JPH10114597A - Production of single crystal silicon and device thereefor - Google Patents

Production of single crystal silicon and device thereefor

Info

Publication number
JPH10114597A
JPH10114597A JP23639797A JP23639797A JPH10114597A JP H10114597 A JPH10114597 A JP H10114597A JP 23639797 A JP23639797 A JP 23639797A JP 23639797 A JP23639797 A JP 23639797A JP H10114597 A JPH10114597 A JP H10114597A
Authority
JP
Japan
Prior art keywords
crucible
magnetic field
melt
crystal silicon
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23639797A
Other languages
Japanese (ja)
Inventor
Hiroshi Inagaki
宏 稲垣
Shigeki Kawashima
茂樹 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Sumco Techxiv Corp
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Techxiv Corp, Komatsu Electronic Metals Co Ltd filed Critical Sumco Techxiv Corp
Priority to JP23639797A priority Critical patent/JPH10114597A/en
Publication of JPH10114597A publication Critical patent/JPH10114597A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the method by which the oxygen concn. in the single crystal silicon can be uniformized in the axial direction, in the production of single crystal silicon through application of a cusped magnetic field. SOLUTION: In this production, the oxygen concn. in single crystal silicon can be uniformized in the axial direction by performing only any one of the following three procedures with the increase in solidification ratio of a silicon melt: a procedure of reducing the electric current to be supplied to an upper coil 19 and a lower coil 20; a procedure of increasing the rotational speed of a crucible 4; and a procedure of transferring the position of the center of the cusped magnetic field by changing the current value to be supplied to the upper coil 19 and/or lower coil 20. This device for the production is provided with a magnetic field control panel 22 for adjusting strength of the cusped magnetic field and the position of the magnetic field center based on the crystal weight detected by a gravity sensor 13 and also a melt surface control panel for keeping the position of the melt surface constant based on the crystal weight detected by the gravity sensor 13, in order to realize sureness of the silicon single crystal pulling-up operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は単結晶シリコンの製
造方法およびその装置に関する。
The present invention relates to a method and an apparatus for producing single crystal silicon.

【0002】[0002]

【従来の技術】シリコン結晶中の酸素濃度はデバイスの
種類・規模および製造プロセスに応じて最適の濃度に制
御する必要がある。シリコン結晶のメーカーは受注する
際に顧客から酸素濃度の上限と下限を指定される。メー
カーとしては、酸素濃度の許容範囲が広ければ操業は比
較的楽であり、酸素濃度の許容範囲が狭ければ厳しいコ
ントロールのもとで操業することを余儀なくされる。操
業開始時には融液がるつぼに接触している面積が大であ
るから融液中に多量の酸素が存在している。そこで、単
結晶引上の初期に単結晶シリコン中に酸素が過剰に取り
込まれるのを防止するために融液にカスプ磁界(cus
p magnetic field)を印加することは
公知である(特公平8−18898号公報、特開平1−
282185号公報参照)。図13は通常の磁界印加チ
ョクラルスキー法(magnetic field−a
pplied Czoch−ralski metho
d)によって得られた単結晶シリコンの酸素濃度を示
す。折線IVの場合には、酸素濃度のばらつきが大き
く、単結晶化率は低い(約87%)。折線Vは単結晶シ
リコンとるつぼとを互いに逆方向に回転させ、磁界強度
・るつぼ回転数を一定に維持して引き上げた例であり、
単結晶化率は約95%であるが、固化率が増加するにつ
れて酸素濃度が著しく低下する。 (注) 単結晶化率(%)は、10本の単結晶シリコン
インゴットについて単結晶長さ÷インゴット全長×10
0%の算式を用いて算出した平均値である。
2. Description of the Related Art The oxygen concentration in a silicon crystal must be controlled to an optimum concentration according to the type and scale of the device and the manufacturing process. When ordering silicon crystal manufacturers, customers specify the upper and lower limits of oxygen concentration. As a manufacturer, operation is relatively easy if the allowable range of oxygen concentration is wide, and if the allowable range of oxygen concentration is narrow, it is forced to operate under strict control. At the start of the operation, a large area of the melt is in contact with the crucible, so that a large amount of oxygen exists in the melt. Therefore, in order to prevent oxygen from being excessively taken into single crystal silicon at the initial stage of pulling the single crystal, a cusp magnetic field (cus) is applied to the melt.
It is known to apply a p magnetic field (Japanese Patent Publication No. 8-18898, Japanese Unexamined Patent Publication No.
282185). FIG. 13 shows a general magnetic field applying Czochralski method (magnetic field-a).
applied Czoch-ralski method
The oxygen concentration of the single crystal silicon obtained in d) is shown. In the case of the broken line IV, the variation in oxygen concentration is large, and the single crystallization ratio is low (about 87%). The broken line V is an example in which the single-crystal silicon and the crucible are rotated in opposite directions to each other, and the magnetic field strength and the crucible rotation speed are kept constant, and are pulled up.
Although the single crystallization ratio is about 95%, the oxygen concentration decreases significantly as the solidification ratio increases. (Note) The single crystallization ratio (%) is the length of the single crystal divided by the total length of the ingot × 10 for 10 single crystal silicon ingots.
This is the average value calculated using the formula of 0%.

【0003】[0003]

【発明が解決しようとする課題】特公平8−18898
号公報および特開平1−282185号公報に記載され
た磁界印加チョクラルスキー法はいずれも単結晶シリコ
ンとるつぼとを互いに逆方向に回転させることを条件に
している。そうすると図14に示すように単結晶シリコ
ンSの直下によどみ層sが発生して、このよどみ層sが
高濃度酸素を含んだ融液Maを単結晶シリコンに取り込
む際の障壁となる。このため、特公平8−18898号
公報は、るつぼの回転速度を制御することのみによって
単結晶ロッドにおける酸素含量を調整することはだんだ
ん困難になっている(第7欄18〜22行)ので、るつ
ぼの回転速度を増加するとともに磁界の強度を減少させ
ることが必要である(第2欄4〜5行、図4ないし図1
0)と述べている。本発明は前記の問題点を解決して、
酸素濃度が均一な単結晶シリコンを製造することができ
る方法および装置を提供することを目的とする。
[Problems to be solved by the invention] Japanese Patent Publication No. 8-18898
Both the magnetic field application Czochralski method described in Japanese Patent Application Laid-Open No. HEI 8-282185 and Japanese Patent Application Laid-Open No. 1-282185 require that the single crystal silicon and the crucible be rotated in mutually opposite directions. Then, as shown in FIG. 14, a stagnation layer s is generated immediately below the single-crystal silicon S, and the stagnation layer s becomes a barrier when the melt Ma containing high-concentration oxygen is taken into the single-crystal silicon. For this reason, Japanese Patent Publication No. 8-18898 discloses that it is increasingly difficult to adjust the oxygen content in the single crystal rod only by controlling the rotation speed of the crucible (column 7, lines 18 to 22). It is necessary to increase the rotation speed of the crucible and decrease the strength of the magnetic field (column 2, lines 4-5, FIGS. 4 to 1).
0). The present invention solves the above problems,
It is an object of the present invention to provide a method and an apparatus capable of manufacturing single crystal silicon having a uniform oxygen concentration.

