaft. The pulling means for pulling up while rotating, the load cell as the weight detecting means for measuring the weight of the single crystal cone portion pulled by the wire or the shaft, and the measurement result of the weight of the cone portion by the weight detecting means It is converted into the position of the raw material melt surface in the crucible, and based on the conversion result, the raw material melt is converted by the crucible driving means and / or the heat shield member driving means. In order to correct the relative distance between the heat generation center position of the heater and the raw material melt surface based on the conversion result, the distance between the melt surface of the heater and the heat shield member is corrected to a predetermined value. Control means for controlling the position of the single crystal, the pulling speed when growing the straight body of the single crystal is V (mm / min), and the crystal temperature gradient in the pulling axis direction near the solid-liquid interface is G (° C. / mm), the ratio V / G (mm 2 / ° C./min) between the pulling rate V and the crystal temperature gradient G is controlled so that a single crystal having an N region can be grown over the entire surface in the radial direction. There is a single crystal manufacturing apparatus.
JP2003183672A 2003-06-27 2003-06-27 Single crystal manufacturing method and single crystal manufacturing apparatus Expired - Fee Related JP4496723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003183672A JP4496723B2 (en) 2003-06-27 2003-06-27 Single crystal manufacturing method and single crystal manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183672A JP4496723B2 (en) 2003-06-27 2003-06-27 Single crystal manufacturing method and single crystal manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2005015287A JP2005015287A (en) 2005-01-20
JP4496723B2 true JP4496723B2 (en) 2010-07-07

Family

ID=34183651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183672A Expired - Fee Related JP4496723B2 (en) 2003-06-27 2003-06-27 Single crystal manufacturing method and single crystal manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4496723B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222505A (en) * 2007-03-14 2008-09-25 Shin Etsu Handotai Co Ltd Method for evaluating silicon single crystal wafer and method for producing silicon single crystal
JP4894848B2 (en) * 2008-11-18 2012-03-14 信越半導体株式会社 Method for producing silicon single crystal
KR101105479B1 (en) * 2009-03-12 2012-01-13 주식회사 엘지실트론 Method and Apparatus for manufacturing high quality silicon single crystal
JP5505359B2 (en) * 2011-04-13 2014-05-28 信越半導体株式会社 Heater output control method and single crystal manufacturing apparatus
KR101379800B1 (en) * 2012-07-18 2014-04-01 주식회사 엘지실트론 An apparatus for growing silicon single crystal and a method of growing the same
CN115029772B (en) * 2021-03-03 2023-06-16 晶科能源股份有限公司 Crystalline silicon preparation method and device, electronic equipment and storage medium
CN117248266B (en) * 2023-11-20 2024-01-26 苏州晨晖智能设备有限公司 Automatic leveling device for outer guide cylinder of single crystal furnace

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257241A (en) * 1991-02-08 1992-09-11 Shin Etsu Handotai Co Ltd Measure of diameter of single crystal
JPH08268794A (en) * 1995-03-30 1996-10-15 Sumitomo Sitix Corp Method for growing single crystal silicon
JPH10114597A (en) * 1996-08-20 1998-05-06 Komatsu Electron Metals Co Ltd Production of single crystal silicon and device thereefor
JP2000086384A (en) * 1998-09-11 2000-03-28 Mitsubishi Materials Silicon Corp Pulling method of silicon single crystal
JP2000159595A (en) * 1998-11-20 2000-06-13 Komatsu Electronic Metals Co Ltd Production of silicon single crystal
JP2000178099A (en) * 1998-12-14 2000-06-27 Shin Etsu Handotai Co Ltd Production of silicon single crystal, and silicon single crystal and silicon water produced with the same
JP2000335993A (en) * 1999-05-26 2000-12-05 Samsung Electronics Co Ltd Czochralski puller for producing single crystal silicon ingot by regulating temperature gradient at central and edge parts of boundary between ingot and melt, heat shield for czochralski puller and improvement of czochralski puller
JP2002326888A (en) * 2001-05-01 2002-11-12 Shin Etsu Handotai Co Ltd Device for manufacturing semiconductor single crystal and method for manufacturing silicon single crystal using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257241A (en) * 1991-02-08 1992-09-11 Shin Etsu Handotai Co Ltd Measure of diameter of single crystal
JPH08268794A (en) * 1995-03-30 1996-10-15 Sumitomo Sitix Corp Method for growing single crystal silicon
JPH10114597A (en) * 1996-08-20 1998-05-06 Komatsu Electron Metals Co Ltd Production of single crystal silicon and device thereefor
JP2000086384A (en) * 1998-09-11 2000-03-28 Mitsubishi Materials Silicon Corp Pulling method of silicon single crystal
JP2000159595A (en) * 1998-11-20 2000-06-13 Komatsu Electronic Metals Co Ltd Production of silicon single crystal
JP2000178099A (en) * 1998-12-14 2000-06-27 Shin Etsu Handotai Co Ltd Production of silicon single crystal, and silicon single crystal and silicon water produced with the same
JP2000335993A (en) * 1999-05-26 2000-12-05 Samsung Electronics Co Ltd Czochralski puller for producing single crystal silicon ingot by regulating temperature gradient at central and edge parts of boundary between ingot and melt, heat shield for czochralski puller and improvement of czochralski puller
JP2002326888A (en) * 2001-05-01 2002-11-12 Shin Etsu Handotai Co Ltd Device for manufacturing semiconductor single crystal and method for manufacturing silicon single crystal using the same

Also Published As

Publication number Publication date
JP2005015287A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
US7384477B2 (en) Method for producing a single crystal and a single crystal
JP4193610B2 (en) Single crystal manufacturing method
WO2004061166A1 (en) Graphite heater for producing single crystal, single crystal productin system and single crystal productin method
US7323048B2 (en) Method for producing a single crystal and a single crystal
JP4496723B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP4457584B2 (en) Method for producing single crystal and single crystal
JP4151474B2 (en) Method for producing single crystal and single crystal
US7214268B2 (en) Method of producing P-doped silicon single crystal and P-doped N-type silicon single crystal wafer
JP2004149374A (en) Method for manufacturing silicon wafer
JP5223513B2 (en) Single crystal manufacturing method
JP4461776B2 (en) Method for producing silicon single crystal
JP2005015290A (en) Method for manufacturing single crystal, and single crystal
JP4345597B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP4218460B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
JP2003327494A (en) Method for manufacturing silicon single crystal, program for operating silicon single crystal production, and apparatus for manufacturing silicon single crystal
JP4134800B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
JP3147069B2 (en) Single crystal growing method, single crystal grown using the method, and single crystal wafer
JP4148060B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
JP4881539B2 (en) Method for producing single crystal and single crystal
JP2005015298A (en) Method for manufacturing single crystal, and single crystal
JP2005015297A (en) Method for manufacturing single crystal, and single crystal
JP4148059B2 (en) Graphite heater for single crystal production, single crystal production apparatus and single crystal production method
JP2005015288A (en) Method for manufacturing single crystal, and single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4496723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees