JPH07277879A - Apparatus for producing single crystal by cz method and melt level control method - Google Patents

Apparatus for producing single crystal by cz method and melt level control method

Info

Publication number
JPH07277879A
JPH07277879A JP8602894A JP8602894A JPH07277879A JP H07277879 A JPH07277879 A JP H07277879A JP 8602894 A JP8602894 A JP 8602894A JP 8602894 A JP8602894 A JP 8602894A JP H07277879 A JPH07277879 A JP H07277879A
Authority
JP
Japan
Prior art keywords
crucible
melt
melt surface
seed
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8602894A
Other languages
Japanese (ja)
Inventor
Kazuo Ota
一男 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Sumco Techxiv Corp
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Techxiv Corp, Komatsu Electronic Metals Co Ltd filed Critical Sumco Techxiv Corp
Priority to JP8602894A priority Critical patent/JPH07277879A/en
Priority to TW084109547A priority patent/TW356553B/en
Publication of JPH07277879A publication Critical patent/JPH07277879A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To hold the melt surface and the radiation preventive cylinder always in prescribed positions in production of a single crystal by a CZ method. CONSTITUTION:A crucible shaft 3 is driven to install a crucible 4 in a prescribed position and the position of the crucible shaft 3 when melting of a raw material is completed is stored. The position of the melt surface is calculated in accordance with the data on the position of a seed shaft when a seed crystal fixed to the seed shaft 2 comes into contact with a melt 5. A shaft 8 for vertically moving the radiation preventive cylinder is so driven that the spacing between the bottom surface of the radiation preventive cylinder 7 and the melt surface attains a prescribed value in accordance with the position of the melt surface. The radiation preventive cylinder 7 is then fixed. The specific section of the projected image of the rear surface of the radiation preventive cylinder 7 reflected from the surface of the melt 5 is detected by a CCD camera 9. The position of the melt surface is adjusted by driving the crucible shaft 3 when the specific section changes. The control is executed by a command section 11 and a control arithmetic section 12. The melt surface and the radiation preventive cylinder 7 are held always in the prescribed positions by these operations.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CZ法による単結晶製
造装置に係り、詳しくは、融液面を所定の位置に保持す
るための位置検出・制御装置を備えた単結晶製造装置お
よび融液レベル制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a single crystal by the CZ method, and more specifically, an apparatus for producing a single crystal provided with a position detection / control device for holding a melt surface at a predetermined position, and an apparatus for producing a melt. A liquid level control method.

【0002】[0002]

【従来の技術】半導体素子の基板には主として高純度の
単結晶シリコンが用いられているが、この単結晶シリコ
ンの製造方法の一つにチョクラルスキー法(以下CZ法
という)がある。CZ法においては、半導体単結晶製造
装置のチャンバ内に設置したるつぼ軸の上端にるつぼ受
けを介して黒鉛るつぼを載置し、前記黒鉛るつぼ内に収
容した石英るつぼに多結晶シリコンを充填した上、前記
黒鉛るつぼの周囲に設けたヒータによって多結晶シリコ
ンを加熱溶解して融液とする。そして、シードチャック
に取り付けた種子結晶を前記融液に浸漬し、シードチャ
ックおよび黒鉛るつぼを同方向または逆方向に回転しつ
つシードチャックを引き上げて単結晶シリコンを成長さ
せる。
2. Description of the Related Art A high-purity single crystal silicon is mainly used for a substrate of a semiconductor element, and one of the methods for producing this single crystal silicon is the Czochralski method (hereinafter referred to as the CZ method). In the CZ method, a graphite crucible is placed on the upper end of a crucible shaft installed in a chamber of a semiconductor single crystal manufacturing apparatus via a crucible receiver, and a quartz crucible housed in the graphite crucible is filled with polycrystalline silicon. The polycrystalline silicon is heated and melted by a heater provided around the graphite crucible to form a melt. Then, the seed crystal attached to the seed chuck is immersed in the melt, and the seed chuck is pulled up while the seed chuck and the graphite crucible are rotated in the same direction or in the opposite direction to grow single crystal silicon.

【0003】単結晶シリコンをCZ法によって製造する
場合、前記単結晶シリコンの成長に伴ってるつぼ内の融
液が減少し、融液レベルが下降するが、良質の単結晶シ
リコンを得るためるつぼ軸を駆動してるつぼを上昇さ
せ、ヒータに対して融液面が常に一定の位置に保持され
るように融液レベルを制御する必要がある。前記融液レ
ベルの制御に当たり、まず融液面位置を把握しなければ
ならないが、その手段としてたとえば下記のものが知ら
れている。 (1)実開平3−18171などに示されているよう
に、融液面に向けて斜め上方から検出光を投射し、融液
面からの反射光を受光素子で検出して融液面位置を演算
する。 (2)特開昭63−274687、特開平2−1021
87に示されるように、単結晶成長部に生じるメニスカ
スリングの位置をCCDカメラにより計測し、融液面位
置を演算する。 (3)特開平5−194079、特開平5−19408
0に示されるように、レーザ光を融液面に投射し、融液
面上における前記レーザ光のスポット径あるいは融液面
上におけるレーザ光の走査幅を計測して融液面位置を演
算する。
When the single crystal silicon is manufactured by the CZ method, the melt in the crucible is decreased with the growth of the single crystal silicon and the melt level is lowered, but the crucible shaft is used to obtain high quality single crystal silicon. It is necessary to control the melt level so that the crucible is driven up to raise the crucible and the melt surface is always held at a constant position with respect to the heater. In controlling the melt level, the position of the melt surface must be grasped first, and the following means are known as such means. (1) As shown in Japanese Utility Model Laid-Open No. 3-18171, the detection light is projected obliquely from above toward the melt surface, the reflected light from the melt surface is detected by the light receiving element, and the melt surface position is detected. Is calculated. (2) JP-A-63-274687, JP-A-2-1021
As shown by 87, the position of the meniscus ring generated in the single crystal growth portion is measured by the CCD camera, and the melt surface position is calculated. (3) JP-A-5-194079 and JP-A-5-19408
As shown in 0, laser light is projected on the melt surface, and the spot diameter of the laser light on the melt surface or the scanning width of the laser light on the melt surface is measured to calculate the melt surface position. .