【0004】[0004]

【課題を解決するための手段】本発明は単結晶シリコン
とるつぼとを同方向に回転させるので両者の回転速度が
差が小さいから単結晶シリコンの直下によどみ層が発生
しない。請求項1に係る発明は上部コイルおよび下部コ
イルに電流を供給することにより融液にカスプ磁界を印
加し、融液の固化率が増加するに伴って上部コイルおよ
び下部コイルに供給する電流を減少させる単結晶シリコ
ンの製造方法である。請求項2に係る発明は融液の固化
率が増加するに伴ってるつぼの回転数を増加させる単結
晶シリコンの製造方法である。請求項3に係る発明は融
液の固化率が増加するに伴って上部コイルおよび/また
は下部コイルに供給する電流の大きさを変えることによ
りカスプ磁界の中心位置を移動させる単結晶シリコンの
製造方法である。本発明は、操業の確実性を保持するた
めに、カスプ磁界の強度および磁界中心の位置を調節す
る磁界制御盤、融液表面の位置を一定に保つ融液表面制
御盤を備えている。
According to the present invention, since the single crystal silicon and the crucible are rotated in the same direction, the difference in rotation speed between the two is small, so that no stagnation layer is generated immediately below the single crystal silicon. The invention according to claim 1 applies a cusp magnetic field to the melt by supplying current to the upper coil and the lower coil, and reduces the current supplied to the upper coil and the lower coil as the solidification rate of the melt increases. This is a method for producing single crystal silicon. The invention according to claim 2 is a method for producing single crystal silicon in which the number of rotations of the crucible is increased as the solidification rate of the melt increases. According to a third aspect of the present invention, there is provided a method of manufacturing single-crystal silicon in which the center position of a cusp magnetic field is moved by changing the magnitude of a current supplied to an upper coil and / or a lower coil as the solidification rate of a melt increases. It is. The present invention includes a magnetic field control panel for adjusting the strength of the cusp magnetic field and the position of the center of the magnetic field, and a melt surface control panel for keeping the position of the melt surface constant in order to maintain the reliability of the operation.

【0005】[0005]

【発明の実施の形態および実施例】図1において、るつ
ぼ支持台1にるつぼ回転モータ2を設置し、同モータ2
によって駆動される回転軸3の上部にるつぼ4を取り付
ける。4aは側壁、4bは底部であり、るつぼ4にシリ
コン融液Mが収容される。るつぼ支持台1はるつぼ昇降
装置によって支持されている。符号5はるつぼ昇降装置
の1例を示し、るつぼ昇降モータ6によって回転する送
りねじ7.7がるつぼ支持台1に螺合している。メイン
チャンバ8の上部に操作部9を設ける。シードチャック
軸10の下端にシードチャック11を取り付け、操作部
9により、シードチャック軸10を回転自在かつ上下動
自在に支持する。操作部9に結晶回転モータ12、重量
センサ13、結晶引上モータ14を設ける。るつぼ4の
側壁の周囲にヒータ15を配置し、ヒータ15は電源1
6によって加熱される。符号17は保温筒である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, a crucible rotation motor 2 is installed on a crucible support 1 and
The crucible 4 is attached to the upper part of the rotating shaft 3 driven by the. 4a is a side wall, 4b is a bottom part, and the silicon melt M is accommodated in the crucible 4. The crucible support 1 is supported by a crucible lifting device. Reference numeral 5 denotes an example of a crucible lifting device, in which a feed screw 7.7 rotated by a crucible lifting motor 6 is screwed to the crucible support 1. An operation unit 9 is provided above the main chamber 8. The seed chuck 11 is attached to the lower end of the seed chuck shaft 10, and the operation unit 9 supports the seed chuck shaft 10 rotatably and vertically. The operation unit 9 is provided with a crystal rotation motor 12, a weight sensor 13, and a crystal pulling motor 14. A heater 15 is arranged around the side wall of the crucible 4, and the heater 15
6 heated. Reference numeral 17 denotes a heat retaining cylinder.

【0006】メインチャンバ8の外周にカスプ磁界発生
手段18が設けられ、カスプ磁界発生手段18は上下に
対向して配置された環状の上部コイル19と下部コイル
20から成る。上部コイル19と下部コイル20はそれ
ぞれ電源21に接続され、電流が2つのソレノイドを反
対方向に流れてカスプ磁界を形成する。図2は上部コイ
ル19と下部コイル20によって形成されたカスプ磁界
の模式図であり、下部コイル20によって生じた磁力線
Lがるつぼ4の側壁4aおよび底部4bをほぼ直角に貫
通している状態を示す。シリコン融液Mは磁力線Lの直
角方向には移動するのが阻止されるから、図2に示す模
式図では、るつぼ4の側壁4aおよび底部4bに沿うシ
リコン融液Mの流れは抑止される。cはカスプ磁界の中
心位置(中心線)を示し、カスプ磁界の中心においては
磁界強度はゼロになる。
[0006] A cusp magnetic field generating means 18 is provided on the outer periphery of the main chamber 8, and the cusp magnetic field generating means 18 comprises an annular upper coil 19 and a lower coil 20 which are arranged to face each other up and down. The upper coil 19 and the lower coil 20 are each connected to a power supply 21 and a current flows through the two solenoids in opposite directions to form a cusp magnetic field. FIG. 2 is a schematic diagram of a cusp magnetic field formed by the upper coil 19 and the lower coil 20, and shows a state in which the lines of magnetic force L generated by the lower coil 20 pass through the side wall 4 a and the bottom 4 b of the crucible 4 at substantially right angles. . Since the silicon melt M is prevented from moving in the direction perpendicular to the line of magnetic force L, the flow of the silicon melt M along the side wall 4a and the bottom 4b of the crucible 4 is suppressed in the schematic diagram shown in FIG. c indicates the center position (center line) of the cusp magnetic field, and the magnetic field intensity becomes zero at the center of the cusp magnetic field.

