JP4725752B2 - Single crystal manufacturing method - Google Patents

Single crystal manufacturing method Download PDF

Info

Publication number
JP4725752B2
JP4725752B2 JP2008123079A JP2008123079A JP4725752B2 JP 4725752 B2 JP4725752 B2 JP 4725752B2 JP 2008123079 A JP2008123079 A JP 2008123079A JP 2008123079 A JP2008123079 A JP 2008123079A JP 4725752 B2 JP4725752 B2 JP 4725752B2
Authority
JP
Japan
Prior art keywords
magnetic field
single crystal
center position
silicon single
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008123079A
Other languages
Japanese (ja)
Other versions
JP2009269802A (en
Inventor
直樹 増田
泉 布施川
好宏 平野
将 園川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2008123079A priority Critical patent/JP4725752B2/en
Priority to PCT/JP2009/001329 priority patent/WO2009136465A1/en
Priority to TW98112043A priority patent/TW201002875A/en
Publication of JP2009269802A publication Critical patent/JP2009269802A/en
Application granted granted Critical
Publication of JP4725752B2 publication Critical patent/JP4725752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、シリコン単結晶の製造方法およびそれに用いるシリコン単結晶の製造装置に関し、詳しくは、ルツボ内のシリコン原料融液に磁場印加装置により水平磁場を印加しつつ、前記シリコン原料融液から単結晶を引き上げる水平磁場印加CZ法(Horizontal magnetic field applied CZ法:以下、「HMCZ法」という)に関するものである。   The present invention relates to a method for producing a silicon single crystal and an apparatus for producing a silicon single crystal used therefor, and more specifically, while applying a horizontal magnetic field to a silicon raw material melt in a crucible by a magnetic field application device, The present invention relates to a horizontal magnetic field applied CZ method for pulling up crystals (Horizontal magnetic field applied CZ method: hereinafter referred to as “HMCZ method”).

HMCZ法が、通常のCZ法(Czochralski法)に比べて種々の点で優れていることはよく知られている。このHMCZ法の実施に使用する装置は、通常のCZ法の装置を改良したもので、石英ルツボ加熱用のヒーターの外側に、磁場印加用の磁場印加装置を石英ルツボを挟んで同軸上に対向して配備したものである。   It is well known that the HMCZ method is superior in various respects to the normal CZ method (Czochralski method). The apparatus used for carrying out this HMCZ method is an improvement of the ordinary CZ method, and a magnetic field applying device for applying a magnetic field is placed coaxially across the quartz crucible outside the heater for heating the quartz crucible. Deployed.

図7は、従来のHMCZ法によるシリコン単結晶の製造方法を実施するのに適した製造装置の要部構成を模式的に示す図である。
この製造装置は、シリコン単結晶の引き上げ装置41とその外側に配設された磁場印加装置40で構成される。引き上げ装置41は中空円筒状のチャンバー31を具備し、その中心部にルツボが配設されている。このルツボは二重構造であり、有底円筒状をなす石英製の内側保持容器(以下、単に「石英ルツボ35a」という)と、その石英ルツボ35aの外側を保持すべく適合された同じく有底円筒状の黒鉛製の外側保持容器(「黒鉛ルツボ35b」)とから構成されている。
FIG. 7 is a diagram schematically showing a main configuration of a manufacturing apparatus suitable for carrying out a conventional method for manufacturing a silicon single crystal by the HMCZ method.
This manufacturing apparatus includes a silicon single crystal pulling apparatus 41 and a magnetic field applying apparatus 40 disposed outside the apparatus. The pulling device 41 includes a hollow cylindrical chamber 31, and a crucible is disposed at the center thereof. This crucible has a double structure, and is an inner holding container made of quartz having a bottomed cylindrical shape (hereinafter, simply referred to as “quartz crucible 35a”), and also has a bottomed structure adapted to hold the outside of the quartz crucible 35a. It consists of a cylindrical graphite outer holding container (“graphite crucible 35b”).

これらのルツボは、回転および昇降が可能になるように支持軸36の上端部に固定されていて、ルツボの外側には抵抗加熱式ヒーター38が概ね同心円状に配設されている。さらに、ヒーター38の外側周辺には断熱材39が同心円状に配設されている。そして、前記ルツボ内に投入された所定重量のシリコン原料はヒーター38により溶融され、シリコン原料融液32が形成される。   These crucibles are fixed to the upper end portion of the support shaft 36 so as to be able to rotate and move up and down, and a resistance heating heater 38 is arranged substantially concentrically outside the crucible. Further, a heat insulating material 39 is disposed concentrically around the outside of the heater 38. Then, a predetermined weight of the silicon raw material charged into the crucible is melted by the heater 38 to form a silicon raw material melt 32.

シリコン原料融液32を充填した前記ルツボの中心軸には、支持軸36と同一軸上で逆方向または同方向に所定の速度で回転する引上ワイヤー(または引上シャフト、以下両者を合わせて「引上軸37」という)が配設されており、引上軸37の下端には種結晶34が保持されている。   The central axis of the crucible filled with the silicon raw material melt 32 is the pulling wire (or pulling shaft, hereinafter referred to as both) rotating on the same axis as the support shaft 36 in the reverse direction or in the same direction at a predetermined speed. (Referred to as “pull-up shaft 37”), and a seed crystal 34 is held at the lower end of the pull-up shaft 37.

このような製造装置にあっては、石英ルツボ内にシリコン原料を投入し、減圧下の不活性ガス雰囲気中でシリコン原料をルツボの周囲に配設したヒーター38にて溶融した後、形成された溶融液の表面に引上軸37の下端に保持された種結晶34を浸漬し、ルツボおよび引上軸37を回転させつつ、引上軸37を上方に引き上げて種結晶34の下端面にシリコン単結晶33を成長させる。そして、シリコン単結晶33を成長させる際、シリコン原料融液32に石英ルツボ35aを挟んで同軸上に対向して配設された磁場印加装置40により水平磁場が印加される。   In such a manufacturing apparatus, a silicon raw material was charged into a quartz crucible, and was formed after melting the silicon raw material in a heater 38 disposed around the crucible in an inert gas atmosphere under reduced pressure. The seed crystal 34 held at the lower end of the pull-up shaft 37 is immersed in the surface of the molten liquid, and the pull-up shaft 37 is pulled upward while rotating the crucible and the pull-up shaft 37, and silicon is formed on the lower end surface of the seed crystal 34. A single crystal 33 is grown. When the silicon single crystal 33 is grown, a horizontal magnetic field is applied to the silicon raw material melt 32 by the magnetic field application device 40 disposed coaxially facing the quartz crucible 35a.

上記のように、石英ルツボ内のシリコン原料融液から単結晶を引き上げる場合、HMCZ法によれば融液の熱対流が抑制され、融液液面近傍温度(引上げ単結晶の固液界面温度)の経時変動が低減されるので、転位や欠陥の発生が抑制され、均一かつ低酸素濃度のシリコン単結晶が容易に得られる利点がある。また、転位や欠陥の発生が抑制される結果、大口径の単結晶でも製造が容易である。さらに、対流が抑制される結果、ルツボ壁の劣化が生じにくいといった利点もある。   As described above, when pulling up a single crystal from the silicon raw material melt in the quartz crucible, the HMCZ method suppresses the thermal convection of the melt, and the temperature near the melt surface (solid-liquid interface temperature of the pulled single crystal). Therefore, there is an advantage that uniform and low oxygen concentration silicon single crystal can be easily obtained. In addition, as a result of suppressing the occurrence of dislocations and defects, even a single crystal having a large diameter can be easily manufactured. Furthermore, as a result of suppressing convection, there is an advantage that the crucible wall is hardly deteriorated.