【0004】[0004]

【発明が解決しようとする課題】上記従来の融液レベル
測定装置には、それぞれ下記の問題点がある。 (1)実開平3−18171などによる測定方法は、融
液面のゆらぎによって融液面に投射した光の反射光が各
方向に散乱するため検出精度が低くなり、前記ゆらぎが
大きい場合は融液レベルを検出することができない。従
って、融液レベルを正確に制御することが困難である。 (2)特開昭63−274687などによる測定方法
は、単結晶成長面が不安定になると測定精度が低下す
る。また、テール工程ではチャンバに設けた覗き窓から
メニスカスリングが見えなくなるため、融液レベルを制
御することができない。 (3)特開平5−194079などによる測定方法は、
レーザ投光用光学系が複雑になり、測定精度を上げるた
めには高価な光学系が必要である。 (4)これらの融液レベル測定装置には、融液面に対す
る輻射防止筒の位置を同期制御する手段が設けられてい
ない。そして、輻射防止筒の位置を同期制御するために
は、シード軸、るつぼ軸および輻射防止筒上下軸が絶対
座標系で制御されなければならない。
The above-mentioned conventional melt level measuring devices have the following problems, respectively. (1) In the measuring method using the actual Kaihei 3-18171 or the like, since the reflected light of the light projected on the melt surface is scattered in each direction due to the fluctuation of the melt surface, the detection accuracy becomes low. Liquid level cannot be detected. Therefore, it is difficult to accurately control the melt level. (2) In the measuring method according to Japanese Patent Laid-Open No. 63-274687, the measurement accuracy decreases when the single crystal growth surface becomes unstable. Further, in the tail process, the meniscus ring cannot be seen through the viewing window provided in the chamber, so that the melt level cannot be controlled. (3) The measuring method according to JP-A-5-194079,
The laser projection optical system becomes complicated, and an expensive optical system is required to improve the measurement accuracy. (4) These melt level measuring devices are not provided with means for synchronously controlling the position of the radiation preventing cylinder with respect to the melt surface. Then, in order to synchronously control the position of the radiation prevention cylinder, the seed axis, the crucible axis, and the vertical axis of the radiation prevention cylinder must be controlled in an absolute coordinate system.

【0005】本発明はこのような従来の問題点に着目
し、バッチごとに変動する石英るつぼの容積や石英るつ
ぼの熱変形にかかわらず、融液面を所定の位置に保持す
るとともに、輻射防止筒を融液面に対して所定の位置に
保持することによって、育成される単結晶に対する不活
性ガスの流れ、炉内圧力、温度環境を常に一定の状態に
保つことができるようなCZ法による単結晶製造装置
と、融液レベルの制御方法とを提供することを目的とし
ている。
The present invention pays attention to such a conventional problem and keeps the melt surface at a predetermined position and prevents the radiation regardless of the volume of the quartz crucible and the thermal deformation of the quartz crucible which vary from batch to batch. By the CZ method, which keeps the flow of the inert gas for the single crystal to be grown, the pressure in the furnace, and the temperature environment at a constant state by holding the cylinder at a predetermined position with respect to the melt surface. It is an object of the present invention to provide a single crystal manufacturing apparatus and a melt level control method.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係るCZ法による単結晶製造装置は、シー
ド軸、るつぼ軸および輻射防止筒上下軸が、いずれも同
一基準に基づく絶対座標系における垂直方向変位量検出
手段と、変位量補正手段とを備えていることを特徴と
し、ヒータに対して所定の位置にるつぼを設置したとき
のるつぼ軸位置P3 を検出する手段と、るつぼ内に充填
した原料の溶解完了後の融液面位置を、種子結晶の下端
が融液面に接触したときのシード軸位置P1 として検出
する手段と、前記シード軸位置P1 に基づいて輻射防止
筒を融液面に対して所定の位置P2 に設置する手段と、
融液面における前記輻射防止筒下面の写像の特定部位を
検出し、前記特定部位が変位した場合に前記るつぼ軸位
置P3 を補正するためにるつぼ軸を昇降制御する手段と
を備える構成とした。
In order to achieve the above object, in the single crystal manufacturing apparatus by the CZ method according to the present invention, the seed axis, the crucible axis, and the radiation prevention cylinder vertical axis are all absolute coordinates based on the same standard. A vertical displacement amount detecting means and a displacement amount correcting means in the system, and means for detecting the crucible axis position P 3 when the crucible is installed at a predetermined position with respect to the heater, and the crucible. Means for detecting the position of the melt surface after the completion of the melting of the raw material charged in the inside as a seed axis position P 1 when the lower end of the seed crystal comes into contact with the melt surface, and radiation based on the seed axis position P 1. Means for installing the prevention cylinder at a predetermined position P 2 with respect to the melt surface,
A means for detecting a specific portion of the image of the lower surface of the radiation preventing cylinder on the melt surface and controlling the crucible shaft to move up and down in order to correct the crucible shaft position P 3 when the specific portion is displaced. .

【0007】上記の各手段を備えた単結晶製造装置にお
いて、るつぼの上方に設けた水平な基準面F1 と、るつ
ぼの下方に設けた水平な基準面F2 との距離をHT
し、前記基準面F1 から融液面までの距離をP1 、前記
基準面F2 からるつぼ底面までの距離をP3 、融液深さ
をHM 、融液面と輻射防止筒の下面との距離をH0 、前
記基準面F2 から輻射防止筒の下面までの距離をP2
したとき、前記HT ,P1 ,P2 ,H0 は常に一定であ
り、かつ、 HT =P1 +HM +P3 =P1 −H0 +P2 が成立するように前記P3 を制御することにより、融液
面を所定の位置に保持するものとした。
In the single crystal manufacturing apparatus equipped with each of the above means, the distance between the horizontal reference plane F 1 provided above the crucible and the horizontal reference plane F 2 provided below the crucible is H T , the distance to the melt surface from the reference surface F 1 P 1, the distance from the reference surface F 2 to a crucible bottom P 3, the melt depth H M, the lower surface of the melt surface and the radiation prevention tube Assuming that the distance is H 0 and the distance from the reference plane F 2 to the lower surface of the radiation prevention cylinder is P 2 , the above H T , P 1 , P 2 , and H 0 are always constant, and H T = P by 1 + H M + P 3 = P 1 -H 0 + P 2 to control the P 3 to stand, and shall keep the melt surface at a predetermined position.

