JP2880092B2 - Single crystal manufacturing method - Google Patents

Single crystal manufacturing method

Info

Publication number
JP2880092B2
JP2880092B2 JP6808595A JP6808595A JP2880092B2 JP 2880092 B2 JP2880092 B2 JP 2880092B2 JP 6808595 A JP6808595 A JP 6808595A JP 6808595 A JP6808595 A JP 6808595A JP 2880092 B2 JP2880092 B2 JP 2880092B2
Authority
JP
Japan
Prior art keywords
crystal
single crystal
melt
crucible
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6808595A
Other languages
Japanese (ja)
Other versions
JPH08259381A (en
Inventor
正博 田中
博世 芳賀
政美 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6808595A priority Critical patent/JP2880092B2/en
Publication of JPH08259381A publication Critical patent/JPH08259381A/en
Application granted granted Critical
Publication of JP2880092B2 publication Critical patent/JP2880092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高歩留まり、かつ生産性
の高いシリコン等の半導体の単結晶製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single crystal of a semiconductor such as silicon with high yield and high productivity.

【0002】[0002]

【従来の技術】単結晶の製造方法として、ルツボ内融液
から結晶を成長させつつ引上げるチョクラルスキー法
(以下CZ法と記する)が広く用いられている。このC
Z法により単結晶を得ようとする場合、例えば図1に模
式的に示すような構成の単結晶製造装置が用いられる。
このような単結晶製造装置を用いて、まず図中のルツボ
内に原料を入れ、それらを取り囲むヒーターによってこ
の原料を融解する。
The production method of the prior art single crystal, (which serial less CZ method) crucible melt <br/> pulling while growing a crystal from the Czochralski method is widely used. This C
When a single crystal is to be obtained by the Z method, for example, a single crystal manufacturing apparatus having a configuration schematically shown in FIG. 1 is used.
Using such a single crystal manufacturing apparatus , first, raw materials are put into a crucible in the figure, and the raw materials are melted by a heater surrounding them.

【0003】そして、このルツボ内の融液の上方より種
結晶を降ろして融液表面に接触させる。この種結晶を回
転させながら、引上げ速度を制御しつつ上方に引上げる
ことにより、所定の径の単結晶を製造する。この単結晶
引上げにおいては、結晶の多結晶化、変形を防ぐこと
や、結晶内のドーパントや、不純物の濃度分布を制御す
る目的などのために融液流動を制御し、結晶成長近傍の
温度条件、ドーパントや不純物の融液中での移動現象な
どを最適に制御してきた。
Then, the seed crystal is dropped from above the melt in the crucible and brought into contact with the surface of the melt . While rotating the seed crystal, it is pulled upward while controlling the pulling speed, thereby producing a single crystal having a predetermined diameter. In this single crystal pulling, the melt flow is controlled for the purpose of preventing polycrystallization and deformation of the crystal, controlling the concentration distribution of dopants and impurities in the crystal, and controlling the temperature conditions near the crystal growth. In addition, the migration of dopants and impurities in the melt has been optimally controlled.

【0004】従来では、直接融液流動を調べる方法がな
く、試行錯誤的にルツボ回転速度、結晶回転速度、ルツ
ボとヒーターの相対的位置、ヒーターの加熱条件などの
操業条件を調節し、結晶成長にとって最適な操業環境を
得てきた。また、安定な結晶成長環境が実現されている
かを知る補助手段として、融液表面のある1点の温度を
測定し、得られた融液表面温度変動を結晶成長環境の指
標とする方法があった。
Conventionally, there has been no method for directly examining the flow of a melt, and operating conditions such as a crucible rotation speed, a crystal rotation speed, a relative position between a crucible and a heater, and a heating condition of a heater are adjusted by trial and error to obtain crystal growth. The optimal operating environment has been obtained. As an auxiliary means for determining whether a stable crystal growth environment is realized, there is a method of measuring the temperature of a certain point on the melt surface and using the obtained melt surface temperature fluctuation as an index of the crystal growth environment. Was.

【0005】例えば、図2にその概略を示すように、チ
ャンバ上方に放射温度計を取り付けて融液表面の1点の
温度を測定していた。その測定により、温度変動がある
程度小さくなるように操業条件を制御していた。
For example, as schematically shown in FIG. 2, a radiation thermometer is mounted above the chamber to measure the temperature at one point on the melt surface. Based on the measurement, the operating conditions were controlled so that the temperature fluctuation was reduced to some extent.