従来のHMCZ法による単結晶の製造装置では、コイルの中心軸を石英ルツボ内の融液面と一致させることにより、融液液面近傍の対流を抑制し、かつ該融液液面近傍より下部に熱対流を形成するようにしていた(例えば特許文献1参照)。この装置では、引き上げ中の単結晶と融液との境界層への熱伝達が高められ、ルツボ周囲と境界層との温度差を減少させることができ、かつ融液面近傍より下方部分で十分に攪拌された融液が境界層に供給されるために、通常のCZ法に用いる装置に比べて均一な特性の単結晶が得られるのに加えて、熱応力によるルツボのクラックも防止できる利点があるとされている。   In a conventional apparatus for producing a single crystal by the HMCZ method, the convection near the melt surface is suppressed by aligning the central axis of the coil with the melt surface in the quartz crucible and lower than the melt surface. A thermal convection was formed on the surface (for example, see Patent Document 1). In this device, heat transfer to the boundary layer between the single crystal being pulled and the melt is enhanced, the temperature difference between the crucible and the boundary layer can be reduced, and the portion below the melt surface is sufficient. Since the melt stirred in this way is supplied to the boundary layer, it is possible to obtain a single crystal with uniform characteristics compared to the apparatus used in the normal CZ method, and also to prevent crucible cracks due to thermal stress. It is said that there is.

しかし、最近の単結晶の大直径化に伴い、直径が300mm以上となる大型シリコン単結晶の要求がある。これに伴い直径800mm以上の大型の石英ルツボに重量300kg以上のシリコン原料を溶融してシリコン単結晶を育成する必要がある。このような大容量シリコン原料融液からのシリコン単結晶の育成における融液の対流制御のためのHMCZ法が提案されている(例えば特許文献2参照)。また、HMCZ法で育成されたシリコン単結晶の格子間酸素濃度の制御についても、印加する磁界の曲率半径について規定された装置(例えば特許文献3参照)や磁場印加装置とルツボとの上下方向の相対位置を設定する方法が開示されている(例えば特許文献4および5参照)。   However, with the recent increase in diameter of single crystals, there is a demand for large silicon single crystals having a diameter of 300 mm or more. Accordingly, it is necessary to grow a silicon single crystal by melting a silicon raw material having a weight of 300 kg or more into a large quartz crucible having a diameter of 800 mm or more. An HMCZ method for convection control of the melt in the growth of a silicon single crystal from such a large-capacity silicon raw material melt has been proposed (for example, see Patent Document 2). In addition, regarding the control of the interstitial oxygen concentration of the silicon single crystal grown by the HMCZ method, the vertical direction between the device (see, for example, Patent Document 3) and the magnetic field applying device and the crucible defined for the radius of curvature of the magnetic field to be applied. A method for setting the relative position is disclosed (for example, see Patent Documents 4 and 5).

しかし、上記方法および装置を用いてシリコン単結晶を育成した場合には、単結晶中の格子間酸素濃度の成長方向における制御が困難となり、単結晶育成の後半で酸素濃度の急激な変動が生じて、要求される品質の規格内でシリコン単結晶を製造することができずに、シリコン単結晶の歩留まりが低下してしまうという問題があった。また、単結晶の格子間酸素濃度が製造装置間でバラツキが大きく、このようなバラツキの原因が定かでないという問題があった。   However, when a silicon single crystal is grown using the method and apparatus described above, it becomes difficult to control the interstitial oxygen concentration in the single crystal in the growth direction, and a rapid change in the oxygen concentration occurs in the latter half of the single crystal growth. As a result, the silicon single crystal cannot be manufactured within the required quality standard, and the yield of the silicon single crystal is reduced. In addition, there is a problem that the interstitial oxygen concentration of the single crystal varies greatly between manufacturing apparatuses, and the cause of such variation is not clear.

米国特許4,565,671号明細書US Pat. No. 4,565,671 特開平8−239292号公報JP-A-8-239292 特開昭62−256791号公報JP 62-256791 A 特開平8−333191号公報JP-A-8-333191 特開平9−188590号公報JP-A-9-188590

本発明は、HMCZ法により育成されたシリコン単結晶の格子間酸素濃度を高精度に制御し、バラツキのない高品質のシリコン単結晶を製造する方法およびその製造装置を提供することを目的としている。   An object of the present invention is to provide a method for manufacturing a high-quality silicon single crystal having no variation by controlling the interstitial oxygen concentration of a silicon single crystal grown by the HMCZ method with high accuracy, and a manufacturing apparatus therefor. .

上記課題を解決するため、本発明は、石英ルツボ内に収容したシリコン原料融液に、磁場印加装置により水平磁場を印加しながら単結晶の引き上げを行う水平磁場印加CZ法により単結晶を製造する方法において、前記磁場印加装置により発生した磁場の中心位置を測定し、該測定された磁場の中心位置と前記単結晶の回転軸となる引上軸との位置合せをして設計当初の磁場分布とのズレを解消した後に単結晶を製造することを特徴とするシリコン単結晶の製造方法を提供する。 In order to solve the above problems, the present invention manufactures a single crystal by a horizontal magnetic field application CZ method in which a single crystal is pulled up while applying a horizontal magnetic field to a silicon raw material melt accommodated in a quartz crucible by a magnetic field application device. In the method, the center position of the magnetic field generated by the magnetic field application device is measured, and the center position of the measured magnetic field is aligned with the pulling-up axis serving as the rotation axis of the single crystal, and the initial magnetic field distribution is designed. possible to produce a single crystal after eliminating the offset between that provides a method for manufacturing a silicon single crystal according to claim.

このように、測定された磁場の中心位置と単結晶の回転軸となる引上軸との位置合せをすることで、磁場分布を適正化し、石英ルツボ内のシリコン原料融液に生じる急激な対流を防止し、製造された単結晶中の格子間酸素濃度を高精度に制御して、高品質のシリコン単結晶を製造することができる。また、製造装置間による単結晶の格子間酸素濃度のバラツキが抑制され、シリコン単結晶の歩留まりも向上させることができる。   In this way, by aligning the measured magnetic field center position with the pull-up axis, which is the rotation axis of the single crystal, the magnetic field distribution is optimized and the rapid convection that occurs in the silicon raw material melt in the quartz crucible. It is possible to manufacture a high-quality silicon single crystal by controlling the interstitial oxygen concentration in the manufactured single crystal with high accuracy. Further, variation in the interstitial oxygen concentration of the single crystal between the manufacturing apparatuses is suppressed, and the yield of the silicon single crystal can be improved.

また、本発明の製造方法では、前記磁場の中心位置と前記引上軸との距離を2mm以内となるように合わせ込むことが好ましい。
これにより、磁場分布をより正確に適正化することができるため、シリコン原料融液に生じる急激な対流をより一層防止することができ、製造された単結晶中の格子間酸素濃度をさらに精度良く制御して、より高品質のシリコン単結晶を製造することができる。また、磁場の中心位置と引上軸との距離が2mm以内に合わせ込まれていれば、製造装置間の単結晶の格子間酸素濃度のバラツキもほとんど問題とならないレベルにでき、シリコン単結晶の歩留まりもさらに向上させることができる。
In the manufacturing method of the present invention, it is not preferable is intended to adjust the distance between the center position and the pulling axis of the magnetic field so as to be within 2 mm.
As a result, the magnetic field distribution can be more accurately optimized, so that rapid convection generated in the silicon raw material melt can be further prevented, and the interstitial oxygen concentration in the produced single crystal can be further accurately determined. A higher quality silicon single crystal can be manufactured by controlling. In addition, if the distance between the center position of the magnetic field and the pull-up axis is adjusted within 2 mm, the variation in the interstitial oxygen concentration of the single crystal between the manufacturing apparatuses can be made to a level that hardly causes a problem. The yield can be further improved.