【0007】重量センサ13、上部コイル19および下
部コイルの電源21は磁界制御盤22に接続される。磁
界制御盤22には固化率に応じて上部コイル19および
下部コイル20へ流す電流値を予め入力しておくことに
よりカスプ磁界の強度や磁界中心cの位置を調節するこ
とができる。磁界制御盤22による制御の態様を詳細に
述べると次のとおりである。図3は電流制御の手順を示
すフローチャートを示す。操業開始に先立って、原料シ
リコンの投入重量Wを磁界制御盤22に入力し、磁界
制御盤22で固化率kを算出しておく。ここに、kは k=V/V‥‥‥‥‥‥(1) で表わされ、Vは重量センサ13が検知した結晶重量W
を電圧出力に変換した値、Vは原料シリコンの投入重
量Wに相当する電圧出力値である。また、固化率kに
応じた上部コイル19の電流値および下部コイル20の
電流値を磁界制御盤22に予め入力しておく。るつぼ4
とシードチャック11とを同方向に回転させて、単結晶
シリコンの引上作業が開始されると、重量センサ13は
単結晶シリコンの重量Wを検知し、Wを電圧出力値Vに
変換し、この電圧出力値Vを磁界制御盤22に入力す
る。磁界制御盤22は前記の式(1)により固化率kを
算出し、コイル電源の出力電流値を変更する指令を出
し、上部コイル19および下部コイル20にそれぞれの
電流を投入する。固化率kが所定値に達するとコイルへ
の投入電流をゼロにして操業が終了する。
The power supply 21 for the weight sensor 13, the upper coil 19 and the lower coil is connected to a magnetic field control panel 22. The strength of the cusp magnetic field and the position of the magnetic field center c can be adjusted by inputting in advance the current value to the upper coil 19 and the lower coil 20 to the magnetic field control panel 22 according to the solidification rate. The mode of control by the magnetic field control panel 22 will be described in detail as follows. FIG. 3 is a flowchart showing the procedure of the current control. Prior to commence operations, the charged weight W 0 of the raw material silicon is inputted to the magnetic field control panel 22 in advance to calculate the solidification rate k in the magnetic field control panel 22. Here, k is represented by k = V / V 0 ‥‥‥‥‥‥ (1), and V is the crystal weight W detected by the weight sensor 13.
Is converted into a voltage output, and V 0 is a voltage output value corresponding to the input weight W 0 of the raw silicon. Further, the current value of the upper coil 19 and the current value of the lower coil 20 according to the solidification rate k are input to the magnetic field control panel 22 in advance. Crucible 4
When the pulling operation of the single crystal silicon is started by rotating the seed crystal 11 and the seed chuck 11 in the same direction, the weight sensor 13 detects the weight W of the single crystal silicon and converts W into a voltage output value V, This voltage output value V is input to the magnetic field control panel 22. The magnetic field control panel 22 calculates the solidification rate k according to the above equation (1), issues a command to change the output current value of the coil power supply, and supplies the respective currents to the upper coil 19 and the lower coil 20. When the solidification rate k reaches a predetermined value, the current supplied to the coil is set to zero, and the operation ends.

【0008】次に、シリコン融液Mの表面の位置を一定
に保つための手段について説明する。図4は融液表面制
御盤23をるつぼ昇降モータ6に接続した装置を示す。
その他の符号は図1に示す符号と同じである。図5
(a)は融液表面の位置を一定に保つ手順を示すフロー
チャートである。操業開始前に予め原料シリコン投入重
量Wを融液表面制御盤23に入力し、かつ、融液重量
と融液深さとの関係を融液表面制御盤23に入力し、初
期融液深さD(図5(b))を算出しておく。単結晶
シリコンの引上げが開始されると、結晶重量Wを重量セ
ンサ13で検知し、融液表面制御盤23で融液の残重量
Wr(=W−W)を算出し、融液表面制御盤23で残
重量Wrの融液深さDrを算出する。そうすると、既知
の初期融液深さDから、融液表面の下降距離Dd(=
−Dr)を算出することができる。融液表面制御盤
23から出力される信号により融液面の下降距離Ddに
等しい高さだけるつぼ昇降モータ6によりるつぼ4を上
昇させるるので、るつぼ内の融液表面を一定の高さに保
つことができる。
Next, means for keeping the position of the surface of the silicon melt M constant will be described. FIG. 4 shows an apparatus in which the melt surface control panel 23 is connected to the crucible lifting motor 6.
Other reference numerals are the same as those shown in FIG. FIG.
(A) is a flowchart showing a procedure for keeping the position of the melt surface constant. The material silicon-on weight W 0 in advance before operations start input to the melt surface control panel 23, and enter the relationship between the melt weight and the melt depth melt surface control panel 23, the initial melt depth D 0 (FIG. 5B) is calculated in advance. When the pulling of the single crystal silicon is started, the crystal weight W is detected by the weight sensor 13, the remaining weight Wr of the melt (= W 0 −W) is calculated by the melt surface control panel 23, and the melt surface is controlled. The board 23 calculates the melt depth Dr of the remaining weight Wr. Then, from the known initial melt depth D 0 , the descent distance Dd (=
D 0 -Dr) can be calculated. Since the crucible 4 is raised by the crucible lifting motor 6 by a height equal to the descent distance Dd of the melt surface by a signal output from the melt surface control panel 23, the melt surface in the crucible is maintained at a constant height. be able to.

【0009】操業開始前には融液がるつぼ4の側壁4a
や底部4bに接触している面積が大きく、るつぼから溶
解した酸素が多量に融液中に存在しているので、このま
まの状態でシリコンの引上作業を開始すると単結晶シリ
コン中の酸素濃度が過大となる。融液にカスプ磁界を印
加すると、磁力線の直角方向には融液は移動が抑制され
る。図2はるつぼ4の側壁4aおよび底部4bに対して
ほぼ直角方向に磁力線Lが貫通している有様を示す。そ
うすると、るつぼ4の側壁4aおよび底部4bの近傍に
存在している酸素の濃度が高い融液の移動が抑制される
から、融液の固化率が低い期間中融液にカスプ磁界を印
加することにより結晶内に取り込まれる酸素の量が過大
となるのを防ぐことができる。
Before starting the operation, the melt is deposited on the side wall 4a of the crucible 4.
And the area in contact with the bottom 4b is large, and a large amount of oxygen dissolved from the crucible is present in the melt. If the silicon pull-up operation is started in this state, the oxygen concentration in the single-crystal silicon will decrease. It will be excessive. When a cusp magnetic field is applied to the melt, the melt is suppressed from moving in the direction perpendicular to the lines of magnetic force. FIG. 2 shows that the lines of magnetic force L penetrate in a direction substantially perpendicular to the side wall 4 a and the bottom 4 b of the crucible 4. Then, the movement of the melt having a high oxygen concentration existing near the side wall 4a and the bottom portion 4b of the crucible 4 is suppressed, so that the cusp magnetic field is applied to the melt during the period when the solidification rate of the melt is low. This can prevent the amount of oxygen taken into the crystal from becoming excessive.