【0006】[0006]

【発明が解決しようとする課題】ところが上記のような
試行錯誤による最適操業条件の探索には多くの時間と労
力が必要である。そのうえ引上げ炉内のカーボン部材な
どの経時変化と共にこれらの条件は変化してしまう。さ
らに放射温度計による融液表面のある1点の測温だけで
安定な結晶成長の指針とするのは以下の点で問題があ
る。
However, a lot of time and effort are required to search for the optimum operating conditions by trial and error as described above. In addition, these conditions change with the aging of the carbon member and the like in the pulling furnace. Furthermore, there is a problem in the following point that a guideline for stable crystal growth can be obtained only by measuring the temperature of a certain point on the melt surface using a radiation thermometer.

【0007】従来、ルツボ内融液の温度分布はルツボの
回転軸に対して軸対称で、定常的であると考えられてき
た。しかし最近の本発明者の研究によると、ルツボ回転
速度などの操業条件によっては融液内温度分布は非軸
で、非定常になる場合があることが明らかになった。
この非定常、非軸対称な温度分布により融液の周方向に
温度の低い部分と高い部分ができ、この低温部と高温部
とがルツボ回転方向に移動するために、結晶成長界面の
固定した1点では温度変動が生ずる。
Conventionally, it has been considered that the temperature distribution of the melt in the crucible is axially symmetric with respect to the rotation axis of the crucible and is stationary. However, according to recent studies by the present inventor, the temperature distribution in the melt may be off-axis depending on operating conditions such as the crucible rotation speed .
In referred revealed that sometimes becomes unsteady.
Due to the unsteady , non- axisymmetric temperature distribution, a low temperature portion and a high temperature portion are formed in the circumferential direction of the melt, and the low temperature portion and the high temperature portion move in the crucible rotation direction. Interface
Temperature fluctuation occurs at a fixed point.

【0008】もし結晶成長界面近傍の融液の温度変動が
大きい場合は、結晶が多結晶化したり、結晶に取り込ま
れる不純物にムラが生じたりする。この温度変動の大き
さは測定する融液の位置によって異なる。すなわち、こ
れまでのように融液表面のある1点のみを測定していた
のでは本当に安定な結晶成長環境を知ることはできな
い。
If the temperature of the melt near the crystal growth interface fluctuates greatly, the crystal may be polycrystallized or the impurities incorporated in the crystal may have irregularities. The magnitude of this temperature variation depends on the position of the melt to be measured. That is, it is not possible to know a truly stable crystal growth environment by measuring only one point on the melt surface as in the past.

【0009】融液表面における径方向の温度勾配も重要
な制御すべき条件である。結晶の肩広げの時に融液表面
における半径方向の温度勾配が極端に小さい場合、結晶
径が急に大きくなり多結晶化する場合がある。また、結
晶の直胴部の成長時に半径方向の温度勾配が極端に小さ
い場合、結晶が大きく変形する可能性があり、結晶の歩
留まりや生産性が損なわれる。この融液表面における径
方向の温度勾配は従来の融液表面の1点の測定では観測
不可能であった。
The temperature gradient in the radial direction on the melt surface is also an important condition to be controlled. If the temperature gradient in the radial direction on the melt surface is extremely small at the time of expanding the shoulder of the crystal, the crystal diameter may suddenly increase and polycrystallization may occur. If the temperature gradient in the radial direction is extremely small during the growth of the straight body of the crystal, the crystal may be greatly deformed, and the yield and productivity of the crystal may be impaired. The temperature gradient in the radial direction on the melt surface could not be observed by the conventional measurement of one point on the melt surface.

【0010】最近この融液流動を直接調べる方法とし
て、次の3つの方法が報告された。 (1)引上げ時に見られる融液表面の黒い縞模様から融
液表面の流動を予想する方法(山岸、布施川:日本結晶
成長学会誌 VOL17,No3&4,1990)。 (2)融液表面にトレーサーを浮かべ、そのトレーサー
の動きから融液表面の流動を予想する方法(白石:93春
季応物予稿集第1分冊1a-H-6 )。 (3)融液に、その融液とほぼ同じ密度のトレーサーを
入れて、融液全体にX線を当て、融液とトレーサーのX
線透過率の差によりトレーサーの動きを追い、融液全体
の流動を知る方法(K.Kakimoto,M.Eguchi,H.Watanabe,J
Crystal Growth88(1988)365 )。
Recently, the following three methods have been reported as methods for directly examining the flow of the melt. (1) A method of estimating the flow on the melt surface from the black stripes on the melt surface observed during pulling (Yamagishi, Fusegawa: Journal of the Japanese Society for Crystal Growth VOL17, No3 & 4, 1990). (2) A method in which a tracer is floated on the melt surface and the flow of the melt surface is predicted from the movement of the tracer (Shiraishi: 93rd Spring Special Report, 1st volume, 1a- H-6 ). (3) Put a tracer having almost the same density as the melt into the melt, apply X-rays to the entire melt, and apply X-rays to the melt and the tracer.
A method to follow the movement of the tracer based on the difference in the line transmittance and know the flow of the entire melt (K. Kakimoto, M. Eguchi, H. Watanabe, J
Crystal Growth 88 (1988) 365).