【0008】また、本発明に係るCZ法による単結晶製
造装置の融液レベルの制御方法は、ヒータに対して融液
面が所定の位置に来るようにるつぼ軸を上昇させたとき
のるつぼ軸の位置P3 を検出した後、シード軸を下降さ
せ、シードチャックに取り付けた種子結晶の下端が融液
面に接触したときのシード軸の位置P1 を検出し、前記
1 に対して輻射防止筒の下面と融液面との隙間が所定
の値H0 になるように輻射防止筒上下軸を下降させ、こ
のときの輻射防止筒上下軸の位置P2 を検出した後、融
液面から反射する輻射防止筒下面の特定部位の写像の変
位をCCDカメラで検出し、前記変位量がしきい値を超
えないようにるつぼ軸を垂直方向に制御することによっ
て融液面を所定の位置に保持する構成とした。
Further, according to the method for controlling the melt level of the single crystal production apparatus by the CZ method according to the present invention, the crucible shaft is raised when the crucible shaft is raised with respect to the heater so that the melt surface comes to a predetermined position. after detecting the position P 3 of the lowers the seed axis, detects the position P 1 of the seed axis when the lower end of the seed crystal mounted on a seed chuck is brought into contact with the melt surface, the radiation relative to the P 1 The vertical axis of the radiation preventing cylinder is lowered so that the gap between the lower surface of the preventing cylinder and the melt surface becomes a predetermined value H 0, and the position P 2 of the vertical axis of the radiation preventing cylinder at this time is detected. The displacement of the image of the specific portion of the lower surface of the radiation preventing cylinder reflected from the CCD camera is detected by the CCD camera, and the crucible axis is controlled in the vertical direction so that the displacement amount does not exceed the threshold value. It is configured to be held at.

【0009】[0009]

【作用】上記構成によれば、シード軸、るつぼ軸、輻射
防止筒上下軸のそれぞれの位置が同一基準に基づく絶対
座標系を有することになる。図2は絶対座標系における
融液面および輻射防止筒下面の位置を示す説明図で、る
つぼ4の上方に設けた水平な基準面F1 と、るつぼ4の
下方に設けた水平な基準面F2 との距離は、一定の長さ
T として設定され、前記HT は融液面の位置を表す設
定値P1 と、るつぼ軸3の位置を表す設定値P3 と、融
液深さを表すHM との和からなっている。また、H0
輻射防止筒下面と融液面との隙間の設定値であり、P3
+HM +H0 =P2 は輻射防止筒7下面の位置を表す設
定値である。融液レベルの制御に当たり、まず原料溶解
完了時のるつぼ軸位置P3 を記憶し、シード軸に固定し
た所定の長さの種子結晶が融液面に接触したときのシー
ド軸位置データP1 に基づいて融液面位置を算出する。
次に、前記融液面位置データに基づいて、輻射防止筒下
面と融液面との隙間H0 が所定の値になるように輻射防
止筒上下軸を駆動することにより、輻射防止筒は所定の
位置にセットされる。すなわち、輻射防止筒を、単結晶
育成開始時の実際の融液面位置に対して所定の隙間を有
する位置に設置することができる。
According to the above construction, the positions of the seed shaft, the crucible shaft, and the vertical axis of the radiation preventing cylinder have an absolute coordinate system based on the same standard. FIG. 2 is an explanatory view showing the positions of the melt surface and the lower surface of the radiation preventing cylinder in the absolute coordinate system. A horizontal reference plane F 1 provided above the crucible 4 and a horizontal reference plane F provided below the crucible 4. The distance from 2 is set as a constant length H T , where H T is a set value P 1 indicating the position of the melt surface, a set value P 3 indicating the position of the crucible shaft 3, and the melt depth. It consists of the sum of H M and H 0 is a set value of the gap between the lower surface of the radiation prevention cylinder and the melt surface, and P 3
+ H M + H 0 = P 2 is a set value indicating the position of the lower surface of the radiation prevention cylinder 7. In controlling the melt level, first, the crucible shaft position P 3 at the time of completion of melting of the raw materials is stored, and the seed shaft position data P 1 when the seed crystal of a predetermined length fixed to the seed shaft comes into contact with the melt surface is obtained. Based on this, the melt surface position is calculated.
Next, based on the melt surface position data, the radiation preventing cylinder vertical axis is driven so that the gap H 0 between the lower surface of the radiation preventing cylinder and the melt surface becomes a predetermined value, so that the radiation preventing cylinder has a predetermined value. Is set to the position. That is, the radiation preventing cylinder can be installed at a position having a predetermined gap with respect to the actual melt surface position at the start of single crystal growth.