【0010】単結晶シリコンの引き上げが進んで固化率
が増加すると、るつぼ4の側壁4aや底部4bが融液に
接触している面積が小さくなり、それにつれて融液中に
溶解する酸素の量が減少するから、結晶中に取り込まれ
る酸素量が過少になるのを防止する手段を講じる必要が
ある。カスプ磁界の強度を減少させると融液の対流を抑
制する作用が減少するから、融液の対流が活発化して、
結晶中に取り込まれる酸素量が過少になるのを防ぐこと
ができる。図6は22インチのるつぼ4に100kgの
単結晶シリコンをチャージし、8インチの単結晶シリコ
ンを引き上げた場合の操業条件の1例を示し、固化率の
増加に伴って上部コイル19、下部コイル20に供給す
る電流を漸減した。すなわち、固化率0%のときの上部
コイルへの供給電流を200A、下部コイルに供給する
電流を250Aとし、引き上げ終了時である固化率88
%のときの供給電流が上部コイル、下部コイルとも0A
となるように漸減させた。これにより、るつぼ壁を垂直
に横切る磁力線の強さは固化率の増加に伴って減少す
る。るつぼの回転速度は固化率にかかわらず5rpmを
維持した。図7の折線Iはこの場合の単結晶シリコンの
酸素濃度を示すグラフであり、酸素濃度(×1017
toms/cm)は12.1〜11.9の範囲に収ま
っている。なお、酸素濃度測定はFTIRにて吸収係数
4.81×1017cm−2(ASTM−121 19
79年)を用いた。
When the solidification rate increases as the single crystal silicon is pulled up, the area where the side walls 4a and the bottom 4b of the crucible 4 are in contact with the melt decreases, and the amount of oxygen dissolved in the melt decreases accordingly. Therefore, it is necessary to take measures to prevent the amount of oxygen taken into the crystal from becoming too small. When the strength of the cusp magnetic field is reduced, the action of suppressing the convection of the melt is reduced, so that the convection of the melt is activated,
It is possible to prevent the amount of oxygen taken into the crystal from becoming too small. FIG. 6 shows an example of operating conditions when 100 kg of single-crystal silicon is charged into a 22-inch crucible 4 and 8-inch single-crystal silicon is pulled up. As the solidification rate increases, the upper coil 19 and the lower coil are increased. The current supplied to 20 was gradually reduced. That is, when the solidification rate is 0%, the supply current to the upper coil is set to 200A, and the current supplied to the lower coil is set to 250A.
% When the supply current is 0 A for both the upper and lower coils
It was gradually reduced so that As a result, the intensity of the magnetic field lines perpendicular to the crucible wall decreases as the solidification rate increases. The rotation speed of the crucible was maintained at 5 rpm regardless of the solidification rate. The broken line I in FIG. 7 is a graph showing the oxygen concentration of the single crystal silicon in this case, and the oxygen concentration (× 10 17 a
toms / cm 3 ) falls within the range of 12.1 to 11.9. The oxygen concentration was measured by FTIR at an absorption coefficient of 4.81 × 10 17 cm −2 (ASTM-121 19
1979) was used.

【0011】次に、請求項2に係る発明について説明す
る。固化率が低い期間中単結晶シリコンの中に多量の酸
素が取り込まれるのを防ぐために融液にカスプ磁界を印
加することは請求項1に係る発明の場合と同じである。
請求項2に係る発明では、固化率が増加るすに伴って、
るつぼ4の回転数を増加させると融液の攪拌作用が助長
されるから、単結晶シリコン中に取り込まれる酸素量が
不足するのを防ぐことができる。図8は22インチのる
つぼ4に100kgの単結晶シリコンをチャージし、8
インチの単結晶シリコンを引き上げた場合の操業条件の
1例を示し、固化率の増加に対応してるつぼ回転数を4
段階に変化させる。すなわち、固化率が40%に達する
までの間はるつぼ回転数を5rpmに維持し、固化率が
40%を超えて60%に達するまでの間にるつぼ回転数
を6rpmに漸増させ、更に、固化率が60%を超えて
85%に達するまでの間にるつぼ回転数を8rpmに漸
増させ、固化率が85%を超えた後は引き上げ終了時で
ある固化率88%に到達するまでの間にるつぼ回転数を
10rpmに上昇させた。上部コイル19、下部コイル
20に供給する電流は一定値を維持した。図7の折線I
Iはこの場合の単結晶シリコンの酸素濃度を示すグラフ
であり、酸素濃度(×1017atoms/cm)は
12.3〜11.9の範囲に収まっている。
Next, the invention according to claim 2 will be described. Applying a cusp magnetic field to the melt in order to prevent a large amount of oxygen from being taken into single crystal silicon during a period in which the solidification rate is low is the same as in the first embodiment.
In the invention according to claim 2, as the solidification rate increases,
Increasing the number of rotations of the crucible 4 promotes the action of stirring the melt, so that the amount of oxygen taken into the single crystal silicon can be prevented from becoming insufficient. FIG. 8 shows that a 22-inch crucible 4 is charged with 100 kg of single crystal silicon,
An example of operating conditions when an inch of single-crystal silicon is pulled up is shown.
Change in stages. That is, the crucible rotation speed is maintained at 5 rpm until the solidification ratio reaches 40%, the crucible rotation speed is gradually increased to 6 rpm until the solidification ratio exceeds 40% and reaches 60%. The crucible rotation speed is gradually increased to 8 rpm until the rate exceeds 85% after the rate exceeds 60%, and after the solidification rate exceeds 85%, the solidification rate reaches 88% at the end of pulling. The crucible rotation speed was increased to 10 rpm. The current supplied to the upper coil 19 and the lower coil 20 maintained a constant value. Line I of FIG.
I is a graph showing the oxygen concentration of the single crystal silicon in this case, and the oxygen concentration (× 10 17 atoms / cm 3 ) falls within the range of 12.3 to 11.9.

【0012】引き上げ中の単結晶シリコンSとるつぼ4
とを互いに逆方向に回転させると単結晶シリコンSの直
下によどみ層が発生し、このよどみ層がるつぼ底部に滞
留している高濃度酸素を含んだ融液層を単結晶シリコン
に取り込む際の障壁となることは既に述べた(
Single crystal silicon S and crucible 4 being pulled up
Are rotated in opposite directions to each other, a stagnation layer is generated immediately below the single-crystal silicon S. When the stagnation layer captures the melt layer containing high-concentration oxygen retained at the bottom of the crucible into the single-crystal silicon, The barriers have already been mentioned (

【0003】参照)。本発明は単結晶シリコンSとるつ
ぼ4とを同方向に回転させるので両者の回転速度の差が
小さいから単結晶シリコンSの直下によどみ層が発生せ
ず、したがって固化率が増加しても高濃度酸素を含んだ
融液層を単結晶シリコンに取り込む際の障壁が存在しな
いから、固化率が増加しても▲a▼磁界強度を減少させ
るか、または▲b▼るつぼの回転数を上昇させるか、い
ずれか一方を実施するだけで単結晶シリコン中の酸素濃
度が低下するのを防ぐことができる。
[0003]. According to the present invention, since the single crystal silicon S and the crucible 4 are rotated in the same direction, the difference in rotation speed between the two is small. Since there is no barrier when taking the melt layer containing oxygen into single crystal silicon, even if the solidification rate increases, (a) reduce the magnetic field strength or (b) increase the number of rotations of the crucible. Alternatively, the reduction of the oxygen concentration in the single crystal silicon can be prevented only by performing either one of them.