【0011】ところが、トレーサーを融液内に入れて融
液流動を知る方法では結晶成長が不可能となる。また、
融液表面の黒い縞模様から融液流動を知る方法では縞模
様と融液流動との関係はまだ明確ではない。このように
実際の単結晶製造現場で使用するためにはこれらの方法
には問題がある。
However, the tracer was put into the melt and melted.
Crystal growth is impossible with the method of knowing the liquid flow. Also,
The method of knowing the melt flow from the black stripe pattern on the melt surface
The relationship between the state and the melt flow is not yet clear. Thus, there are problems with these methods for use in actual single crystal manufacturing sites.

【0012】本発明では、単結晶を引き上げる前に融液
表面の二次元的な温度分布およびその時間変動を迅速に
かつ詳細に把握することで、結晶成長に最適な引上げ環
境を得ることを目的とする。
An object of the present invention is to obtain an optimum pulling environment for crystal growth by quickly and in detail grasping a two-dimensional temperature distribution on a melt surface and its time variation before pulling a single crystal. And

【0013】[0013]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために、融液表面を二次元的に観察し、融液
表面温度の時間変動を詳細に把握することで、安定に単
結晶の引上げを行う方法を見い出し、本発明を完成する
に至ったものである。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors have observed the melt surface two-dimensionally, and have grasped the time variation of the melt surface temperature in a stable manner. The present inventors have found a method for pulling a single crystal, and have completed the present invention.

【0014】すなわち、本発明は、融液に種結晶を接触
させた後、該種結晶を引き上げることによって単結晶を
製造する単結晶製造方法において、該単結晶を引き上げ
る前に該種結晶が該融液に接触してから引き上げられ
前に、該融液表面の二次元的な温度分布およびその時間
変動を測定することにより、最適な結晶成長環境を把握
することを特徴とする単結晶製造方法である。
[0014] Namely, the present invention is pulled up after contacting the seed crystal with the melt, in the single crystal manufacturing method for manufacturing a single crystal by pulling a seed crystal, a single crystal
That the seed crystal is pulled from in contact with the melting solution before
A method for producing a single crystal, characterized in that an optimum crystal growth environment is grasped by measuring a two-dimensional temperature distribution on the surface of the melt and its time variation beforehand.

【0015】また、本発明は、回転するルツボ内にあっ
て、ヒーターによって溶融された結晶部材融液に種結晶
を接触させた後、該種結晶を引き上げることによって単
結晶を製造する単結晶製造方法において、該単結晶を引
き上げる前に、該結晶部材融液表面の二次元的な温度分
布およびその時間変動を測定することにより、該単結晶
の結晶成長環境を把握し、これを基に該ルツボの回転速
度、該単結晶の回転速度、該ルツボと該ヒーターとの相
対的位置、該ヒーターの加熱条件を調整することによ
り、該結晶部材融液表面の温度分布が軸対称となるよう
に該単結晶の結晶成長環境を制御することを特徴とする
単結晶製造方法である。
The present invention also relates to a single crystal manufacturing method for manufacturing a single crystal by bringing a seed crystal into contact with a melt of a crystal member melted by a heater in a rotating crucible and then pulling the seed crystal. In the method, the single crystal is drawn.
Before raising , the crystal growth environment of the single crystal is grasped by measuring the two-dimensional temperature distribution on the melt surface of the crystal member and its time variation, and the rotation speed of the crucible, By adjusting the rotation speed of the single crystal, the relative position of the crucible and the heater, and the heating conditions of the heater, the crystal growth of the single crystal is controlled so that the temperature distribution on the melt surface of the crystal member becomes axially symmetric. A single crystal production method characterized by controlling an environment.

【0016】また、本発明は、回転するルツボ内にあっ
て、ヒーターによって溶融された結晶部材融液に種結晶
を接触させた後、該種結晶を引き上げることによって単
結晶を製造する単結晶製造方法において、該単結晶を引
き上げる前に、該結晶部材融液表面の二次元的な温度分
布およびその時間変動を測定することにより、該単結晶
の結晶成長環境を把握し、これを基に該ルツボの回転速
度、該単結晶の回転速度、該ルツボと該ヒーターとの相
対的位置、該ヒーターの加熱条件を調整することによ
り、少なくとも結晶成長界面近傍の温度分布を軸対称
近づけるか温度の時間変動が小さくなるように該単結晶
の結晶成長環境を制御することを特徴とする単結晶製造
方法である。
The present invention also relates to a single crystal manufacturing method for producing a single crystal by bringing a seed crystal into contact with a melt of a crystal member melted by a heater in a rotating crucible and then pulling the seed crystal. In the method, the single crystal is drawn.
Before raising , the crystal growth environment of the single crystal is grasped by measuring the two-dimensional temperature distribution on the melt surface of the crystal member and its time variation, and the rotation speed of the crucible, By adjusting the rotation speed of the single crystal, the relative position between the crucible and the heater, and the heating conditions of the heater, at least the temperature distribution near the crystal growth interface can be made closer to axial symmetry or the time variation of the temperature can be reduced. A method for producing a single crystal, characterized by controlling a crystal growth environment of the single crystal.