また、本発明の製造方法では、前記磁場の中心位置の測定は、磁場の強度を測定ピッチ50mm以下で測定することによって行い、磁場の中心位置を決定することが好ましい。
このような測定により磁場の中心位置を決定することで、正確に磁場分布を測定して、位置合せにおいてより正確に磁場の中心位置の合わせ込みをすることができるため、シリコン原料融液に生じる急激な対流をより一層防止することができ、製造された単結晶中の格子間酸素濃度をさらに精度良く制御して、より高品質のシリコン単結晶を製造することができる。
In the manufacturing method of the present invention, the measurement of the center position of the magnetic field is carried out by measuring the intensity of the magnetic field at the measurement pitch 50mm or less, it is not preferable to determine the center position of the magnetic field.
By determining the center position of the magnetic field by such measurement, it is possible to accurately measure the magnetic field distribution and align the center position of the magnetic field more accurately in the alignment, which occurs in the silicon raw material melt. Rapid convection can be further prevented, and the interstitial oxygen concentration in the produced single crystal can be controlled with higher accuracy, and a higher quality silicon single crystal can be produced.

また、本発明の製造方法では、前記位置合せは、前記磁場印加装置を移動させることによって行うことが好ましい。
これにより、大型化して大重量化した石英ルツボや支持軸等を移動することなく、容易に位置合せをすることができ、磁場分布を適正化することができる。
In the manufacturing method of the present invention, the alignment, it is not preferable to carry out by moving the magnetic field applying device.
Thereby, it can align easily and can optimize magnetic field distribution, without moving the quartz crucible and supporting shaft etc. which were enlarged and increased in weight.

また、石英ルツボ内に収容したシリコン原料融液に、磁場印加装置により水平磁場を印加しながら単結晶の引き上げを行う水平磁場印加CZ法により単結晶を製造する装置において、少なくとも、前記シリコン原料融液を保持する石英ルツボと、該石英ルツボを支持する支持軸と、前記シリコン原料融液に浸漬され、その下端面に単結晶を成長させつつ引き上げられる種結晶を回転させて引き上げる引上軸と、前記シリコン原料融液に水平磁場を印加させるように、石英ルツボを挟んで同軸上に対向して設置された磁場印加装置とを備え、前記磁場印加装置により発生した磁場の中心位置と前記引上軸との位置合せがされるものであることを特徴とするシリコン単結晶の製造装置を提供する。 Further, in an apparatus for producing a single crystal by a horizontal magnetic field application CZ method in which a single crystal is pulled while applying a horizontal magnetic field to a silicon raw material melt contained in a quartz crucible by a magnetic field application apparatus, at least the silicon raw material fusion A quartz crucible for holding the liquid, a support shaft for supporting the quartz crucible, and a pulling shaft for rotating and pulling up a seed crystal that is immersed in the silicon raw material melt and growing a single crystal on its lower end surface; A magnetic field application device installed coaxially and oppositely across a quartz crucible so as to apply a horizontal magnetic field to the silicon raw material melt, and the center position of the magnetic field generated by the magnetic field application device and the attraction that provides an apparatus for manufacturing a silicon single crystal, characterized in that it is intended to be the alignment with the upper shaft.

このように、磁場の中心位置と引上軸との位置合せがされることで、磁場分布を適正化し、石英ルツボ内のシリコン原料融液に生じる急激な対流を防止し、製造された単結晶中の格子間酸素濃度を高精度に制御して、高品質のシリコン単結晶を製造することができる装置となる。また、装置間の個体差をなくして、単結晶中の格子間酸素濃度等のバラツキを抑制し、シリコン単結晶の歩留まりも向上させることができる装置となる。   Thus, by aligning the center position of the magnetic field with the pulling-up axis, the magnetic field distribution is optimized, and rapid convection that occurs in the silicon raw material melt in the quartz crucible is prevented, and the manufactured single crystal It becomes an apparatus capable of producing a high-quality silicon single crystal by controlling the interstitial oxygen concentration with high accuracy. In addition, it is possible to eliminate individual differences between devices, suppress variation in interstitial oxygen concentration in the single crystal, and improve the yield of the silicon single crystal.

また、前記磁場の中心位置と前記引上軸との距離が2mm以内となるように合わせ込まれるものであることが好ましい。
これにより、磁場分布をより正確に適正化することができるため、シリコン原料融液に生じる急激な対流をより一層防止することができ、製造された単結晶中の格子間酸素濃度をさらに精度良く制御して、より高品質のシリコン単結晶を製造することができる装置となる。また、磁場の中心位置と引上軸との距離が2mm以内に合わせ込まれることで、製造装置間の単結晶の格子間酸素濃度のバラツキもほとんど問題とならないレベルにでき、シリコン単結晶の歩留まりもさらに向上させることができる装置となる。
Moreover, it is not preferable distance between the center positions of the magnetic field and the pulling member is intended to be incorporated tailored to be within 2 mm.
As a result, the magnetic field distribution can be more accurately optimized, so that rapid convection generated in the silicon raw material melt can be further prevented, and the interstitial oxygen concentration in the produced single crystal can be further accurately determined. It becomes an apparatus that can be controlled to produce a higher quality silicon single crystal. In addition, since the distance between the center position of the magnetic field and the pull-up axis is adjusted to within 2 mm, the variation in the interstitial oxygen concentration of the single crystal between the manufacturing apparatuses can be brought to a level that hardly poses a problem, and the yield of the silicon single crystal Can be further improved.

また、前記磁場印加装置は、移動機構を有し、該移動機構により前記磁場の中心位置と前記引上軸との位置が合わせ込まれるものであることが好ましい。
これにより、大型化して大重量化した石英ルツボや支持軸等を移動することなく、容易に磁場分布を適正化することができるため、シリコン原料融液に生じる急激な対流を防止し、製造された単結晶中の格子間酸素濃度を高精度に制御して、高品質のシリコン単結晶を製造することができる装置となる。
Further, the magnetic field applying device has a moving mechanism, it is not preferable in which positions of the pulling member and the center position of the magnetic field by the moving mechanism is incorporated combined.
As a result, the magnetic field distribution can be easily optimized without moving a large and heavy quartz crucible, support shaft, etc., which prevents the rapid convection that occurs in the silicon raw material melt. In addition, the interstitial oxygen concentration in the single crystal can be controlled with high accuracy to produce a high-quality silicon single crystal.

以上説明したように、本発明では、HMCZ法により単結晶を製造する際に、磁場の中心位置と引上軸との位置合せをした後に単結晶を成長させる。これによって、磁場分布を適正化することができ、石英ルツボ内のシリコン原料融液に生じる急激な対流を防止し、育成されたシリコン単結晶の格子間酸素濃度を高精度に制御して、高品質のシリコン単結晶を製造することができる。また、個々の装置において位置合せが行われることから、装置間の単結晶中の格子間酸素濃度のバラツキがなくなり、シリコン単結晶の歩留まりも向上させることができる。   As described above, in the present invention, when a single crystal is manufactured by the HMCZ method, the single crystal is grown after aligning the center position of the magnetic field with the pulling axis. This makes it possible to optimize the magnetic field distribution, prevent rapid convection generated in the silicon raw material melt in the quartz crucible, and control the interstitial oxygen concentration of the grown silicon single crystal with high accuracy to achieve high accuracy. Quality silicon single crystals can be manufactured. Further, since the alignment is performed in each device, there is no variation in interstitial oxygen concentration in the single crystal between devices, and the yield of the silicon single crystal can be improved.

以下、本発明についてより具体的に説明する。
前述のように、大直径の単結晶中の酸素濃度を制御するため、磁界の曲率半径について規定された装置やルツボ内融液の対流抑制効果を高めるように、磁場印加装置とルツボとの上下方向の相対位置を設定する方法等が開示されたが、磁場による抑制力の臨界値を越えた場合、ルツボ内融液に急激な対流を生じ、石英ルツボ表面の高酸素濃度の融液が単結晶成長付近に近づき、酸素が単結晶中に取りこまれることがわかった。
Hereinafter, the present invention will be described more specifically.
As described above, in order to control the oxygen concentration in a large-diameter single crystal, the vertical direction between the magnetic field application device and the crucible is increased so as to enhance the effect of suppressing convection of the melt in the crucible and the device specified for the radius of curvature of the magnetic field. Although the method of setting the relative position in the direction has been disclosed, when the critical value of the restraining force by the magnetic field is exceeded, rapid convection occurs in the melt in the crucible, and the melt with a high oxygen concentration on the quartz crucible surface is single. We approached the crystal growth and found that oxygen was taken into the single crystal.