【0013】次に、請求項3に係る発明について説明す
る。図9は固化率とコイル電流の変化との関係を示し、
固化率が増加するにつれて、下部コイル電流は一定と
し、上部コイル電流を増加して行くとカスプ磁界の中心
の位置が下方へ移動する。図10において、固化率がゼ
ロのときに磁界中心の位置が融液表面に一致していると
しよう(図10(a))。固化率が55%のときには磁
界中心cは融液表面より深さdの位置にあり(図10
(b))、固化率80%のときには磁界中心cは融液表
面より深さdの位置にある(図10(c))。磁界中
心cでは磁界強度がゼロであるから磁界中心cの近傍に
おいては融液は自由に移動することができるので、図1
0(c)にみられるように、水平方向の流れと垂直方向
の流れが合一して上下方向の循環流Cが活発化する。る
つぼの底の近傍にある融液Maの中には酸素が高濃度に
溶け込んでいる。本発明はるつぼと結晶が同方向に回転
しているため結晶の直下によどみ層が発生しないから、
るつぼの底に滞留している酸素濃度が高い融液Maは循
環流Cに伴われて円滑に結晶の中に取り込まれる。この
ため、固化率が増加した期間中に引上げられた結晶中の
酸素濃度は低下しない。図7の折線IIIはこの場合の
単結晶シリコンの酸素濃度を示し、酸素濃度は12.4
〜11.9の範囲に収まっている。単結晶化率は約98
%である。
Next, the invention according to claim 3 will be described. FIG. 9 shows the relationship between the solidification rate and the change in coil current,
As the solidification rate increases, the lower coil current is kept constant, and as the upper coil current increases, the position of the center of the cusp magnetic field moves downward. In FIG. 10, it is assumed that the position of the center of the magnetic field coincides with the surface of the melt when the solidification rate is zero (FIG. 10A). Field center c when the solidification ratio is 55% is in the position of the depth d 1 from the melt surface (FIG. 10
(B)), when the solidification rate of 80% in the magnetic field center c is located at the position of depth d 2 from the melt surface (FIG. 10 (c)). Since the magnetic field intensity is zero at the magnetic field center c, the melt can move freely near the magnetic field center c.
As seen from 0 (c), the horizontal flow and the vertical flow are combined, and the vertical circulation flow C is activated. Oxygen is dissolved at a high concentration in the melt Ma near the bottom of the crucible. In the present invention, since the crucible and the crystal are rotating in the same direction, no stagnation layer is generated immediately below the crystal,
The melt Ma having a high oxygen concentration staying at the bottom of the crucible is smoothly taken into the crystal along with the circulation flow C. Therefore, the oxygen concentration in the crystal pulled during the period in which the solidification rate has increased does not decrease. The broken line III in FIG. 7 shows the oxygen concentration of the single crystal silicon in this case, and the oxygen concentration is 12.4.
1111.9. Single crystallization rate is about 98
%.

【0014】上部コイル19および下部コイル20を流
れる電流によって形成されるカスプ磁界の強度および磁
界中心の位置は上部コイル19および下部コイル20に
供給する電流の調節の仕方によっていろいろに変えるこ
とができる。図9は下部コイル電流を一定とし、上部コ
イル電流を増加する場合、図11(b)(c)は上部コ
イル電流を一定とし、下部コイル電流を減少させる場合
を示す。上部コイル電流または下部コイル電流の一方を
一定とし、他方を変化させる場合に限らず、双方を変化
させてもよい(図11(d)(e))。コイル電流の変
化は、直線的変化に限らず、曲線的変化でもよい。(ち
なみに、図6にみられるように、上部コイル電流と下部
コイル電流の電流比が一定の場合には磁界中心の位置は
移動しない。) 上部コイル電流と下部コイル電流を図9および図11
(a)〜(e)に例示する態様で変化させることにより
磁界中心の位置と磁界強度を調節し、所望の値の酸素濃
度を有する単結晶シリコンを得ることができる。磁界中
心の位置の移動は、下方に限らず、上方へ移動させるこ
ともできる。
The strength of the cusp magnetic field formed by the current flowing through the upper coil 19 and the lower coil 20 and the position of the center of the magnetic field can be variously changed by adjusting the current supplied to the upper coil 19 and the lower coil 20. FIG. 9 shows a case where the lower coil current is fixed and the upper coil current is increased, and FIGS. 11B and 11C show a case where the upper coil current is fixed and the lower coil current is reduced. The present invention is not limited to the case where one of the upper coil current and the lower coil current is fixed and the other is changed, but both may be changed (FIGS. 11D and 11E). The change in the coil current is not limited to a linear change, but may be a curve change. (Incidentally, as shown in FIG. 6, when the current ratio between the upper coil current and the lower coil current is constant, the position of the center of the magnetic field does not move.)
By changing the position of the center of the magnetic field and the magnetic field intensity by changing the modes as illustrated in (a) to (e), it is possible to obtain single-crystal silicon having a desired value of oxygen concentration. The movement of the position of the center of the magnetic field is not limited to the downward movement, but may be the upward movement.

【0015】次に、請求項8に係る発明について説明す
る。図12は請求項8に係る発明の実施例である。上部
コイル19および下部コイル20は磁石支持台24に支
持され、磁石支持台24は磁石昇降装置25により昇降
自在に支持される。磁石昇降装置25は磁石昇降モータ
26とモータ26によって回転される送りねじ27から
成り、送りねじ27は磁石支持台24に螺合される。磁
石昇降モータ26は昇降制御盤28に接続される。その
他の構成は図1と同じである。磁石の位置を上方または
下方に移動させることによりカスプ磁界の中心位置を所
望する位置に定めることができる。
Next, the invention according to claim 8 will be described. FIG. 12 shows an embodiment of the invention according to claim 8. The upper coil 19 and the lower coil 20 are supported by a magnet support 24, and the magnet support 24 is supported by a magnet elevating device 25 so as to be able to move up and down. The magnet lifting device 25 includes a magnet lifting motor 26 and a feed screw 27 rotated by the motor 26, and the feed screw 27 is screwed to the magnet support 24. The magnet lifting motor 26 is connected to a lifting control panel 28. Other configurations are the same as those in FIG. The center position of the cusp magnetic field can be set to a desired position by moving the position of the magnet upward or downward.

【0016】[0016]

【発明の効果】本発明は単結晶シリコンとるつぼとを同
方向に回転させるので両者の回転速度の差が小さいから
単結晶シリコンの直下によどみ層が発生しないから、融
液の固化率が増加するに伴って上部コイルおよび下部コ
イルに供給する電流を減少させるだけの手順で単結晶シ
リコンの軸方向酸素濃度を均一化することができる。
According to the present invention, since the single crystal silicon and the crucible are rotated in the same direction, the difference in rotation speed between the two is small, so that no stagnation layer is generated immediately below the single crystal silicon, so that the solidification rate of the melt is increased. As a result, the oxygen concentration in the axial direction of the single crystal silicon can be made uniform by a procedure of merely reducing the current supplied to the upper coil and the lower coil.

【0017】本発明は単結晶シリコンとるつぼとを同方
向に回転させるので両者の回転速度の差が小さいから単
結晶シリコンの直下によどみ層が発生しないから、融液
の固化率が増加するに伴ってるつぼの回転数を増加させ
るだけの手順で単結晶シリコンの軸方向酸素濃度を均一
化することができる。
According to the present invention, since the single crystal silicon and the crucible are rotated in the same direction, the difference in rotational speed between the two is small, so that a stagnation layer is not generated immediately below the single crystal silicon. The oxygen concentration in the axial direction of the single crystal silicon can be made uniform only by increasing the number of rotations of the crucible.