【0010】融液面に映る輻射防止筒下面の写像は、単
結晶製造装置のチャンバに取り付けたCCDカメラによ
って検出される。図3は前記CCDカメラが検出した写
像の説明図で、前記写像13に特定の部位を設定する。
特定部位は、たとえば写像13の内周に接する水平軸Y
0 と輻射防止筒の中心を通る垂直軸X0 との交点とす
る。水平軸Y0 を写像13の外周に接する位置に設定し
てもよい。融液面と輻射防止筒下面との隙間が拡がると
水平軸Y0 は図3の上方に移動し、前記隙間が小さくな
ると水平軸Y0 は図3の下方に移動する。これにより、
輻射防止筒に対する融液面の上下動を検出することがで
きる。輻射防止筒の下面は平坦で、かつ面積が大きいの
で、写像の白画素の重心をとれば融液面のゆらぎに関係
なく特定部位の検出が可能である。この検出データが所
定の値と一致するようにるつぼ軸を制御することによ
り、“融液レベル”と、“融液面と輻射防止筒下端との
距離”とを所定の値に維持することができる。
The image of the lower surface of the radiation preventing cylinder on the melt surface is detected by a CCD camera attached to the chamber of the single crystal manufacturing apparatus. FIG. 3 is an explanatory diagram of a map detected by the CCD camera. A specific portion is set in the map 13.
The specific portion is, for example, the horizontal axis Y that contacts the inner circumference of the map 13.
0 and the intersection of the vertical axis X 0 through the center of the radiation prevention tube. The horizontal axis Y 0 may be set at a position in contact with the outer circumference of the map 13. When the gap between the melt surface and the lower surface of the radiation preventing cylinder widens, the horizontal axis Y 0 moves upward in FIG. 3, and when the gap becomes small, the horizontal axis Y 0 moves downward in FIG. This allows
The vertical movement of the melt surface with respect to the radiation preventing cylinder can be detected. Since the lower surface of the radiation prevention cylinder is flat and has a large area, the specific portion can be detected regardless of the fluctuation of the melt surface by taking the center of gravity of the white pixel of the image. By controlling the crucible axis so that this detection data matches a predetermined value, it is possible to maintain the "melt level" and the "distance between the melt surface and the radiation prevention cylinder lower end" at predetermined values. it can.

【0011】以上説明したように、本発明による単結晶
製造装置および融液レベル制御方法は、種子結晶が接触
したときの実際の融液面位置を基準として輻射防止筒を
所定の位置に設置し、単結晶育成中は前記輻射防止筒下
面の位置を基準として融液面位置を制御することにした
ので、石英るつぼの容積変動や熱変形の発生にかかわら
ず、融液面を所定の位置に保持することができる。
As described above, in the apparatus for producing a single crystal and the melt level control method according to the present invention, the radiation preventing cylinder is set at a predetermined position with reference to the actual melt surface position when the seed crystal comes into contact. During the growth of the single crystal, it was decided to control the melt surface position based on the position of the radiation preventing cylinder lower surface, so that the melt surface was set at a predetermined position regardless of the volume fluctuation or thermal deformation of the quartz crucible. Can be held.

【0012】[0012]

【実施例】以下に本発明に係るCZ法による単結晶製造
装置の実施例について、図面を参照して説明する。図1
は、融液レベル測定・制御装置を取り付けた単結晶製造
装置の概略構成を示す説明図である。単結晶製造装置の
チャンバ1内には、シード軸2およびるつぼ軸3がそれ
ぞれ上下動自在、かつ回転自在に設けられている。前記
シード軸2の下端にはシードチャックを介して種子結晶
が取り付けられ、るつぼ軸3の上端にはるつぼ受けを介
してるつぼ4が載置されている。前記種子結晶をるつぼ
4内の融液5に浸漬して引き上げることによって単結晶
6が育成される。単結晶6を取り囲む輻射防止筒7は、
輻射防止筒上下軸8により上下動させることができる。
9はチャンバ1の外部から融液5の表面を観察し、その
映像を電気信号として出力するCCDカメラである。
EXAMPLES Examples of a single crystal production apparatus by the CZ method according to the present invention will be described below with reference to the drawings. Figure 1
FIG. 3 is an explanatory view showing a schematic configuration of a single crystal manufacturing apparatus equipped with a melt level measuring / controlling apparatus. A seed shaft 2 and a crucible shaft 3 are vertically movable and rotatable in a chamber 1 of the single crystal manufacturing apparatus. A seed crystal is attached to the lower end of the seed shaft 2 via a seed chuck, and a crucible 4 is placed on the upper end of the crucible shaft 3 via a crucible receiver. The single crystal 6 is grown by immersing the seed crystal in the melt 5 in the crucible 4 and pulling it up. The radiation prevention cylinder 7 surrounding the single crystal 6 is
The radiation prevention cylinder can be moved up and down by the vertical shaft 8.
Reference numeral 9 denotes a CCD camera that observes the surface of the melt 5 from the outside of the chamber 1 and outputs the image as an electric signal.

【0013】シード軸2、輻射防止筒上下軸8、るつぼ
軸3は、それぞれサーボモータM1、M2 、M3 の駆動
により上下動する。11は指令部、12は制御演算部
で、前記指令部11から出力される指令信号は制御演算
部12を介してモータアンプA1 、A2 、A3 に送ら
れ、それぞれサーボモータM1 、M2 、M3 を駆動す
る。これらのサーボモータの回転角は、前記サーボモー
タM1 、M2 、M3 にそれぞれ取り付けられたモータエ
ンコーダE1 、E2 、E3 からエンコーダデータP1
2 、P3 として制御演算部12に入力される。また、
CCDカメラ9の出力信号(X0 ,Y0 )も前記制御演
算部12に入力される。
The seed shaft 2, the radiation preventing cylinder vertical shaft 8, and the crucible shaft 3 are moved up and down by driving servomotors M 1 , M 2 , and M 3 , respectively. Reference numeral 11 is a command unit, 12 is a control calculation unit, and the command signal output from the command unit 11 is sent to the motor amplifiers A 1 , A 2 , and A 3 via the control calculation unit 12, and the servo motors M 1 , respectively. Drive M 2 and M 3 . The rotation angles of these servomotors are the encoder data P 1 , from the motor encoders E 1 , E 2 , E 3 attached to the servomotors M 1 , M 2 , M 3 , respectively.
It is input to the control calculation unit 12 as P 2 and P 3 . Also,
The output signals (X 0 , Y 0 ) of the CCD camera 9 are also input to the control calculation unit 12.