この場合、本来、製造装置は磁場の中心位置が引上軸と一致するように設計されているが、磁場印加装置に極低温の液体ヘリウムを使用しているため、内部のコイルを固定する材料が冷却により伸縮することが原因で、実際に製造装置を設置した場合、設計当初の磁場分布に対して大きなズレが発生することがわかった。さらに、単結晶の大直径化に伴い製造装置全体が大型化するため、製造装置を設置する建物の構造を強化する必要があり、鉄製の機材をフロアーに使用する場合や、製造装置自体にも鉄製の部品等の磁性体を多く使用している場合がある。そのため、多く使用されている磁性体が影響して、実際に製造装置を設置した場合、設計当初の磁場分布に対してズレが発生することがわかった。   In this case, the manufacturing apparatus is originally designed so that the center position of the magnetic field coincides with the pulling-up axis. However, since cryogenic liquid helium is used for the magnetic field application apparatus, the material for fixing the internal coil is used. It was found that when the manufacturing equipment was actually installed, a large deviation from the initial magnetic field distribution occurred due to the expansion and contraction due to cooling. Furthermore, as the diameter of the single crystal increases, the entire manufacturing equipment becomes larger, so it is necessary to strengthen the structure of the building where the manufacturing equipment is installed, and when iron equipment is used on the floor or in the manufacturing equipment itself. There are cases where many magnetic materials such as iron parts are used. For this reason, it has been found that when a manufacturing apparatus is actually installed due to the influence of a frequently used magnetic material, a deviation occurs from the initial magnetic field distribution.

また、設計当初の磁場分布に対してズレが発生している製造装置でシリコン単結晶を育成した場合には、単結晶中の格子間酸素濃度の成長方向における制御が困難となり、単結晶育成の後半で酸素濃度の急激な変動が生じてしまうという問題が起きることがわかった。   In addition, when a silicon single crystal is grown with a manufacturing device that has a deviation from the initial magnetic field distribution, it becomes difficult to control the growth direction of the interstitial oxygen concentration in the single crystal. It was found that there was a problem that the oxygen concentration suddenly fluctuated in the second half.

そこで、本発明者らは、磁場印加装置により発生した磁場の中心位置を測定し、測定された磁場の中心位置と単結晶の回転軸となる引上軸との位置合せをして、製造装置の設計当初の磁場分布とのズレを解消し、磁場分布を適正化した後に単結晶を成長させた。   Therefore, the present inventors measure the center position of the magnetic field generated by the magnetic field application device, align the measured magnetic field center position with the pull-up axis serving as the rotation axis of the single crystal, and produce the manufacturing apparatus. The single crystal was grown after eliminating the deviation from the initial magnetic field distribution and optimizing the magnetic field distribution.

その結果、単結晶育成の後半での酸素濃度の急激な変動を防止し、単結晶中の格子間酸素濃度を制御することができ、装置間のバラツキも抑制して高品質のシリコン単結晶を製造することができること、また、これによってシリコン単結晶の歩留まりも向上させることができることを発見した。   As a result, rapid fluctuations in oxygen concentration in the latter half of single crystal growth can be prevented, interstitial oxygen concentration in the single crystal can be controlled, and variations in equipment can be suppressed to produce a high-quality silicon single crystal. It has been discovered that it can be manufactured and that this can also improve the yield of silicon single crystals.

本発明は、上記の発見に基づいて完成されたものであり、以下、本発明について図面を参照しながらさらに詳細に説明するが、本発明はこれらに限定されるものではない。
図1は本発明のシリコン単結晶の製造装置の断面構成例を模式的に示す図である。また、図2は本発明のシリコン単結晶の製造装置の上面構成例を模式的に示す図である。本発明のシリコン単結晶の製造方法に用いる製造装置は以下に示すとおりである。
The present invention has been completed based on the above findings, and the present invention will be described in more detail below with reference to the drawings. However, the present invention is not limited to these.
FIG. 1 is a diagram schematically showing a cross-sectional configuration example of a silicon single crystal manufacturing apparatus of the present invention. Moreover, FIG. 2 is a figure which shows typically the upper surface structural example of the manufacturing apparatus of the silicon single crystal of this invention. The manufacturing apparatus used for the method for manufacturing a silicon single crystal of the present invention is as follows.

この製造装置は、シリコン単結晶の引き上げ装置11とその外側にシリコン原料融液に水平磁場を印加させるように、石英ルツボを挟んで同軸上に対向して配設された磁場印加装置10で構成される。   This manufacturing apparatus is composed of a silicon single crystal pulling device 11 and a magnetic field applying device 10 disposed on the outer side of the silicon crucible so as to be coaxially opposed so as to apply a horizontal magnetic field to the silicon raw material melt. Is done.

引き上げ装置11は中空円筒状のチャンバー1を具備し、その中心部にルツボが配設されている。このルツボは二重構造であり、有底円筒状をなす石英製の内側保持容器(以下、単に「石英ルツボ5a」という)と、その石英ルツボ5aの外側を保持すべく適合された同じく有底円筒状の黒鉛製の外側保持容器(「黒鉛ルツボ5b」)とから構成されている。   The pulling device 11 includes a hollow cylindrical chamber 1, and a crucible is disposed at the center thereof. This crucible has a double structure, and is an inner holding container made of quartz having a bottomed cylindrical shape (hereinafter simply referred to as “quartz crucible 5a”) and a similarly bottomed fitting adapted to hold the outside of the quartz crucible 5a. It is composed of a cylindrical graphite outer holding container (“graphite crucible 5b”).

これらのルツボは、回転および昇降が可能になるように支持軸6の上端部に固定されていて、ルツボの外側には抵抗加熱式ヒーター8が概ね同心円状に配設されている。さらに、ヒーター8の外側周辺には断熱材9が同心円状に配設されている。そして、前記ルツボ内に投入された所定重量のシリコン原料はヒーター8により溶融され、シリコン原料融液2が形成される。   These crucibles are fixed to the upper end portion of the support shaft 6 so as to be able to rotate and move up and down, and a resistance heating heater 8 is arranged substantially concentrically outside the crucible. Further, a heat insulating material 9 is concentrically arranged around the outside of the heater 8. Then, a predetermined weight of silicon raw material charged into the crucible is melted by the heater 8 to form a silicon raw material melt 2.

シリコン原料融液2を充填した前記ルツボの中心軸には、支持軸6と同一軸上で逆方向または同方向に所定の速度で回転する引上ワイヤー(または引上シャフト、以下両者を合わせて「引上軸7」という)が配設されており、引上軸7の下端には種結晶4が保持されている。そして、種結晶4の下端面にはシリコン単結晶3が形成される。   The central axis of the crucible filled with the silicon raw material melt 2 is a pulling wire (or pulling shaft, which is the same as the support shaft 6) that rotates at a predetermined speed in the opposite direction or in the same direction. The seed crystal 4 is held at the lower end of the pull-up shaft 7. A silicon single crystal 3 is formed on the lower end surface of the seed crystal 4.

さらに、引き上げ装置11の外側に配設された磁場印加装置10の架台には、横方向および前後方向に磁場印加装置10を移動する移動機構12が配設されている。そして、移動機構12により磁場印加装置10を移動することで磁場印加装置10により発生した磁場の中心位置13を移動することができ、中心位置13を引上軸7に位置合せすることができる。   Furthermore, a moving mechanism 12 that moves the magnetic field application device 10 in the lateral direction and the front-rear direction is provided on the gantry of the magnetic field application device 10 provided outside the pulling device 11. Then, by moving the magnetic field application device 10 by the moving mechanism 12, the center position 13 of the magnetic field generated by the magnetic field application device 10 can be moved, and the center position 13 can be aligned with the pulling shaft 7.