【0018】本発明は単結晶シリコンとるつぼとを同方
向に回転させるので両者の回転速度の差が小さいから単
結晶シリコンの直下によどみ層が発生しないから、融液
の固化率が増加するに伴って上部コイルおよび/または
下部コイルに供給する電流の大きさを変えることにより
カスプ磁界の中心位置を移動させるだけの手順で単結晶
シリコンの軸方向酸素濃度を均一化することができる。
According to the present invention, since the single crystal silicon and the crucible are rotated in the same direction, the difference between the rotation speeds of the two is small, so that no stagnation layer is generated immediately below the single crystal silicon. Accordingly, by changing the magnitude of the current supplied to the upper coil and / or the lower coil, the axial oxygen concentration of the single-crystal silicon can be made uniform only by moving the center position of the cusp magnetic field.

【0019】本発明は操業の確実性を実現するために重
量センサで検出された結晶重量によりカスプ磁界の強度
および磁界中心の位置を調節する磁界制御盤を備えてい
るので単結晶シリコンの軸方向酸素濃度を均一化するこ
とができる。
The present invention is provided with a magnetic field control panel for adjusting the strength of the cusp magnetic field and the position of the center of the magnetic field based on the crystal weight detected by the weight sensor in order to realize the reliability of the operation. The oxygen concentration can be made uniform.

【0020】本発明は操業の確実性を実現するために重
量センサで検出された結晶重量により融液表面の位置
(高さ)を一定に保つ融液表面制御盤を備えているので
単結晶シリコンの軸方向酸素濃度を均一化することがで
きる。
Since the present invention is provided with a melt surface control panel for keeping the position (height) of the melt surface constant by the weight of the crystal detected by the weight sensor in order to realize the reliability of the operation, single crystal silicon is provided. In the axial direction can be made uniform.

【0021】本発明は融液の固化率に応じてカスプ磁界
発生手段を上方または下方へ移動させる信号を出力する
昇降制御盤を備えているので単結晶シリコンの軸方向酸
素濃度を均一化することができる。
According to the present invention, there is provided a lifting and lowering control panel for outputting a signal for moving the cusp magnetic field generating means upward or downward in accordance with the solidification rate of the melt. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るカスプ磁界を印加する単結晶製造
装置の実施例の全体図である。
FIG. 1 is an overall view of an embodiment of a single crystal manufacturing apparatus for applying a cusp magnetic field according to the present invention.

【図2】上部コイルと下部コイルによって形成されたカ
スプ磁界の模式図である。
FIG. 2 is a schematic diagram of a cusp magnetic field formed by an upper coil and a lower coil.

【図3】本発明の磁界制御盤による電流制御の手順を示
すフローチャートである。
FIG. 3 is a flowchart showing a procedure of current control by the magnetic field control board of the present invention.

【図4】本発明に係るカスプ磁界を印加する単結晶製造
装置の他の実施例の全体図である。
FIG. 4 is an overall view of another embodiment of a single crystal manufacturing apparatus for applying a cusp magnetic field according to the present invention.

【図5】(a)は本発明の融液表面制御盤による融液表
面制御の手順を示すフローチャート、(b)は(a)に
おける寸法の説明図である。
FIG. 5A is a flowchart showing a procedure of melt surface control by the melt surface control panel of the present invention, and FIG. 5B is an explanatory diagram of dimensions in FIG.

【図6】本発明における融液の固化率とコイル電流との
関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the solidification rate of the melt and the coil current in the present invention.

【図7】本発明の単結晶シリコンの軸方向における酸素
濃度と固化率との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the oxygen concentration in the axial direction of the single crystal silicon of the present invention and the solidification rate.

【図8】本発明における融液の固化率とるつぼ回転数と
の関係を示すグラフである。
FIG. 8 is a graph showing the relationship between the solidification rate of the melt and the crucible rotation number in the present invention.

【図9】本発明による融液の固化率とコイル電流との関
係を示すグラフである。
FIG. 9 is a graph showing the relationship between the solidification rate of the melt and the coil current according to the present invention.

【図10】本発明におけるカスプ磁界の中心位置を移動
させた1例を示し、(a)は固化率が0%、(b)は固
化率が55%、(c)は固化率が80%の場合の説明図
である。
10A and 10B show an example in which the center position of the cusp magnetic field in the present invention is moved. FIG. 10A shows a solidification rate of 0%, FIG. 10B shows a solidification rate of 55%, and FIG. 10C shows a solidification rate of 80%. It is explanatory drawing in case of.

【図11】本発明における融液の固化率とコイル電流と
の関係を示すグラフである。
FIG. 11 is a graph showing the relationship between the solidification rate of the melt and the coil current in the present invention.

【図12】本発明に係るカスプ磁界を印加する単結晶製
造装置のさらに他の実施例の全体図である。
FIG. 12 is an overall view of still another embodiment of a single crystal manufacturing apparatus for applying a cusp magnetic field according to the present invention.

【図13】従来の方法および装置によって製造した単結
晶シリコンの軸方向における酸素濃度と固化率との関係
を示すグラフである。
FIG. 13 is a graph showing the relationship between the oxygen concentration in the axial direction and the solidification rate of single crystal silicon manufactured by a conventional method and apparatus.

【図14】従来の方法および装置による引上げ中の単結
晶シリコンの直下に発生するよどみ層を示す説明図であ
る。
FIG. 14 is an explanatory view showing a stagnation layer generated immediately below single crystal silicon during pulling by a conventional method and apparatus.

【符号の説明】[Explanation of symbols]

4 るつぼ 6 るつぼ昇降モータ 8 メインチャンバ 9 操作部 10 シードチャック軸 11 シードチャック 13 重力センサ 15 ヒータ 18 カスプ磁界発生手段 19 上部コイル 20 下部コイル 21 電源 22 磁界制御盤 23 融液表面制御盤 26 磁石昇降モータ 28 昇降制御盤 4 Crucible 6 Crucible lifting motor 8 Main chamber 9 Operation unit 10 Seed chuck shaft 11 Seed chuck 13 Gravity sensor 15 Heater 18 Cusp magnetic field generating means 19 Upper coil 20 Lower coil 21 Power supply 22 Magnetic field control panel 23 Melt surface control panel 26 Magnet lifting / lowering Motor 28 lifting control panel