【0017】[0017]

【作用】本発明により、単結晶引上げ融液上方より二次
元的に融液表面温度を測定することにより、結晶成長環
境を詳細に把握し、結晶成長に最適な環境を得るための
オペレーションガイドを容易に作成することができる。
According to the present invention, an operation guide for obtaining an optimum environment for crystal growth by grasping the crystal growth environment in detail by measuring the melt surface temperature two-dimensionally from above the single crystal pulling melt. Can be easily created.

【0018】単結晶引上げにおいて、融液表面からはそ
の温度に応じた放射エネルギーが発せられている。放射
エネルギーQと温度Tとの関係は、もし他の反射が重畳
されていなければ次のようになっている。
In pulling a single crystal, radiant energy corresponding to the temperature is emitted from the surface of the melt. The relationship between radiant energy Q and temperature T is as follows if no other reflections are superimposed.

【0019】Q=εσT4ここで、εは融液の放射率、
σはステファン−ボルツマン定数、Tは融液表面温度を
表している。この放射エネルギーを上方より二次元的に
測定し、それを上記変換式もしくはそれより実際の系に
合うように修正した変換式にしたがって温度に変換する
ことによって、融液表面温度を非接触で知ることができ
る。
Q = εσT 4 where ε is the emissivity of the melt,
σ represents the Stefan-Boltzmann constant, and T represents the melt surface temperature. By measuring this radiant energy two-dimensionally from above and converting it to a temperature according to the above conversion formula or a conversion formula modified to suit the actual system, the melt surface temperature is known in a non-contact manner be able to.

【0020】これらを連続的に観察することで融液表面
温度の時間変動を二次元的に知ることができる。そし
て、ルツボ回転速度、結晶回転速度、ルツボとヒーター
の相対位置、ヒーターの加熱条件などの操業条件を変化
させることでこの融液表面温度分布や温度変動を変化さ
せることができる。したがってこれらの融液表面温度デ
ーターは結晶成長に最適な操業環境を得るためのオペレ
ーションガイドとなる。以上述べた方法には、炉内の部
材が経時変化しても、常に融液表面温度を観察して操業
条件を最適に修正できるため、経時変化を考慮したオペ
レーションが可能であるという利点がある。
By observing these continuously, the time variation of the melt surface temperature can be known two-dimensionally. By changing operating conditions such as a crucible rotation speed, a crystal rotation speed, a relative position between the crucible and the heater, and a heating condition of the heater, the melt surface temperature distribution and the temperature fluctuation can be changed. Accordingly, these melt surface temperature data serve as an operation guide for obtaining an optimum operating environment for crystal growth. The method described above has the advantage that, even if the members in the furnace change over time, the operating conditions can be optimally corrected by always observing the surface temperature of the melt, so that an operation taking into account the change over time is possible. .

【0021】図3にCZ引上げにおける融液流動の概略
図を示す。CZ引上げにおける融液流動の特徴はルツボ
側壁で暖められた融液がルツボ側壁に沿って上昇し、自
由表面近傍でルツボ中心軸方向へ流れの向きを変える。
そして中心軸付近で沈み込んだ後、ルツボ底で向きを変
え、ルツボ側壁に向かって流れる。これによって図3
(a)の垂直断面における流れ(子午面流)を形成す
る。通常CZ引上げではルツボを回転させる。これによ
り、上記流れにルツボ回転によって誘起される流れが重
なる。このように密度成層(流体の中に密度差が存在し
ている状態)し、かつ回転している流体を回転成層流体
と呼び、その典型的な例が地球の大気であり、CZ引上
げにおける融液流動と地球大気の流動は非常によく似て
いる。
FIG. 3 is a schematic diagram showing the flow of the melt during the CZ pulling. The feature of the melt flow in the CZ pulling is that the melt heated on the crucible side wall rises along the crucible side wall and changes the direction of the flow in the direction of the crucible center axis near the free surface.
Then, after sinking near the central axis, it changes its direction at the crucible bottom and flows toward the crucible side wall. FIG. 3
A flow (meridional flow) in the vertical cross section of (a) is formed. Usually, the crucible is rotated in pulling up the CZ. Thereby, the flow induced by the crucible rotation overlaps the above flow. A fluid that is density-stratified (a state in which there is a density difference in the fluid) and is rotating is called a rotationally-stratified fluid, a typical example of which is the Earth's atmosphere. Liquid flow and the flow of the Earth's atmosphere are very similar.