【0014】上記融液レベル測定・制御装置を取り付け
た単結晶製造装置を用いて単結晶を育成する場合の融液
レベル測定・制御手順を、図1および図2に基づいて説
明する。 (1)るつぼ4を上昇させ、るつぼ軸3を設定値P3
位置に固定する。るつぼ4内に充填した原料の溶解が完
了したとき、融液面はヒータ(図示せず)に対して所定
の位置にある。 (2)シード軸2を下降させて種子結晶を融液5に浸漬
する。種子結晶が融液5に接触した位置P1 ′を制御演
算部12に記憶させる。 (3)つぎに、輻射防止筒7の下面と融液5の表面との
隙間が所定の値H0 になるように輻射防止筒上下軸8を
駆動する。そして、前記隙間がH0 になったときの輻射
防止筒上下軸8の位置P2 ′を制御演算部12に記憶さ
せる。 (4)上記(3)の時点で、融液5の表面から反射する
輻射防止筒7の下面の写像の特定部位の座標データ(X
0 ,Y0 )をCCDカメラ9により検出し、制御演算部
12に入力する。 以上の(1)〜(4)の動作により、融液5に対する輻
射防止筒7の位置、すなわち輻射防止筒7の下面と融液
5の表面との隙間は所定の値H0 となる。この後、輻射
防止筒7の下面位置を基準として融液レベルを制御する
ことができる。
A procedure for measuring and controlling a melt level in the case of growing a single crystal by using a single crystal manufacturing apparatus equipped with the above melt level measuring and controlling apparatus will be described with reference to FIGS. 1 and 2. (1) Raise the crucible 4 and fix the crucible shaft 3 at the position of the set value P 3 . When the melting of the raw material filled in the crucible 4 is completed, the melt surface is at a predetermined position with respect to the heater (not shown). (2) The seed shaft 2 is lowered to immerse the seed crystal in the melt 5. The control calculation unit 12 stores the position P 1 ′ at which the seed crystal comes into contact with the melt 5. (3) Next, the radiation prevention cylinder vertical axis 8 is driven so that the gap between the lower surface of the radiation prevention cylinder 7 and the surface of the melt 5 becomes a predetermined value H 0 . Then, the control calculation unit 12 stores the position P 2 ′ of the radiation prevention cylinder vertical axis 8 when the gap becomes H 0 . (4) At the time of the above (3), coordinate data (X) of a specific portion of the image of the lower surface of the radiation preventing cylinder 7 reflected from the surface of the melt 5
0 , Y 0 ) is detected by the CCD camera 9 and input to the control calculation unit 12. By the above operations (1) to (4), the position of the radiation preventing cylinder 7 with respect to the melt 5, that is, the gap between the lower surface of the radiation preventing cylinder 7 and the surface of the melt 5 becomes a predetermined value H 0 . After that, the melt level can be controlled with the lower surface position of the radiation prevention cylinder 7 as a reference.

【0015】本発明に係るCZ法による単結晶製造装置
の融液レベル制御方法について、図1、図2を参照しつ
つ図4に基づいて説明する。図4は融液レベルの測定・
制御を実行するフローチャートで、各ステップの左肩に
記載した数字はステップ番号である。ステップ1でるつ
ぼ位置指令信号P3 が制御演算部からモータアンプA 3
を介してサーボモータM3 に出力され、るつぼ軸を上昇
させる。これにより、るつぼ4はヒータ(図示せず)に
対して所定の位置に設置される。るつぼ4内の原料の溶
解が完了した後、ステップ2でシード軸下降指令信号P
1 が制御演算部からモータアンプA1 を介してサーボモ
ータM1 に出力され、シード軸2を下降させる。シード
軸2は種子結晶が融液5に接触すると下降を停止し、ス
テップ3で前記接触位置P1 ′がモータエンコーダE1
から制御演算部12に入力される。次にステップ4で△
1 =P1 −P1 ′が演算される。P1 は種子結晶が融
液5に接触したときのシード軸位置の設定値で、実測値
1 ′との差が△P1 である。
Single crystal production apparatus by CZ method according to the present invention
1 and 2 for the melt level control method of
A description will be given based on FIG. Figure 4 shows the measurement of melt level
In the flowchart to execute the control, check the left shoulder of each step.
The numbers listed are step numbers. Step 1
Position command signal P3From the control calculation unit to the motor amplifier A 3
Servo motor M via3Output to the ascending crucible shaft
Let As a result, the crucible 4 becomes a heater (not shown).
In contrast, it is installed at a predetermined position. Melting of raw materials in crucible 4
After the solution is completed, in step 2, the seed axis descending command signal P
1From the control calculation unit to the motor amplifier A1Through the servo
Data M1Is output to lower the seed shaft 2. seed
The axis 2 stops descending when the seed crystal comes into contact with the melt 5,
The contact position P at step 31′ Is motor encoder E1
Is input to the control calculation unit 12. Then in step 4 △
P1= P1-P1′ Is calculated. P1Seed crystals melt
The set value of the seed axis position when it comes into contact with liquid 5
P1The difference from ′ is ΔP1Is.

【0016】ステップ5では、輻射防止筒7の下端位置
の設定値P2 に対して、実際の融液面位置に基づく補正
値P2 ′が演算される。この演算は、P2 ′=P2 +k
1 ×△P1 の算式によって求められる。ここで、k1
変換係数である。ステップ6では輻射防止筒上下軸8を
下降させるため、制御演算部12からモータアンプA2
を介してサーボモータM2 に輻射防止筒上下軸下降指令
信号P2 ′が出力される。これにより輻射防止筒上下軸
8が下降し、輻射防止筒7の下端と融液面との距離がH
0 となる位置に輻射防止筒7が固定される。このとき融
液面から反射する輻射防止筒7下端の写像データ
(X0 ,Y0 )は、ステップ7でCCDカメラ9から制
御演算部12に入力され、記憶される。
In step 5, a correction value P 2 ′ based on the actual melt surface position is calculated with respect to the set value P 2 at the lower end position of the radiation preventing cylinder 7. This calculation is P 2 ′ = P 2 + k
It is obtained by the formula of 1 × ΔP 1 . Here, k 1 is a conversion coefficient. In step 6, since the vertical axis 8 of the radiation prevention cylinder is lowered, the control calculation unit 12 causes the motor amplifier A 2
The radiation prevention cylinder vertical axis lowering command signal P 2 ′ is output to the servomotor M 2 via. As a result, the vertical axis 8 of the radiation prevention cylinder is lowered, and the distance between the lower end of the radiation prevention cylinder 7 and the melt surface is H.
The radiation prevention cylinder 7 is fixed at a position where it becomes zero . At this time, the mapping data (X 0 , Y 0 ) at the lower end of the radiation prevention cylinder 7 reflected from the melt surface is input from the CCD camera 9 to the control calculation unit 12 in step 7 and stored.