このように、上記製造装置は、磁場印加装置の架台に配設された移動機構により、磁場印加装置を横方向および前後方向に移動して、発生した磁場の中心位置13と引上軸との位置合せがされることで、設計当初の磁場分布に対するズレを解消して、磁場の中心位置を合わせ込むことができるようになっている。従って、この装置を用いて単結晶を引き上げることで、石英ルツボ内のシリコン原料融液に生じる急激な対流を防止し、育成されたシリコン単結晶の格子間酸素濃度を高精度に制御して、高品質のシリコン単結晶を製造することができる。   As described above, the manufacturing apparatus moves the magnetic field application device in the lateral direction and the front-rear direction by the moving mechanism arranged on the mount of the magnetic field application device, so that the center position 13 of the generated magnetic field and the pull-up axis are By aligning, it is possible to eliminate the deviation from the initial magnetic field distribution and to align the center position of the magnetic field. Therefore, by pulling up the single crystal using this apparatus, the rapid convection generated in the silicon raw material melt in the quartz crucible is prevented, and the interstitial oxygen concentration of the grown silicon single crystal is controlled with high accuracy. A high quality silicon single crystal can be manufactured.

この場合、上記製造装置は、磁場の中心位置と引上軸との距離が2mm以内となるように合わせ込まれるものとすることができる。
このような範囲内で磁場の中心位置と引上軸との距離が合わせ込まれることにより、磁場分布をより正確に合わせ込むことができるため、石英ルツボ内のシリコン原料融液に生じる急激な対流をより一層防止することができ、単結晶中の格子間酸素濃度をさらに精度良く制御して、より高品質のシリコン単結晶を製造することができる。また、磁場の中心位置と引上軸との距離が2mm以内となるように合わせ込まれていれば、装置間のバラツキによる単結晶の格子間酸素濃度の影響を非常に小さくすることができる。
In this case, the manufacturing apparatus can be adjusted so that the distance between the center position of the magnetic field and the pulling-up shaft is within 2 mm.
By adjusting the distance between the center position of the magnetic field and the pull-up axis within such a range, the magnetic field distribution can be adjusted more accurately, so that rapid convection generated in the silicon raw material melt in the quartz crucible Can be further prevented, and the interstitial oxygen concentration in the single crystal can be controlled with higher accuracy to produce a higher quality silicon single crystal. Further, if the distance between the center position of the magnetic field and the pulling-up axis is adjusted to be within 2 mm, the influence of the interstitial oxygen concentration of the single crystal due to the variation between apparatuses can be extremely reduced.

また、上記のように磁場印加装置は、移動機構を有し、該移動機構により前記磁場の中心位置と前記引上軸との位置が合わせ込まれるものとすることができるが、より好ましくは、磁場印加装置の架台に押しボルト式の磁場位置微調整機構が配設されているものである。
このような移動機構により、磁場印加装置を移動して磁場印加装置により発生した磁場の中心位置を合わせ込むことで、大型化して大重量化した石英ルツボや支持軸等を移動する必要がなく、容易に磁場分布を合わせ込むことができる。そして、石英ルツボ内のシリコン原料融液に生じる急激な対流を防止して、単結晶中の格子間酸素濃度を制御し、高品質のシリコン単結晶を製造するために必要となる磁場分布の適正化が押しボルト式の磁場位置微調整機構を用いることで容易にできる。さらに、押しボルト式の磁場位置微調整機構によって、容易に磁場の中心位置を合わせ込むことができることにより、製造装置の増設や変更をした場合にも、高品質のシリコン単結晶を製造することができる。もちろん、移動機構はこれに限定されるものではなく、位置合せができるように、磁場印加装置を移動させ、磁場の中心位置を動かすことができるものであればよい。
Further, as described above, the magnetic field application device has a moving mechanism, and the moving mechanism can align the position of the center of the magnetic field with the position of the pull-up shaft, more preferably, A push bolt type magnetic field position fine adjustment mechanism is provided on the mount of the magnetic field application device.
By moving the magnetic field application device by such a moving mechanism and aligning the center position of the magnetic field generated by the magnetic field application device, there is no need to move the quartz crucible and the support shaft etc. that have become larger and heavier, The magnetic field distribution can be easily adjusted. In addition, it prevents the rapid convection that occurs in the silicon raw material melt in the quartz crucible, controls the interstitial oxygen concentration in the single crystal, and makes the magnetic field distribution appropriate for producing high-quality silicon single crystal. This can be easily achieved by using a push bolt type magnetic field position fine adjustment mechanism. Furthermore, the center position of the magnetic field can be easily adjusted by the push bolt type magnetic field position fine adjustment mechanism, so that a high-quality silicon single crystal can be manufactured even when the production equipment is expanded or changed. it can. Of course, the moving mechanism is not limited to this, and any mechanism can be used as long as the magnetic field applying device can be moved and the center position of the magnetic field can be moved so that alignment can be performed.

次に、本発明のシリコン単結晶を製造する方法の一例を以下に示すが、本発明はこれらに限定されるわけではない。
本発明では、石英ルツボ内に収容したシリコン原料融液に、磁場印加装置により水平磁場を印加しながら単結晶の引き上げを行うHMCZ法により単結晶を製造する方法において、磁場印加装置により発生した磁場の中心位置を測定し、測定された磁場の中心位置と単結晶の回転軸となる引上軸との位置合せをした後にシリコン単結晶を製造する。
このような本発明の方法は、例えば上記のような装置を用いて実施することができる。
Next, although an example of the method for producing the silicon single crystal of the present invention is shown below, the present invention is not limited to these.
In the present invention, in a method for producing a single crystal by the HMCZ method in which a single crystal is pulled while applying a horizontal magnetic field to a silicon raw material melt accommodated in a quartz crucible by a magnetic field application device, a magnetic field generated by the magnetic field application device After measuring the center position of the film and aligning the measured center position of the magnetic field with the pull-up axis serving as the rotation axis of the single crystal, a silicon single crystal is manufactured.
Such a method of the present invention can be carried out using, for example, the apparatus as described above.

上記のように、磁場印加装置により発生した磁場の中心位置を測定した後、その測定した磁場の中心位置と引上軸とのズレを位置合せして合わせ込むことで、装置の設計当初に対する磁場分布のズレを解消することができる。そして、磁場分布が適正化された後にシリコン単結晶を製造することができるため、石英ルツボ内のシリコン原料融液に生じる急激な対流を防止し、育成されたシリコン単結晶の格子間酸素濃度を高精度に制御して、高品質のシリコン単結晶を製造することができる。   As described above, after measuring the center position of the magnetic field generated by the magnetic field application device, the alignment between the measured center position of the magnetic field and the pull-up axis is aligned and aligned, so that the magnetic field with respect to the initial design of the device is adjusted. The deviation of distribution can be eliminated. Since the silicon single crystal can be manufactured after the magnetic field distribution is optimized, the rapid convection that occurs in the silicon raw material melt in the quartz crucible is prevented, and the interstitial oxygen concentration of the grown silicon single crystal is reduced. A high-quality silicon single crystal can be manufactured with high accuracy.

この場合、磁場の中心位置と引上軸との距離を2mm以内となるように合わせ込むようにすることができる。
このような範囲内で磁場の中心位置と引上軸との距離を合わせ込むことにより、磁場分布をより正確に装置の設計当初の磁場分布に一致させるようにできるため、その後、シリコン単結晶の製造の際にシリコン原料融液に生じる急激な対流をより一層防止することができ、単結晶中の格子間酸素濃度をさらに精度良く制御して、より高品質のシリコン単結晶を製造することができる。また、磁場の中心位置と引上軸との距離が2mm以内となるように合わせ込まれていれば、装置間のバラツキによる単結晶の格子間酸素濃度の影響を非常に小さくすることができ、シリコン単結晶の歩留まりも向上させることができる。
In this case, the distance between the center position of the magnetic field and the pull-up axis can be adjusted to be within 2 mm.
By matching the distance between the center position of the magnetic field and the pulling axis within such a range, the magnetic field distribution can be more accurately matched to the initial magnetic field distribution of the device design. Rapid convection generated in the silicon raw material melt during production can be further prevented, and the interstitial oxygen concentration in the single crystal can be controlled with higher accuracy to produce a higher quality silicon single crystal. it can. In addition, if the distance between the center position of the magnetic field and the pulling axis is adjusted to be within 2 mm, the influence of the interstitial oxygen concentration of the single crystal due to the variation between the devices can be greatly reduced. The yield of silicon single crystals can also be improved.