【0022】このような回転成層流体における本発明者
の測温実験および数値シミュレーションにより以下のこ
とがわかった。
The following facts have been found from the temperature measurement experiments and numerical simulations of the present inventor using such a rotating stratified fluid.

【0023】回転成層流体は、ルツボ回転が低回転の時
には流れはほぼ軸対称的な流れであり、融液表面温度分
布もほぼ軸対称である(図3(a))。ところがルツボ
回転速度を大きくしていくと、融液自由表面に水平渦が
発生し、流れは非軸対称に遷移する。これにより融液表
面の温度分布も非軸対称になる(図3(b))
When the rotation of the rotating stratified fluid is low, the flow is substantially axisymmetric and the melt surface temperature distribution is also substantially axisymmetric (FIG. 3A). However, as the crucible rotation speed is increased, a horizontal vortex is generated on the free surface of the melt, and the flow transitions non- axisymmetrically . As a result, the temperature distribution on the melt surface becomes non-axially symmetric (FIG. 3B) .

【0024】そしてこの軸対称温度分布はルツボ回転方
向に、ルツボ回転速度に依存した速度で移動する。この
非軸対称な温度分布の回転により、融液表面のある一定
の円周上の1点に着目した場合、低い温度の融液と
高い温度の融液が、周期的にあるいは非定常にその点に
やってくるために、その点ではその低温と高温の融液の
温度差に基づいた温度変動が生ずる。この温度変動の大
きさと周期は着目する半径位置で異なり、融液表面上に
最大の温度変動振幅を持つ半径位置が存在する。
The axisymmetric temperature distribution moves in the crucible rotation direction at a speed dependent on the crucible rotation speed. By focusing on one point on the circumference of a certain diameter of the melt surface due to the rotation of the non- axisymmetric temperature distribution, the low temperature melt and the high temperature melt are periodically or unsteady. In order to come to that point, a temperature fluctuation occurs at that point based on the temperature difference between the low temperature and high temperature melts. The magnitude and cycle of this temperature change differ depending on the radial position of interest , and a radial position having the maximum temperature change amplitude exists on the melt surface.

【0025】さらにこの最大の温度変動振幅を持つ半径
位置は、ルツボ回転速度などの操業条件によって変化す
る。ルツボ回転をさらに大きくしていくと、垂直断面に
おける流れと水平断面における温度分布図3(c)の
ようになる。この状態では同じ非軸対称温度分布であっ
ても中心軸近傍では温度変動の小さな領域が形成され
る。すなわち、温度変動の最大の部分が図3(b)に比
べ、よりルツボ側壁に近い方へ移動する。
Further, the radial position having the maximum temperature fluctuation amplitude changes depending on operating conditions such as the crucible rotation speed. As the crucible rotation is further increased, the flow in the vertical section and the temperature distribution in the horizontal section are as shown in FIG. In this state, even in the same non- axisymmetric temperature distribution, a region with small temperature fluctuation is formed near the central axis. That is, the largest part of the temperature fluctuation moves closer to the crucible side wall than in FIG.

【0026】上記理由により融液表面の1点のみの測温
では正確な融液温度環境は得られないことがわかる。
For the above reasons, it can be understood that an accurate melt temperature environment cannot be obtained by measuring the temperature of only one point on the melt surface.

【0027】また、融液表面における半径方向の温度勾
配も、ルツボ回転速度などの操業条件によって変化す
る。
The temperature gradient in the radial direction on the melt surface also changes depending on operating conditions such as the crucible rotation speed.

【0028】本発明では、融液表面から発せられる放射
エネルギーの二次元分布をCCDカメラなどの撮像デバ
イスで観察して、電気信号に変換し、それを温度に変換
することにより融液表面における二次元温度分布を得
る。この二次元温度分布をディスプレーに映し出しなが
ら、操業中にルツボ回転速度、結晶回転速度、ルツボ位
置、ヒーター加熱条件などの操業条件を変更して結晶引
上げに最適な状態を得る。
In the present invention, the two-dimensional distribution of radiant energy emitted from the surface of the melt is observed with an imaging device such as a CCD camera, converted into an electric signal, and converted into a temperature, whereby the surface of the melt is converted to a temperature. Two-dimensional temperature distribution is obtained. While displaying this two-dimensional temperature distribution on the display, change the operating conditions such as the crucible rotation speed, crystal rotation speed, crucible position, heater heating conditions, etc. during operation to obtain the optimal state for crystal pulling. .