【0017】単結晶の育成中、上記輻射防止筒7下端の
写像データ(X0 ,Y0 )は常時制御演算部12に入力
される。前記写像データが(X0 ′,Y0 ′)に変化し
た場合、ステップ8で△Y=Y0 −Y0 ′の演算を行っ
た上、ステップ9でしきい値Y1 が読み込まれる。ステ
ップ10では前記△YとY1 とを比較し、△Yがしきい
値Y1 以下であれば融液面の位置が許容範囲にあるもの
として、ステップ7に戻る。△Yがしきい値Y1 を超え
ている場合は、ステップ11で△P3 =k2 ×△Yの演
算を行う。ここでk2 は変換係数である。そして、ステ
ップ12でP3′=P3 +△P3 の演算を行った上、ス
テップ13でるつぼ位置をP3 からP3′に補正するた
めの指令信号P3 ′を出力し、ステップ7に戻る。前記
指令信号P3 ′はモータアンプA3 を介してサーボモー
タM3 に出力され、るつぼ軸3を上昇または下降させ
る。その結果、融液面位置が所定の位置に補正され、輻
射防止筒7の下端と融液面との距離は設定値H0 を維持
する。
During the growth of the single crystal, the mapping data (X 0 , Y 0 ) at the lower end of the radiation prevention cylinder 7 is constantly input to the control calculation unit 12. When the mapping data changes to (X 0 ′, Y 0 ′), ΔY = Y 0 −Y 0 ′ is calculated in step 8 and the threshold value Y 1 is read in step 9. In step 10, the ΔY and Y 1 are compared. If ΔY is equal to or less than the threshold value Y 1 , it is determined that the position of the melt surface is within the allowable range, and the process returns to step 7. If ΔY exceeds the threshold value Y 1 , in step 11, ΔP 3 = k 2 × ΔY is calculated. Here, k 2 is a conversion coefficient. Then, 'after performing operation = P 3 + △ P 3, the crucible position from the P 3 P 3 in step 13' P 3 at step 12 outputs an instruction signal P 3 'for correcting the step 7 Return to. The command signal P 3 'is output to the servo motor M 3 via the motor amplifier A 3, raise or lower the crucible shaft 3. As a result, the melt surface position is corrected to a predetermined position, and the distance between the lower end of the radiation prevention cylinder 7 and the melt surface maintains the set value H 0 .

【0018】本実施例による単結晶製造装置および融液
レベル制御方法は、原料の溶解が完了して単結晶の育成
を開始するときの融液面がヒータに対して所定の位置と
なるようにるつぼ軸を制御し、この方法で位置決めされ
た融液面の実際の位置に対して輻射防止筒下面が所定の
位置となるように輻射防止筒を固定した後、融液面に映
る前記輻射防止筒下面の写像の特定部位を基準として融
液面位置を制御するものである。従って、制御手順が簡
単であるにもかかわらず、融液面を常に一定位置に保持
することができるとともに、融液面と輻射防止筒下面と
の隙間を所定の値に保持することが可能である。
The apparatus for producing a single crystal and the method for controlling the melt level according to this embodiment are arranged so that the melt surface at the time when the melting of the raw material is completed and the growth of the single crystal is started is at a predetermined position with respect to the heater. After controlling the crucible shaft and fixing the radiation prevention cylinder so that the lower surface of the radiation prevention cylinder is at a predetermined position with respect to the actual position of the melt surface positioned by this method, the radiation prevention reflected on the melt surface is prevented. The position of the melt surface is controlled with reference to a specific portion of the mapping on the lower surface of the cylinder. Therefore, although the control procedure is simple, the melt surface can always be held at a fixed position, and the gap between the melt surface and the radiation preventing cylinder lower surface can be maintained at a predetermined value. is there.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、C
Z法による単結晶製造装置にシード軸、るつぼ軸、輻射
防止筒上下軸のそれぞれの位置が同一基準に基づいて制
御される絶対座標系による融液レベル検出・制御装置を
設け、種子結晶が接触したときの実際の融液面位置を検
出した上、前記融液面位置に対して輻射防止筒を所定の
位置に設置し、単結晶育成中は融液面に映る前記輻射防
止筒下面の写像の特定部位を基準として融液面位置を制
御することにしたので、つぎのような効果が得られる。 (1)ヒータに対する融液面の位置ならびに融液面に対
する輻射防止筒の位置を、あらかじめ設定した位置に保
持するための制御を容易に行うことができる。 (2)輻射防止筒は炉内圧力や不活性ガスの流れに影響
を与えるとともに、単結晶の品質、特に熱履歴に有効に
作用するが、この輻射防止筒の融液面に対する位置の正
確な制御が容易となる。 (3)バッチごとに変動する石英るつぼの容積あるいは
石英るつぼの熱変形に影響されずに融液レベルを所定の
位置に保持することができるので、安定した高品質の単
結晶育成が可能となる。
As described above, according to the present invention, C
The single crystal manufacturing device by the Z method is equipped with a melt level detection / control device by an absolute coordinate system in which the positions of the seed axis, the crucible axis, and the vertical axis of the radiation prevention cylinder are controlled based on the same standard, and the seed crystal comes into contact After detecting the actual melt surface position when, the radiation prevention cylinder is installed at a predetermined position with respect to the melt surface position, and the image of the bottom surface of the radiation prevention cylinder reflected on the melt surface during single crystal growth Since it has been decided to control the melt surface position with reference to the specific portion of, the following effects can be obtained. (1) It is possible to easily control the position of the melt surface with respect to the heater and the position of the radiation preventing cylinder with respect to the melt surface at a preset position. (2) The radiation prevention cylinder affects the pressure in the furnace and the flow of the inert gas, and effectively acts on the quality of the single crystal, especially the heat history, but the position of the radiation prevention cylinder with respect to the melt surface is accurate. Control becomes easy. (3) Since the melt level can be maintained at a predetermined position without being affected by the volume of the quartz crucible that varies from batch to batch or the thermal deformation of the quartz crucible, stable and high quality single crystal growth is possible. .