また、磁場の中心位置の測定は、中心位置がわかればどのような測定方法によってもかまわないが、磁場の強度を測定ピッチ50mm以下で測定することによって行い、磁場の中心位置を決定することができる。
このような測定により磁場の中心位置を決定することで、磁場分布を正確に把握して磁場の中心位置を導き出すことができる。従って、求められた磁場の中心位置と引上軸とを位置合せすることで、より確実に磁場分布の装置の設計当初に対するズレを解消することができる。そして、シリコン単結晶の製造の際にシリコン原料融液に生じる急激な対流をより一層防止することができ、製造された単結晶中の格子間酸素濃度をさらに精度良く制御して、より高品質のシリコン単結晶を製造することができる。
The measurement of the center position of the magnetic field may be performed by any measurement method as long as the center position is known, but the center position of the magnetic field can be determined by measuring the strength of the magnetic field at a measurement pitch of 50 mm or less. it can.
By determining the center position of the magnetic field by such measurement, the center position of the magnetic field can be derived by accurately grasping the magnetic field distribution. Therefore, by aligning the obtained center position of the magnetic field and the pulling-up axis, it is possible to more reliably eliminate the deviation of the magnetic field distribution from the initial design of the apparatus. In addition, the rapid convection generated in the silicon raw material melt during the production of the silicon single crystal can be further prevented, and the interstitial oxygen concentration in the produced single crystal can be controlled with higher accuracy, resulting in higher quality. The silicon single crystal can be manufactured.

さらに、位置合せは、前述のように磁場印加装置を移動させることによって行うことができる。
より好ましくは、磁場印加装置の架台に押しボルト式の磁場位置微調整機構が配設されているものによって行う。
このように磁場印加装置を横方向および前後方向に移動して、位置合せを行うことにより、大型化して大重量化した石英ルツボや支持軸等を移動することなく、容易に磁場の中心位置を引上軸に合わせ込むことができる。そして、位置合せをすることで、磁場印加装置から印加される磁場の分布と装置の設計当初の磁場分布とのズレを解消でき、シリコン原料融液に生じる急激な対流を防止し、製造された単結晶中の格子間酸素濃度を高精度に制御して、高品質のシリコン単結晶を製造することができる。
Further, the alignment can be performed by moving the magnetic field application device as described above.
More preferably, it is performed by a structure in which a push bolt type magnetic field position fine adjustment mechanism is provided on the mount of the magnetic field application device.
By moving the magnetic field application device in the lateral direction and the front-rear direction in this manner, the center position of the magnetic field can be easily adjusted without moving a large and heavy quartz crucible or support shaft. Can be adjusted to the pulling shaft. And by aligning, the deviation between the distribution of the magnetic field applied from the magnetic field application device and the initial magnetic field distribution of the device can be eliminated, and the rapid convection generated in the silicon raw material melt is prevented and manufactured. A high-quality silicon single crystal can be manufactured by controlling the interstitial oxygen concentration in the single crystal with high accuracy.

次に本発明の実施例、比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
図1に示す製造装置を用いて、内径812mmの石英ルツボにシリコン原料360kgを充填し、溶融液を形成した後に、単結晶育成炉内に不活性ガスとしてArを170L/min上方から流し、圧力を75torr(9999Pa)の条件保ち、ルツボ回転は0.5〜1.5rpm、単結晶回転速度はルツボの回転方向とは逆に8rpmで回転させ、直径300mmのシリコン単結晶を引き上げ、成長させた。その際、磁場印加装置により発生した磁場の中心位置を測定し、測定された磁場の中心位置と単結晶の回転軸となる引上軸との位置合せをした後に単結晶を成長させた。
Next, the present invention will be described more specifically with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these.
(Example)
Using the manufacturing apparatus shown in FIG. 1, after filling a quartz crucible having an inner diameter of 812 mm with a silicon raw material of 360 kg and forming a melt, Ar is flowed as an inert gas into the single crystal growth furnace from above 170 L / min. was maintained at the conditions of 75torr (9999Pa), the crucible rotation 0.5~1.5Rpm, single crystal rotation rate conversely rotated at 8rpm to the rotation direction of the crucible, pulling up the silicon single crystal having a diameter of 300 mm, and grown It was. At that time, the center position of the magnetic field generated by the magnetic field application device was measured, and the center position of the measured magnetic field was aligned with the pulling axis serving as the rotation axis of the single crystal, and then the single crystal was grown.

図3は本発明の磁場の中心位置の位置合せのフローを示した図である。まず、磁場の強度を測定し、その測定結果から、磁場の中心位置を算出する。そして、磁場印加装置を移動して、磁場の中心位置を引上軸に合わせ込み、磁場印加装置を固定した後にシリコン単結晶の製造を開始する。この場合、磁場印加装置を固定するまでの工程は、少なくとも、製造装置の据付時に1回は行うようにするが、装置を増設したり変更、改造をしたとき、あるいは所定周期で、再度、実施するのが好ましい。
ここで、図9は、従来のHMCZ法によるシリコン単結晶の製造方法を実施するのに適した製造装置の上面構成例を模式的に示す図である。磁場の強度の測定結果から算出された磁場の中心位置42は、図9のように引上軸よりズレが発生している。
FIG. 3 is a view showing a flow of alignment of the center position of the magnetic field of the present invention. First, the magnetic field strength is measured, and the center position of the magnetic field is calculated from the measurement result. Then, the magnetic field applying device is moved, the center position of the magnetic field is adjusted to the pulling up axis, and after the magnetic field applying device is fixed, the production of the silicon single crystal is started. In this case, the process until the magnetic field application device is fixed is performed at least once at the time of installation of the manufacturing apparatus, but is performed again when the apparatus is added, changed, modified, or at a predetermined cycle. It is preferable to do this.
Here, FIG. 9 is a diagram schematically showing an example of a top surface configuration of a manufacturing apparatus suitable for carrying out a conventional method for manufacturing a silicon single crystal by the HMCZ method. The center position 42 of the magnetic field calculated from the measurement result of the strength of the magnetic field is displaced from the pull-up axis as shown in FIG.