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 るつぼに収容されたシリコンをヒータに
より加熱し、回転自在かつ上下動自在に支持されたシー
ドチャックにより単結晶シリコンを引き上げるに際し
て、シードチャック軸の周りに単結晶シリコンとるつぼ
を同方向に回転させ、上部コイルおよび下部コイルに電
流を供給することにより融液にカスプ磁界を印加し、融
液の固化率が増加するに伴って上部コイルおよび下部コ
イルに供給する電流を減少させる単結晶シリコンの製造
方法。
1. A method in which silicon contained in a crucible is heated by a heater and is pulled up by a seed chuck supported rotatably and vertically so that the single crystal silicon and the crucible are placed around a seed chuck shaft. A cusp magnetic field is applied to the melt by supplying current to the upper coil and the lower coil, and the current supplied to the upper coil and the lower coil is reduced as the solidification rate of the melt increases. Manufacturing method of crystalline silicon.
【請求項2】 るつぼに収容されたシリコンをヒータに
より加熱し、回転自在かつ上下動自在に支持されたシー
ドチャックにより単結晶シリコンを引き上げるに際し
て、シードチャック軸の周りに単結晶シリコンとるつぼ
を同方向に回転させ、上部コイルおよび下部コイルに電
流を供給することにより融液にカスプ磁界を印加し、融
液の固化率が増加するに伴ってるつぼの回転数を増加さ
せる単結晶シリコンの製造方法。
2. When the silicon contained in the crucible is heated by a heater and the single crystal silicon is pulled up by a seed chuck supported rotatably and vertically, the single crystal silicon and the crucible are placed around the seed chuck axis. Single crystal silicon manufacturing method in which a cusp magnetic field is applied to a melt by supplying current to an upper coil and a lower coil by rotating the crucible in a direction, and the number of rotations of the crucible increases as the solidification rate of the melt increases. .
【請求項3】 るつぼに収容されたシリコンをヒータに
より加熱し、回転自在かつ上下動自在に支持されたシー
ドチャックにより単結晶シリコンを引き上げるに際し
て、シードチャック軸の周りに単結晶シリコンとるつぼ
を同方向に回転させ、上部コイルおよび下部コイルに電
流を供給することにより融液にカスプ磁界を印加し、融
液の固化率が増加するに伴って上部コイルおよび/また
は下部コイルに供給する電流の大きさを変えることによ
りカスプ磁界の中心位置を移動させる単結晶シリコンの
製造方法。
3. When the silicon contained in the crucible is heated by a heater and the single crystal silicon is pulled up by a seed chuck supported rotatably and vertically, the single crystal silicon and the crucible are placed around the axis of the seed chuck. A cusp magnetic field is applied to the melt by supplying current to the upper coil and the lower coil by rotating in the direction, and the magnitude of the current supplied to the upper coil and / or the lower coil as the solidification rate of the melt increases. A method of manufacturing single crystal silicon in which the center position of a cusp magnetic field is moved by changing the height.
【請求項4】 重量センサで結晶重量を検知し、磁界制
御盤によりコイル電源の出力電流値を変更する指令を出
し、上部コイルおよび下部コイルにそれぞれの電流を投
入する請求項1または請求項3に記載の単結晶シリコン
の製造方法。
4. A crystal sensor is detected by a weight sensor, a command to change an output current value of a coil power supply is issued by a magnetic field control panel, and respective currents are supplied to an upper coil and a lower coil. 3. The method for producing single-crystal silicon according to 1.
【請求項5】 重量センサで結晶重量を検知し、融液表
面制御盤で融液表面の下降距離を算出し、融液表面の下
降距離に等しい高さだけるつぼを上昇させることにより
融液表面の位置を一定に保つことができる請求項1ない
し請求項3のいずれかに記載の単結晶シリコンの製造方
法。
5. A melt surface is detected by a weight sensor, a descent distance of the melt surface is calculated by a melt surface control panel, and the crucible is raised by a height equal to the descent distance of the melt surface. 4. The method for producing single-crystal silicon according to claim 1, wherein said position can be kept constant.
【請求項6】 回転軸の上部にるつぼを取り付け、操作
部により回転自在かつ上下動自在に支持されたシードチ
ャック軸の下端にシードチャックを取り付け、るつぼの
周囲に加熱手段により加熱されるヒータを設け、るつ
ぼ、ヒータ、シードチャックをメインチャンバで包囲
し、メインチャンバの外周でるつぼを包囲する位置に上
部コイルおよび下部コイルから成るカスプ磁界発生手段
を設け、上部コイルおよび下部コイルを電源に接続し、
融液の固化率に応じて上部コイルおよび下部コイルへ流
す電流値を予め入力しておくことによりカスプ磁界の強
度および磁界中心の位置を調節することができる磁界制
御盤を、結晶重量の重量センサに、上部コイルおよび下
部コイルの電源に、それぞれ接続して成る単結晶シリコ
ンの製造装置。
6. A crucible is mounted on an upper part of a rotating shaft, a seed chuck is mounted on a lower end of a seed chuck shaft rotatably and vertically movably supported by an operation unit, and a heater heated by heating means is provided around the crucible. A cusp magnetic field generating means comprising an upper coil and a lower coil at a position surrounding the crucible on the outer periphery of the main chamber, and connecting the upper coil and the lower coil to a power source. ,
A magnetic field control panel that can adjust the strength of the cusp magnetic field and the position of the magnetic field center by inputting in advance the current value flowing to the upper coil and the lower coil in accordance with the solidification rate of the melt is used as a weight sensor for the crystal weight. And a single crystal silicon manufacturing apparatus connected to the power supply of the upper coil and the lower coil, respectively.
【請求項7】 回転軸の上部にるつぼを取り付け、操作
部により回転自在かつ上下動自在に支持されたシードチ
ャック軸の下端にシードチャックを取り付け、るつぼの
周囲に加熱手段により加熱されるヒータを設け、るつ
ぼ、ヒータ、シードチャックをメインチャンバで包囲
し、メインチャンバの外周でるつぼを包囲する位置に上
部コイルおよび下部コイルから成るカスプ磁界発生手段
を設け、上部コイルおよび下部コイルを電源に接続し、
融液重量と融液深さとの関係を予め入力し融液表面の下
降距離に等しい高さだけるつぼを上昇させることにより
融液表面の位置を一定に保つことができる融液表面制御
盤をるつぼ昇降モータに接続して成る単結晶シリコンの
製造装置。
7. A crucible is mounted on an upper portion of a rotating shaft, a seed chuck is mounted on a lower end of a seed chuck shaft rotatably and vertically movably supported by an operation unit, and a heater heated by heating means is provided around the crucible. A cusp magnetic field generating means comprising an upper coil and a lower coil at a position surrounding the crucible on the outer periphery of the main chamber, and connecting the upper coil and the lower coil to a power source. ,
A crucible with a melt surface control panel capable of keeping the position of the melt surface constant by previously inputting the relationship between the melt weight and the melt depth and raising the crucible by a height equal to the descending distance of the melt surface. Single crystal silicon manufacturing equipment connected to a lifting motor.
【請求項8】 回転軸の上部にるつぼを取り付け、操作
部により回転自在かつ上下動自在に支持されたシードチ
ャック軸の下端にシードチャックを取り付け、るつぼの
周囲に加熱手段により加熱されるヒータを設け、るつ
ぼ、ヒータ、シードチャックをメインチャンバで包囲
し、メインチャンバの外周でるつぼを包囲する位置に上
部コイルおよび下部コイルから成るカスプ磁界発生手段
を設け、上部コイルおよび下部コイルを電源に接続し、
融液の固化率に応じてカスプ磁界発生手段を上方または
下方へ移動させる信号を出力する昇降制御盤をカスプ磁
界発生手段昇降モータに接続して成る単結晶シリコンの
製造装置。
8. A crucible is mounted on an upper portion of a rotating shaft, a seed chuck is mounted on a lower end of a seed chuck shaft rotatably and vertically movably supported by an operation section, and a heater heated by heating means is provided around the crucible. A cusp magnetic field generating means comprising an upper coil and a lower coil at a position surrounding the crucible on the outer periphery of the main chamber, and connecting the upper coil and the lower coil to a power source. ,
An apparatus for manufacturing single-crystal silicon, comprising: a lift control panel for outputting a signal for moving a cusp magnetic field generating means upward or downward in accordance with a solidification rate of a melt;
JP23639797A 1996-08-20 1997-07-30 Production of single crystal silicon and device thereefor Pending JPH10114597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23639797A JPH10114597A (en) 1996-08-20 1997-07-30 Production of single crystal silicon and device thereefor