【図面の簡単な説明】[Brief description of drawings]

【図1】融液レベル測定・制御装置を取り付けた単結晶
製造装置の概略構成を示す説明図である。
FIG. 1 is an explanatory diagram showing a schematic configuration of a single crystal manufacturing apparatus equipped with a melt level measuring / controlling apparatus.

【図2】絶対座標系における融液面および輻射防止筒下
面の位置を示す説明図である。
FIG. 2 is an explanatory view showing positions of a melt surface and a radiation prevention cylinder lower surface in an absolute coordinate system.

【図3】CCDカメラが検出した写像の説明図である。FIG. 3 is an explanatory diagram of a map detected by a CCD camera.

【図4】融液レベルの測定・制御を実行するフローチャ
ートである。
FIG. 4 is a flowchart for measuring and controlling a melt level.

【符号の説明】[Explanation of symbols]

2 シード軸 3 るつぼ軸 4 るつぼ 5 融液 7 輻射防止筒 8 輻射防止筒上下軸 9 CCDカメラ 13 写像 2 Seed Axis 3 Crucible Axis 4 Crucible 5 Melt 7 Radiation Prevention Tube 8 Radiation Prevention Tube Vertical Axis 9 CCD Camera 13 Mapping

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 シード軸、るつぼ軸および輻射防止筒上
下軸が、いずれも同一基準に基づく絶対座標系における
垂直方向変位量検出手段と、変位量補正手段とを備えて
いることを特徴とするCZ法による単結晶製造装置。
1. The seed axis, the crucible axis, and the radiation prevention cylinder vertical axis are each provided with a vertical displacement amount detecting means and an displacement amount correcting means in an absolute coordinate system based on the same reference. Single crystal manufacturing equipment by CZ method.
【請求項2】 ヒータに対して所定の位置にるつぼを設
置したときのるつぼ軸位置P3 を検出する手段と、るつ
ぼ内に充填した原料の溶解完了後の融液面位置を、種子
結晶の下端が融液面に接触したときのシード軸位置P1
として検出する手段と、前記シード軸位置P1 に基づい
て輻射防止筒を融液面に対して所定の位置P2 に設置す
る手段と、融液面における前記輻射防止筒下面の写像の
特定部位を検出し、前記特定部位が変位した場合に前記
るつぼ軸位置P3 を補正するためにるつぼ軸を昇降制御
する手段とを備えていることを特徴とする請求項1のC
Z法による単結晶製造装置。
2. A means for detecting a crucible shaft position P 3 when a crucible is installed at a predetermined position with respect to a heater, and a melt surface position after completion of melting of a raw material filled in the crucible are defined as seed crystal Seed axis position P 1 when the lower end contacts the melt surface
And a means for setting the radiation prevention cylinder at a predetermined position P 2 with respect to the melt surface based on the seed axis position P 1 , and a specific portion of the mapping of the lower surface of the radiation prevention cylinder on the melt surface. And means for vertically moving the crucible shaft so as to correct the crucible shaft position P 3 when the specific portion is displaced.
Single crystal manufacturing apparatus by the Z method.
【請求項3】 るつぼの上方に設けた水平な基準面F1
と、るつぼの下方に設けた水平な基準面F2 との距離を
T とし、前記基準面F1 から融液面までの距離を
1 、前記基準面F2 からるつぼ底面までの距離を
3 、融液深さをHM、融液面と輻射防止筒の下面との
距離をH0 、前記基準面F2 から輻射防止筒の下面まで
の距離をP2 としたとき、前記HT ,P1 ,P2 ,H0
は常に一定であり、かつ、 HT =P1 +HM +P3 =P1 −H0 +P2 が成立するように前記P3 を制御することを特徴とする
請求項1のCZ法による単結晶製造装置。
3. A horizontal reference plane F 1 provided above the crucible.
And the distance to a horizontal reference plane F 2 provided below the crucible is H T , the distance from the reference plane F 1 to the melt surface is P 1 , and the distance from the reference plane F 2 to the bottom of the crucible is P 3, when the melt depth H M, the distance between the lower surface of the melt surface with the radiation prevention tube H 0, the distance from the reference surface F 2 to the lower surface of the radiation prevention tube was P 2, the H T , P 1 , P 2 , H 0
Is always constant, and single crystals by H T = P 1 + H M + P 3 = P 1 -H 0 + CZ method according to claim 1, P 2, characterized in that the controlling the P 3 to stand Manufacturing equipment.
【請求項4】 ヒータに対して融液面が所定の位置に来
るようにるつぼ軸を上昇させたときのるつぼ軸の位置P
3 を検出した後、シード軸を下降させ、シードチャック
に取り付けた種子結晶の下端が融液面に接触したときの
シード軸の位置P1 を検出し、前記P1 に対して輻射防
止筒の下面と融液面との隙間が所定の値H0 になるよう
に輻射防止筒上下軸を下降させ、このときの輻射防止筒
上下軸の位置P2 を検出した後、融液面から反射する輻
射防止筒下面の特定部位の写像の変位をCCDカメラで
検出し、前記変位量がしきい値を超えないようにるつぼ
軸を垂直方向に制御することによって融液面を所定の位
置に保持することを特徴とするCZ法による単結晶製造
装置の融液レベル制御方法。
4. The position P of the crucible shaft when the crucible shaft is raised so that the melt surface is at a predetermined position with respect to the heater.
After 3 detects the lowers the seed shaft, the lower end of the seed crystal mounted on a seed chuck detects the position P 1 of the seed axis when in contact with the melt surface, the radiation prevention tube relative to the P 1 The vertical axis of the radiation preventing cylinder is lowered so that the gap between the lower surface and the melt surface becomes a predetermined value H 0, and the position P 2 of the vertical axis of the radiation preventing cylinder at this time is detected and then reflected from the melt surface. The displacement of the image of a specific portion on the lower surface of the radiation prevention cylinder is detected by a CCD camera, and the crucible axis is controlled in the vertical direction so that the displacement amount does not exceed a threshold value, thereby holding the melt surface at a predetermined position. A melt level control method for a single crystal manufacturing apparatus by the CZ method, which is characterized in that
JP8602894A 1994-03-31 1994-03-31 Apparatus for producing single crystal by cz method and melt level control method Pending JPH07277879A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8602894A JPH07277879A (en) 1994-03-31 1994-03-31 Apparatus for producing single crystal by cz method and melt level control method
TW084109547A TW356553B (en) 1994-03-31 1995-09-12 Monocrystal producing device by using cz method and liquid's liquidic surface control process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8602894A JPH07277879A (en) 1994-03-31 1994-03-31 Apparatus for producing single crystal by cz method and melt level control method