図3に示すフローに従い、磁場印加装置を移動して、磁場の中心位置と引上軸との位置合せを行った結果、磁場分布の設計当初とのズレは横方向に8mm、前後方向に4mmであったものが、横方向に2mm、前後方向に0.5mmにまで合わせ込むことができた。
ここで、磁場の中心位置の測定方法を以下に示す。図4は本発明の磁場の中心位置の測定方法を模式的に示す図である。まず、引上軸21上に磁場測定用の冶具23で測定ピッチ50mmのもの(90cm角の冶具で50mmの等間隔に磁場測定子をセットできるよう穴が空けてある)を設置し、磁場印加装置22より磁場を印加し、引上軸21より横方向をX軸、前後方向をY軸として各ポイントの磁場の強度をガウスメータで測定する。そして、磁場分布はX軸の中心が一番低く、Y軸の中心が一番高い放物線を描くことを利用して、測定結果より2次曲線を計算し、磁場の中心位置を導き出す。図5は実施例のX軸およびY軸の磁場分布の概略図である。理想的な磁場分布である設計当初の磁場分布XおよびYに比較して、測定した磁場分布X’およびY’は、ΔXおよびΔYだけズレが発生している。
According to the flow shown in FIG. 3, the magnetic field application device is moved to align the magnetic field center position with the pull-up axis. As a result, the deviation from the initial design of the magnetic field distribution is 8 mm in the horizontal direction and 4 mm in the front-rear direction. Was able to be adjusted to 2 mm in the horizontal direction and 0.5 mm in the front-rear direction.
Here, a method for measuring the center position of the magnetic field is described below. FIG. 4 is a diagram schematically showing the method for measuring the center position of the magnetic field of the present invention. First, a magnetic field measuring jig 23 with a measuring pitch of 50 mm (with a 90 cm square jig with holes formed so that magnetic field measuring elements can be set at equal intervals of 50 mm) is installed on the pulling shaft 21, and a magnetic field is applied. A magnetic field is applied from the device 22, and the strength of the magnetic field at each point is measured with a gauss meter with the horizontal direction from the pull-up shaft 21 as the X axis and the front and rear direction as the Y axis. Then, using the fact that the parabola with the lowest X-axis center and the highest Y-axis center is drawn in the magnetic field distribution, a quadratic curve is calculated from the measurement result to derive the center position of the magnetic field. FIG. 5 is a schematic diagram of the magnetic field distribution of the X-axis and the Y-axis of the example. Compared to the initial magnetic field distributions X and Y, which are ideal magnetic field distributions, the measured magnetic field distributions X ′ and Y ′ are shifted by ΔX and ΔY.

次に、上記のように磁場の中心位置を測定し、図9に示すようにズレが発生している磁場の中心位置と引上軸との位置合せをして、図2のように合わせ込みをした後に育成したシリコン単結晶を円筒研磨し、単結晶中の格子間酸素濃度を赤外吸収式の酸素測定装置にて測定した。   Next, the center position of the magnetic field is measured as described above, and as shown in FIG. 9, the center position of the magnetic field where the deviation occurs is aligned with the pull-up axis, and the alignment is performed as shown in FIG. The silicon single crystal grown after the above was cylindrically polished, and the interstitial oxygen concentration in the single crystal was measured with an infrared absorption oxygen measuring device.

(比較例)
上記実施例のシリコン単結晶の製造方法において、磁場の中心位置を測定せずに磁場印加装置の位置合せも行わない条件で成長させたシリコン単結晶についても実施例と同様の評価を行った。このときの磁場の中心位置は、図9のように引上軸に対して、横方向に8mm、前後方向に4mmズレたものとなっている。
(Comparative example)
In the method for producing a silicon single crystal of the above example, the same evaluation as in the example was performed for a silicon single crystal grown under the condition where the center position of the magnetic field was not measured and the alignment of the magnetic field application device was not performed. The center position of the magnetic field at this time is 8 mm in the lateral direction and 4 mm in the front-rear direction with respect to the pulling-up axis as shown in FIG.

図6および図8は、それぞれ、実施例および比較例の単結晶中の格子間酸素濃度を測定した結果を示す図である。
実施例におけるシリコン単結晶中の格子間酸素濃度はフラットであり、育成したシリコン単結晶のほぼ全長にわたり要求される品質の規格内であった。しかし、比較例では、育成されたシリコン単結晶の後半で酸素濃度の急激な上昇があり、要求される規格を超えてしまった。
6 and 8 are diagrams showing the results of measuring the interstitial oxygen concentration in the single crystals of Examples and Comparative Examples, respectively.
In the examples, the interstitial oxygen concentration in the silicon single crystal was flat, and was within the quality standards required over almost the entire length of the grown silicon single crystal. However, in the comparative example, the oxygen concentration rapidly increased in the latter half of the grown silicon single crystal, exceeding the required standard.

また、実施例では、酸素濃度が育成したシリコン単結晶の全長にわたり要求される品質の規格内であったことより、単結晶の歩留まりが向上する結果が得られた。しかし、比較例では、酸素濃度が要求される規格を超えてしまったことより、品質不良となり、育成したシリコン単結晶の歩留まりが低下した。   In the examples, the yield of the single crystal was improved because the oxygen concentration was within the required quality standards over the entire length of the grown silicon single crystal. However, in the comparative example, since the oxygen concentration exceeded the required standard, the quality was poor and the yield of the grown silicon single crystal was reduced.

以上のことから、本発明のシリコン単結晶の製造方法および製造装置によれば、装置の設計当初とズレが発生していた磁場分布を、磁場の中心位置を測定して引上軸に合わせ込むことで適正化することができる。そして、その後にシリコン単結晶を製造することで、石英ルツボ内のシリコン原料融液に生じる急激な対流を防止して、製造された単結晶中の格子間酸素濃度を精度良く制御することができる。   From the above, according to the method and apparatus for manufacturing a silicon single crystal of the present invention, the magnetic field distribution that has been shifted from the initial design of the apparatus is aligned with the pulling axis by measuring the center position of the magnetic field. Can be optimized. Then, by manufacturing a silicon single crystal after that, it is possible to prevent rapid convection generated in the silicon raw material melt in the quartz crucible, and to accurately control the interstitial oxygen concentration in the manufactured single crystal. .

これにより、大直径のシリコン単結晶における格子間酸素濃度を制御することができるため、高品質のシリコン単結晶を製造することができ、要求される品質の規格を満足することができる。よって、シリコン単結晶の歩留まりも向上させることができることより、シリコン単結晶の製造分野において広く利用することができる。また、製造装置ごとに磁場の中心位置の合わせ込みを行うので、装置間のバラツキもなくなった。   Thereby, since the interstitial oxygen concentration in the silicon single crystal having a large diameter can be controlled, a high quality silicon single crystal can be manufactured, and the required quality standard can be satisfied. Therefore, since the yield of the silicon single crystal can be improved, it can be widely used in the field of manufacturing a silicon single crystal. In addition, since the center position of the magnetic field is adjusted for each manufacturing apparatus, there is no variation between apparatuses.

尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

本発明のシリコン単結晶の製造装置の断面構成例を模式的に示す図である。It is a figure which shows typically the example of a cross-sectional structure of the manufacturing apparatus of the silicon single crystal of this invention. 本発明のシリコン単結晶の製造装置の上面構成例を模式的に示す図である。It is a figure which shows typically the upper surface structural example of the manufacturing apparatus of the silicon single crystal of this invention. 本発明の磁場の中心位置の位置合せのフローを示した図である。It is the figure which showed the flow of alignment of the center position of the magnetic field of this invention. 本発明の磁場の中心位置の測定方法を模式的に示す図である。It is a figure which shows typically the measuring method of the center position of the magnetic field of this invention. 実施例のX軸およびY軸の磁場分布の概略図である。It is the schematic of the magnetic field distribution of the X-axis and Y-axis of an Example. 実施例の単結晶中の格子間酸素濃度を測定した結果を示す図である。It is a figure which shows the result of having measured the interstitial oxygen concentration in the single crystal of an Example. 従来のHMCZ法によるシリコン単結晶の製造方法を実施するのに適した製造装置の要部構成を模式的に示す図である。It is a figure which shows typically the principal part structure of the manufacturing apparatus suitable for enforcing the manufacturing method of the silicon single crystal by the conventional HMCZ method. 比較例の単結晶中の格子間酸素濃度を測定した結果を示す図である。It is a figure which shows the result of having measured the interstitial oxygen concentration in the single crystal of a comparative example. 従来のHMCZ法によるシリコン単結晶の製造方法を実施するのに適した製造装置の上面構成例を模式的に示す図である。It is a figure which shows typically the upper surface structural example of the manufacturing apparatus suitable for implementing the manufacturing method of the silicon single crystal by the conventional HMCZ method.