【0029】[0029]

【実施例】以下、本発明を実施例により具体的に説明す
る。図4に示すように、CCDカメラにより融液上方の
チャンバ上部から結晶の無い状態での融液表面温度分布
を二次元的に測定した。図5に18インチルツボ中に4
5kgの多結晶シリコンを融解した後、上方から上記方
法で融液表面を観察したときの表面温度分布の模式図を
示す。なお、図中点線は6インチ結晶に相当する位置
示す。図5(a)にルツボ回転速度2rpmにおける温
度分布を示す。図5(b)にルツボ回転速度8rpm
おける温度分布を示す。
The present invention will be described below in more detail with reference to examples. As shown in FIG. 4, the surface temperature distribution of the melt without any crystals was measured two-dimensionally from the upper part of the chamber above the melt by a CCD camera. In FIG. 5, 4 in an 18-inch crucible
FIG. 4 is a schematic diagram of a surface temperature distribution when the melt surface is observed from above by the above method after 5 kg of polycrystalline silicon is melted. Note that the dotted line in the figure indicates a position corresponding to a 6-inch crystal. FIG. 5A shows a temperature distribution at a crucible rotation speed of 2 rpm. FIG. 5B shows a temperature distribution at a crucible rotation speed of 8 rpm.

【0030】融液表面の温度分布はルツボ回転速度2r
pmにおいてすでに非軸対称に遷移しており、これがル
ツボ回転方向に回転していた。この非軸対称性の最も大
きいところはルツボ中心からちょうど6インチ結晶の
に相当する位置に存在していた(図5(a))。
The temperature distribution on the melt surface is a crucible rotation speed 2r.
At pm, a non- axisymmetric transition had already occurred, which was rotating in the crucible rotation direction. The largest point of this non-axial symmetry is the edge of the crystal just 6 inches from the center of the crucible.
It was present in a position corresponding to (Figure 5 (a)).

【0031】また、融液表面の半径方向の温度勾配も温
度変動の最も大きい位置で最小値をとっていた。この状
態で6インチ結晶を引上げた結果、結晶の肩広げの過程
でほとんど全ての結晶が多結晶化した。一方、図5
(b)の状態でも融液表面の温度分布は非対称軸性を示
すが、ルツボ回転速度を上げたことで融液表面上の温度
変動の最も大きい部分および半径方向の温度勾配の最も
小さい部分は、6インチ結晶の半径位置より外に移動し
ており、結晶は多結晶化も変形もせず単結晶で引き上が
った。
Further, the temperature gradient in the radial direction of the melt surface also has the minimum value at the position where the temperature fluctuation is greatest. As a result of pulling up the 6-inch crystal in this state, almost all the crystals were polycrystallized in the process of expanding the shoulder of the crystal. On the other hand, FIG.
Although the temperature distribution on the melt surface shows an asymmetric axis even in the state of (b), the portion where the temperature fluctuation on the melt surface is the largest and the portion where the temperature gradient in the radial direction is the smallest are increased by increasing the crucible rotation speed. Moved out of the radial position of the 6-inch crystal, and the crystal was pulled as a single crystal without polycrystallization or deformation.

【0032】[0032]

【発明の効果】以上述べたように、請求項1記載の単結
晶製造方法では、最適な結晶成長環境を知り従来の融液
表面温度の1点測定より確実に融液の表面の温度環境を
把握することができるので、結晶成長に最適な温度条件
を実現するオペレーションガイドとすることができる。
As described above, the single connection according to claim 1 is provided.
In crystal manufacturing method, Runode can grasp the optimum temperature environment of reliably melt surface from one point measurement of the conventional melt surface temperature to know the crystal growth environment, optimal temperature conditions for crystal growth It can be used as an operation guide.

【0033】請求項2記載の本発明の単結晶製造方法で
は、ルツボの回転速度、単結晶回転速度、ルツボとヒ
ーターとの相対的位置、ヒーターの加熱条件を調整する
ことで、融液表面の温度分布を軸対称にすることができ
るので、高品質な単結晶の製造が可能となる。したがっ
て、単結晶の単結晶引き上げ成功率が高く、かつ単結晶
を高品質にすることができる。
In the method for producing a single crystal according to the present invention ,
By adjusting the rotation speed of the crucible, the rotation speed of the single crystal , the relative position between the crucible and the heater, and the heating conditions of the heater, the temperature distribution on the melt surface can be made axially symmetric.
Therefore, a high-quality single crystal can be manufactured. Accordingly
High success rate of single crystal pulling
Can be of high quality.