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP8-237179 1996-08-20
JP23717996 1996-08-20
JP23717896 1996-08-20
JP8-237178 1996-08-20
JP23639797A JPH10114597A (en) 1996-08-20 1997-07-30 Production of single crystal silicon and device thereefor

Publications (1)

Publication Number Publication Date
JPH10114597A true JPH10114597A (en) 1998-05-06

Family

ID=27332365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23639797A Pending JPH10114597A (en) 1996-08-20 1997-07-30 Production of single crystal silicon and device thereefor

Country Status (1)

Country Link
JP (1) JPH10114597A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258163B1 (en) * 1998-09-08 2001-07-10 Sumitomo Metal Industries, Ltd. Method for producing silicon single crystal
US6325851B1 (en) 1998-09-16 2001-12-04 Komatsu Electronic Metals Co. Crystal manufacturing apparatus and method
JP2005015287A (en) * 2003-06-27 2005-01-20 Shin Etsu Handotai Co Ltd Method and apparatus for manufacturing single crystal
JP2007031260A (en) * 2005-07-26 2007-02-08 Siltron Inc Method and apparatus for growing high quality silicon single crystal ingot, silicon single crystal ingot grown thereby and wafer produced from the single crystal ingot
JP2008526667A (en) * 2004-12-30 2008-07-24 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Electromagnetic pumping of liquid silicon in the crystal growth process.
JP2008526666A (en) * 2004-12-30 2008-07-24 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Control of melt-solid interface shape of growing silicon crystal using variable magnetic field
KR100868192B1 (en) 2007-06-15 2008-11-10 주식회사 실트론 Method of manufacturing semiconductor single crystal using variable magnetic field control, apparatus using the same and semiconductor single crystal ingot
JP2009221060A (en) * 2008-03-18 2009-10-01 Covalent Materials Corp Method for pulling silicon single crystal
US20090320743A1 (en) * 2008-06-30 2009-12-31 Memc Electronic Materials, Inc. Controlling a Melt-Solid Interface Shape of a Growing Silicon Crystal Using an Unbalanced Magnetic Field and Iso-Rotation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258163B1 (en) * 1998-09-08 2001-07-10 Sumitomo Metal Industries, Ltd. Method for producing silicon single crystal
US6325851B1 (en) 1998-09-16 2001-12-04 Komatsu Electronic Metals Co. Crystal manufacturing apparatus and method
JP2005015287A (en) * 2003-06-27 2005-01-20 Shin Etsu Handotai Co Ltd Method and apparatus for manufacturing single crystal
JP4496723B2 (en) * 2003-06-27 2010-07-07 信越半導体株式会社 Single crystal manufacturing method and single crystal manufacturing apparatus
JP2008526667A (en) * 2004-12-30 2008-07-24 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Electromagnetic pumping of liquid silicon in the crystal growth process.
JP2008526666A (en) * 2004-12-30 2008-07-24 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Control of melt-solid interface shape of growing silicon crystal using variable magnetic field
JP2007031260A (en) * 2005-07-26 2007-02-08 Siltron Inc Method and apparatus for growing high quality silicon single crystal ingot, silicon single crystal ingot grown thereby and wafer produced from the single crystal ingot
KR100868192B1 (en) 2007-06-15 2008-11-10 주식회사 실트론 Method of manufacturing semiconductor single crystal using variable magnetic field control, apparatus using the same and semiconductor single crystal ingot
JP2009221060A (en) * 2008-03-18 2009-10-01 Covalent Materials Corp Method for pulling silicon single crystal
US20090320743A1 (en) * 2008-06-30 2009-12-31 Memc Electronic Materials, Inc. Controlling a Melt-Solid Interface Shape of a Growing Silicon Crystal Using an Unbalanced Magnetic Field and Iso-Rotation
US8398765B2 (en) * 2008-06-30 2013-03-19 Memc Electronic Materials, Inc. Controlling a melt-solid interface shape of a growing silicon crystal using an unbalanced magnetic field and iso-rotation

Similar Documents

Publication Publication Date Title
JP2940437B2 (en) Method and apparatus for producing single crystal
US7282095B2 (en) Silicon single crystal pulling method
TWI402384B (en) Manufacturing method of single crystal
JP3724571B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
KR100881172B1 (en) Magnetic field application method of pulling silicon single crystal
JPH10114597A (en) Production of single crystal silicon and device thereefor
JP3520883B2 (en) Single crystal manufacturing method
KR101674287B1 (en) Diameter Controlling System of Single Crystal Ingot and Method controlling the Same
EP0400995B1 (en) Single crystal pulling apparatus and method
WO2007013148A1 (en) Silicon single crystal pulling apparatus and method thereof
JP2008214118A (en) Method for manufacturing semiconductor single crystal
JP2002326888A (en) Device for manufacturing semiconductor single crystal and method for manufacturing silicon single crystal using the same
KR101376923B1 (en) Ingot growing apparatus and method for growing ingot
JP3781300B2 (en) Semiconductor single crystal manufacturing method and semiconductor single crystal manufacturing apparatus
JP4314974B2 (en) Silicon single crystal manufacturing method and silicon single crystal
JP2000247787A (en) Method and apparatus for producing single crystal
JP2004182580A (en) Device and method for pulling silicon single crystal
JP4310980B2 (en) Pulling method of silicon single crystal
JPH10338597A (en) Single crystal holding apparatus and single crystal holding method
CN212533193U (en) Cooling device and crystal pulling system
JPH09202685A (en) Apparatus for pulling up single crystal
JPH09183692A (en) Apparatus for producing silicon single crystal and method therefor
JPH03183689A (en) Device and method for pulling up single crystal
JP2821962B2 (en) Single crystal manufacturing equipment
JP2008162829A (en) Apparatus and method for manufacturing silicon single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040330

RD02 Notification of acceptance of power of attorney

Effective date: 20051202

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20051122

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Effective date: 20070322

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304