符号の説明Explanation of symbols

1…チャンバー、 2…シリコン原料融液、 3…シリコン単結晶、 4…種結晶、 5a…石英ルツボ、 5b…黒鉛ルツボ、 6…支持軸、 7…引上軸、 8…ヒーター、 9…断熱材、 10…磁場印加装置、 11…引き上げ装置、 12…移動機構、 13…磁場の中心位置、 21…引上軸、 22…磁場印加装置、 23…磁場測定用の冶具、
31…チャンバー、 32…シリコン原料融液、 33…シリコン単結晶、 34…種結晶、 35a…石英ルツボ、 35b…黒鉛ルツボ、 36…支持軸、 37…引上軸、 38…ヒーター、 39…断熱材、 40…磁場印加装置、 41…引き上げ装置、 42…磁場の中心位置。
DESCRIPTION OF SYMBOLS 1 ... Chamber, 2 ... Silicon raw material melt, 3 ... Silicon single crystal, 4 ... Seed crystal, 5a ... Quartz crucible, 5b ... Graphite crucible, 6 ... Support shaft, 7 ... Pull-up shaft, 8 ... Heater, 9 ... Heat insulation 10: Magnetic field applying device, 11: Lifting device, 12: Moving mechanism, 13: Center position of magnetic field, 21: Pulling up axis, 22: Magnetic field applying device, 23: Jig for magnetic field measurement,
31 ... Chamber, 32 ... Silicon raw material melt, 33 ... Silicon single crystal, 34 ... Seed crystal, 35a ... Quartz crucible, 35b ... Graphite crucible, 36 ... Support shaft, 37 ... Pull-up shaft, 38 ... Heater, 39 ... Heat insulation 40: Magnetic field application device, 41: Lifting device, 42: Center position of magnetic field.

Claims (2)

石英ルツボ内に収容したシリコン原料融液に、磁場印加装置により水平磁場を印加しながら単結晶の引き上げを行う水平磁場印加CZ法により単結晶を製造する方法において、前記磁場印加装置により発生した磁場の中心位置を測定し、該磁場の中心位置の測定は、磁場の強度を測定ピッチ50mm以下で測定することによって行い、磁場の中心位置を決定し、前記測定された磁場の中心位置と前記単結晶の回転軸となる引上軸との距離を2mm以内となるように合わせ込むことで位置合せをして設計当初の磁場分布とのズレを解消した後に単結晶を製造することを特徴とするシリコン単結晶の製造方法。 In a method for producing a single crystal by a horizontal magnetic field application CZ method in which a single crystal is pulled up while applying a horizontal magnetic field by a magnetic field application device to a silicon raw material melt accommodated in a quartz crucible, the magnetic field generated by the magnetic field application device The center position of the magnetic field is measured by measuring the strength of the magnetic field at a measurement pitch of 50 mm or less, determining the center position of the magnetic field, and determining the center position of the measured magnetic field and the single position of the magnetic field. A single crystal is manufactured after aligning the distance with the pulling-up axis, which is the rotation axis of the crystal, to be within 2 mm and eliminating the deviation from the initial magnetic field distribution. A method for producing a silicon single crystal. 前記位置合せは、前記磁場印加装置を移動させることによって行うことを特徴とする請求項1に記載のシリコン単結晶の製造方法。 The method for producing a silicon single crystal according to claim 1 , wherein the alignment is performed by moving the magnetic field application device.
JP2008123079A 2008-05-09 2008-05-09 Single crystal manufacturing method Active JP4725752B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008123079A JP4725752B2 (en) 2008-05-09 2008-05-09 Single crystal manufacturing method
PCT/JP2009/001329 WO2009136465A1 (en) 2008-05-09 2009-03-25 Method for manufacturing single crystal and apparatus for manufacturing single crystal
TW98112043A TW201002875A (en) 2008-05-09 2009-04-10 Method for manufacturing single crystal and apparatus for manufacturing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008123079A JP4725752B2 (en) 2008-05-09 2008-05-09 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2009269802A JP2009269802A (en) 2009-11-19
JP4725752B2 true JP4725752B2 (en) 2011-07-13

Family

ID=41264522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008123079A Active JP4725752B2 (en) 2008-05-09 2008-05-09 Single crystal manufacturing method

Country Status (3)

Country Link
JP (1) JP4725752B2 (en)
TW (1) TW201002875A (en)
WO (1) WO2009136465A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5304206B2 (en) * 2008-12-04 2013-10-02 信越半導体株式会社 Single crystal manufacturing method and single crystal manufacturing apparatus
JP6489209B2 (en) * 2015-11-02 2019-03-27 株式会社Sumco Method for producing single crystal silicon and single crystal silicon
CN113136619B (en) * 2021-04-19 2022-05-31 上海磐盟电子材料有限公司 Coaxial alignment device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027682A (en) * 1983-07-26 1985-02-12 Toshiba Corp Single crystal pulling apparatus
JPH10287488A (en) * 1997-04-07 1998-10-27 Sumitomo Sitix Corp Pulling up of single crystal
JP2000086392A (en) * 1998-09-08 2000-03-28 Sumitomo Metal Ind Ltd Production of silicon single crystal
WO2001063027A1 (en) * 2000-02-28 2001-08-30 Shin-Etsu Handotai Co., Ltd Method for preparing silicon single crystal and silicon single crystal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11255579A (en) * 1998-03-12 1999-09-21 Super Silicon Kenkyusho:Kk Single crystal pulling device
JP3589077B2 (en) * 1999-03-17 2004-11-17 信越半導体株式会社 Method for producing silicon single crystal, and single crystal and silicon wafer produced by this method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027682A (en) * 1983-07-26 1985-02-12 Toshiba Corp Single crystal pulling apparatus
JPH10287488A (en) * 1997-04-07 1998-10-27 Sumitomo Sitix Corp Pulling up of single crystal
JP2000086392A (en) * 1998-09-08 2000-03-28 Sumitomo Metal Ind Ltd Production of silicon single crystal
WO2001063027A1 (en) * 2000-02-28 2001-08-30 Shin-Etsu Handotai Co., Ltd Method for preparing silicon single crystal and silicon single crystal

Also Published As

Publication number Publication date
TW201002875A (en) 2010-01-16
WO2009136465A1 (en) 2009-11-12
JP2009269802A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP5664573B2 (en) Method for calculating height position of silicon melt surface, method for pulling silicon single crystal, and silicon single crystal pulling apparatus
JP2017210387A (en) Production method and device of silicon single crystal
EP1734157B1 (en) Production process of silicon single crystal
KR101942322B1 (en) An apparatus for growing a crystal ingot and a method for growing a crystal ingot using the same
JP4725752B2 (en) Single crystal manufacturing method
TWI767586B (en) Crystal growth method and crystal growth apparatus
WO2007013148A1 (en) Silicon single crystal pulling apparatus and method thereof
JP5088338B2 (en) Method of pulling silicon single crystal
JP5304206B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP2020114802A (en) Method for manufacturing silicon single crystal
KR102390791B1 (en) Method for manufacturing silicon single crystal
KR101596550B1 (en) Apparutus and Method for Growing Ingot
US20090293802A1 (en) Method of growing silicon single crystals
WO2014155985A1 (en) Device for manufacturing silicon single crystal and method for manufacturing silicon single crystal using same
US7470326B2 (en) Apparatus for manufacturing silicon single crystal, method for manufacturing silicon single crystal, and silicon single crystal
JP4899608B2 (en) Semiconductor single crystal manufacturing apparatus and manufacturing method
JP2018043904A (en) Method for manufacturing silicon single crystal
CN113337880A (en) Adjustable draft tube and semiconductor crystal growth device
WO2022254885A1 (en) Method for producing silicon monocrystal
TWI751028B (en) Method for manufacturing single crystal silicon
JP5053426B2 (en) Silicon single crystal manufacturing method
JP3915276B2 (en) Silicon single crystal manufacturing method and manufacturing apparatus thereof
US20220213614A1 (en) Semiconductor crystal growth method and device
JP2005306669A (en) Apparatus for pulling up silicon single cryststal and method therefor
KR101022918B1 (en) Method of manufacturing single crystal using without necking technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100415

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100519

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110329

R150 Certificate of patent or registration of utility model

Ref document number: 4725752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250