【0034】請求項3記載の単結晶製造方法では、ルツ
ボの回転速度、単結晶回転速度、ルツボとヒーターと
の相対的位置、ヒーターの加熱条件を調整することによ
り、少くとも結晶成長界面近傍の温度分布を軸対象に近
づけるか、温度の時間変動が小さくなるようにすること
ができるので、単結晶の単結晶引き上げ成功率が高く、
かつ高品質な単結晶の製造が可能となる。
In the method for producing a single crystal according to the third aspect , the rotation speed of the crucible, the rotation speed of the single crystal , the relative position between the crucible and the heater, and the heating conditions of the heater are adjusted at least in the vicinity of the crystal growth interface. Temperature distribution close to the axis target
Or reduce the temperature fluctuation over time
The success rate of single crystal pulling of single crystal is high,
In addition, a high-quality single crystal can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 CZ炉を模式的に示す図面である。FIG. 1 is a drawing schematically showing a CZ furnace.

【図2】 放射温度計による融液表面の1点測定を表す
図面である。
FIG. 2 is a drawing showing one-point measurement of a melt surface by a radiation thermometer.

【図3】 CZ引上げにおける融液の典型的な流れと、
温度分布のルツボ回転依存性を表す図面である。
FIG. 3 shows a typical flow of a melt in CZ pulling;
It is a figure showing the crucible rotation dependence of a temperature distribution.

【図4】 CCDカメラなどの撮像デバイスによる融液
表面の二次元測温を示す図面である。
FIG. 4 is a drawing showing two-dimensional temperature measurement of the melt surface by an imaging device such as a CCD camera.

【図5】 ルツボ回転2rpmと8rpmにおけるCC
Dカメラによって観察した融液表面の温度分布を模式的
に表した図面である。
FIG. 5: CC at crucible rotation at 2 rpm and 8 rpm
It is the figure which represented typically the temperature distribution of the melt surface observed by the D camera.

【符号の説明】[Explanation of symbols]

a…結晶 b…融液 c…ルツボ d…ルツボサポート e…ルツボ受け f…ルツボ軸 g…ヒーター h…断熱材 i…炉壁 a: Crystal b: Melt c: Crucible d: Crucible support e: Crucible holder f: Crucible shaft g: Heater h: Heat insulation material i: Furnace wall

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C30B 15/20 - 15/28 C30B 28/00 - 35/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C30B 15/20-15/28 C30B 28/00-35/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 融液に種結晶を接触させた後、該種結晶
を引き上げることによって単結晶を製造する単結晶製造
方法において、該単結晶を引き上げる前に 、該融液表面の二次元的な温
度分布およびその時間変動を測定することにより、最適
な結晶成長環境を把握することを特徴とする単結晶製造
方法。
In a single crystal production method for producing a single crystal by bringing a seed crystal into contact with a melt and then pulling the seed crystal, a two-dimensional surface of the melt is formed before the single crystal is pulled. A method for producing a single crystal, characterized in that an optimum crystal growth environment is ascertained by measuring a temperature distribution and a time variation thereof.
【請求項2】 回転するルツボ内にあって、ヒーターに
よって溶融された結晶部材融液に種結晶を接触させた
後、該種結晶を引き上げることによって単結晶を製造す
る単結晶製造方法において、該単結晶を引き上げる前に 、該結晶部材融液表面の二次
元的な温度分布およびその時間変動を測定することによ
り、該単結晶の結晶成長環境を把握し、これを基に該ル
ツボの回転速度、該単結晶の回転速度、該ルツボと該ヒ
ーターとの相対的位置、該ヒーターの加熱条件を調整す
ることにより、該結晶部材融液表面の温度分布が軸対称
となるように該単結晶の結晶成長環境を制御することを
特徴とする単結晶製造方法。
Wherein In the rotating crucible, after contacting a seed crystal to the crystal member melt melted by a heater, in the single crystal manufacturing method for manufacturing a single crystal by pulling a seed crystal, the Before pulling up the single crystal, the crystal growth environment of the single crystal is grasped by measuring the two-dimensional temperature distribution on the melt surface of the crystal member and its time variation, and based on this, the rotation speed of the crucible is determined. By adjusting the rotation speed of the single crystal, the relative position between the crucible and the heater, and the heating conditions of the heater, the temperature distribution of the single crystal is adjusted so that the temperature distribution on the melt surface of the crystal member becomes axially symmetric. A method for producing a single crystal, comprising controlling a crystal growth environment.
【請求項3】 回転するルツボ内にあって、ヒーターに
よって溶融された結晶部材融液に種結晶を接触させた
後、該種結晶を引き上げることによって単結晶を製造す
る単結晶製造方法において、該単結晶を引き上げる前に 、該結晶部材融液表面の二次
元的な温度分布およびその時間変動を測定することによ
り、該単結晶の結晶成長環境を把握し、これを基に該ル
ツボの回転速度、該単結晶の回転速度、該ルツボと該ヒ
ーターとの相対的位置、該ヒーターの加熱条件を調整す
ることにより、少なくとも結晶成長界面近傍の温度分布
を軸対称に近づけるか温度の時間変動が小さくなるよう
に該単結晶の結晶成長環境を制御することを特徴とする
単結晶製造方法。
3. In the rotating crucible, after contacting a seed crystal to the crystal member melt melted by a heater, in the single crystal manufacturing method for manufacturing a single crystal by pulling a seed crystal, the Before pulling up the single crystal, the crystal growth environment of the single crystal is grasped by measuring the two-dimensional temperature distribution on the melt surface of the crystal member and its time variation, and based on this, the rotation speed of the crucible is determined. By adjusting the rotation speed of the single crystal, the relative position between the crucible and the heater, and the heating conditions of the heater, at least the temperature distribution near the crystal growth interface is made close to the axial symmetry or the time variation of the temperature is reduced. Controlling the crystal growth environment of the single crystal so as to obtain a single crystal.
JP6808595A 1995-03-27 1995-03-27 Single crystal manufacturing method Expired - Fee Related JP2880092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6808595A JP2880092B2 (en) 1995-03-27 1995-03-27 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6808595A JP2880092B2 (en) 1995-03-27 1995-03-27 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPH08259381A JPH08259381A (en) 1996-10-08
JP2880092B2 true JP2880092B2 (en) 1999-04-05