Publications (1)

Publication Number Publication Date
JPH07277879A true JPH07277879A (en) 1995-10-24

Family

ID=13875208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8602894A Pending JPH07277879A (en) 1994-03-31 1994-03-31 Apparatus for producing single crystal by cz method and melt level control method

Country Status (2)

Country Link
JP (1) JPH07277879A (en)
TW (1) TW356553B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044972A (en) * 2004-08-03 2006-02-16 Sumco Corp Manufacturing apparatus and method for silicon single crystal and silicon single crystal
WO2008096518A1 (en) * 2007-02-08 2008-08-14 Shin-Etsu Handotai Co., Ltd. Method for measuring distance between lower end surface of heat shielding member and material melt surface, and method for controlling the distance
WO2016038817A1 (en) * 2014-09-12 2016-03-17 信越半導体株式会社 Single crystal production method
CN110273178A (en) * 2018-03-14 2019-09-24 胜高股份有限公司 The method of pulling up of monocrystalline silicon
CN111020701A (en) * 2019-12-27 2020-04-17 内蒙古中环光伏材料有限公司 Method for rapidly determining stable temperature crucible position
CN116288662A (en) * 2023-05-18 2023-06-23 内蒙古中环领先半导体材料有限公司 Method for controlling surface distance of Czochralski single crystal liquid

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006044972A (en) * 2004-08-03 2006-02-16 Sumco Corp Manufacturing apparatus and method for silicon single crystal and silicon single crystal
WO2008096518A1 (en) * 2007-02-08 2008-08-14 Shin-Etsu Handotai Co., Ltd. Method for measuring distance between lower end surface of heat shielding member and material melt surface, and method for controlling the distance
JP2008195545A (en) * 2007-02-08 2008-08-28 Shin Etsu Handotai Co Ltd Method for measuring distance between lower end surface of heat shielding member and surface of material melt, and method for controlling the distance
KR101416093B1 (en) * 2007-02-08 2014-07-08 신에쯔 한도타이 가부시키가이샤 Method for measuring distance between lower end surface of heat shielding member and material melt surface, and method for controlling the distance
US9260796B2 (en) 2007-02-08 2016-02-16 Shin-Etsu Handotai Co., Ltd. Method for measuring distance between lower end surface of heat insulating member and surface of raw material melt and method for controlling thereof
KR20170051441A (en) 2014-09-12 2017-05-11 신에쯔 한도타이 가부시키가이샤 Single crystal production method
WO2016038817A1 (en) * 2014-09-12 2016-03-17 信越半導体株式会社 Single crystal production method
CN106687625A (en) * 2014-09-12 2017-05-17 信越半导体株式会社 Single crystal production method
JPWO2016038817A1 (en) * 2014-09-12 2017-06-01 信越半導体株式会社 Single crystal manufacturing method
US10094043B2 (en) 2014-09-12 2018-10-09 Shin-Etsu Handotai Co., Ltd. Method for producing single crystal with reduced number of crystal defects
DE112015003765B4 (en) 2014-09-12 2022-02-03 Shin-Etsu Handotai Co., Ltd. Method of making a single crystal
CN110273178A (en) * 2018-03-14 2019-09-24 胜高股份有限公司 The method of pulling up of monocrystalline silicon
CN111020701A (en) * 2019-12-27 2020-04-17 内蒙古中环光伏材料有限公司 Method for rapidly determining stable temperature crucible position
CN116288662A (en) * 2023-05-18 2023-06-23 内蒙古中环领先半导体材料有限公司 Method for controlling surface distance of Czochralski single crystal liquid

Also Published As

Publication number Publication date
TW356553B (en) 1999-04-21

Similar Documents

Publication Publication Date Title
KR101028684B1 (en) Silicon single crystal pulling method
US6241818B1 (en) Method and system of controlling taper growth in a semiconductor crystal growth process
EP0265805B1 (en) Apparatus for measuring crystal diameter
JP3528758B2 (en) Single crystal pulling device
EP2128310B1 (en) Method for measuring distance between lower end surface of heat shielding member and material melt surface, and method for controlling the distance
US4926357A (en) Apparatus for measuring diameter of crystal
JP5446277B2 (en) Method for producing silicon single crystal
US20230220583A1 (en) Single crystal production apparatus and single crystal production method
JP2019085299A (en) Production method and apparatus of single crystal
JP6645406B2 (en) Single crystal manufacturing method
EP0498653B1 (en) A method for measuring the diameter of single crystal ingot
JPH07277879A (en) Apparatus for producing single crystal by cz method and melt level control method
JP2019214486A (en) Method of measuring interval between melt level and seed crystal, method of preheating seed crystal, and method of manufacturing single crystal
US5725660A (en) Semiconductor single crystal growing apparatus
JP2735960B2 (en) Liquid level control method
CN112857297B (en) Single crystal rod diameter measuring device, single crystal rod growth system and method
KR20230051263A (en) Single crystal manufacturing method
JP6365674B2 (en) Method for producing single crystal
JPS6287481A (en) Method of setting the initial melting position in single crystal-pulling-up apparatus
JP3109950B2 (en) Method for growing semiconductor single crystal
KR20220097476A (en) Single crystal manufacturing system and single crystal manufacturing method
JP6090501B2 (en) Single crystal pulling method
JPH06316484A (en) Melt level controller in cz process
JPS6027686A (en) Apparatus for manufacturing single crystal
CN110273178A (en) The method of pulling up of monocrystalline silicon