Family

ID=13363559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6808595A Expired - Fee Related JP2880092B2 (en) 1995-03-27 1995-03-27 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP2880092B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846318A (en) * 1997-07-17 1998-12-08 Memc Electric Materials, Inc. Method and system for controlling growth of a silicon crystal
EP0903428A3 (en) * 1997-09-03 2000-07-19 Leybold Systems GmbH Apparatus and method for determining crystal diameters
JP2000044387A (en) 1998-07-27 2000-02-15 Nippon Steel Corp Production of silicon single crystal
JP3704710B2 (en) * 2000-07-28 2005-10-12 信越半導体株式会社 Method of setting seed crystal deposition temperature and silicon single crystal manufacturing apparatus
KR101136863B1 (en) 2007-02-28 2012-04-20 삼성전자주식회사 Washing machine
JP4862826B2 (en) * 2008-01-08 2012-01-25 信越半導体株式会社 Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
KR101317198B1 (en) * 2011-10-24 2013-10-15 한국생산기술연구원 Monitoring apparatus for sapphire growth furnace
KR101317197B1 (en) * 2011-10-24 2013-10-15 한국생산기술연구원 Orientation control device for sapphire growth furnace

Also Published As

Publication number Publication date
JPH08259381A (en) 1996-10-08

Similar Documents

Publication Publication Date Title
US9260796B2 (en) Method for measuring distance between lower end surface of heat insulating member and surface of raw material melt and method for controlling thereof
EP2011905B1 (en) Method for measuring distance between reference reflector and melt surface
KR101901308B1 (en) Method for calculating height position of silicon melt surface, method for drawing up monocrystalline silicon and device for drawing up monocrystalline silicon
US8414701B2 (en) Method for manufacturing silicon single crystal in which a crystallization temperature gradient is controlled
CN109750352B (en) Method and apparatus for producing single crystal
JP2880092B2 (en) Single crystal manufacturing method
US20230220583A1 (en) Single crystal production apparatus and single crystal production method
JP6645406B2 (en) Single crystal manufacturing method
JP6939714B2 (en) Method for measuring the distance between the melt surface and the seed crystal, method for preheating the seed crystal, and method for producing a single crystal
JP5781303B2 (en) Silica glass crucible manufacturing method and silica glass crucible manufacturing apparatus
JP5777880B2 (en) Method for producing silica glass crucible
JP4035924B2 (en) Single crystal diameter control method and crystal growth apparatus
KR102422843B1 (en) Method of estimating oxygen concentration of silicon single crystal and manufacturing method of silicon single crystal
JPH09263485A (en) Method for controlling pulling of single crystal, production of single crystal and apparatus therefor
JPH07133186A (en) Apparatus and process for production of silicon single crystal
WO2022075061A1 (en) Method for producing single crystals
JP3611364B2 (en) Single crystal diameter control method
US7470326B2 (en) Apparatus for manufacturing silicon single crystal, method for manufacturing silicon single crystal, and silicon single crystal
JP4725752B2 (en) Single crystal manufacturing method
JP4930488B2 (en) Single crystal diameter detection method, single crystal manufacturing method using the same, and single crystal manufacturing apparatus
JP3455580B2 (en) Silicon single crystal pulling apparatus and manufacturing method
JPH07277879A (en) Apparatus for producing single crystal by cz method and melt level control method
JPS61122187A (en) Apparatus for pulling up single crystal
JPH11130585A (en) Apparatus for pulling single crystal
JP2549607Y2 (en) Crystal growth equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990119

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100129

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees