JP4035924B2 - Single crystal diameter control method and crystal growth apparatus - Google Patents

Single crystal diameter control method and crystal growth apparatus Download PDF

Info

Publication number
JP4035924B2
JP4035924B2 JP19697699A JP19697699A JP4035924B2 JP 4035924 B2 JP4035924 B2 JP 4035924B2 JP 19697699 A JP19697699 A JP 19697699A JP 19697699 A JP19697699 A JP 19697699A JP 4035924 B2 JP4035924 B2 JP 4035924B2
Authority
JP
Japan
Prior art keywords
single crystal
diameter
temperature
heating means
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19697699A
Other languages
Japanese (ja)
Other versions
JP2001019588A (en
Inventor
匡彦 水田
啓一 高梨
正人 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP19697699A priority Critical patent/JP4035924B2/en
Publication of JP2001019588A publication Critical patent/JP2001019588A/en
Application granted granted Critical
Publication of JP4035924B2 publication Critical patent/JP4035924B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は単結晶直径の制御方法及び結晶成長装置に関し、より詳細には例えば半導体材料として使用されるシリコン単結晶のような単結晶を成長させる際、前記単結晶の直径を制御しつつ引き上げるための単結晶直径の制御方法及び結晶成長装置に関する。
【0002】
【従来の技術】
単結晶を成長させるには種々の方法があるが、この中でもっとも代表的なチョクラルスキー法(以下、CZ法と記す)の場合、例えばシリコン(以下、Siと記す)溶融液の表面に種結晶を接触させて引き上げ速度を制御しながら引き上げることにより、円柱形状をしたSi単結晶を成長させている。この引き上げられるSi単結晶は後に、外周部分を研削することにより、円柱形状のインゴットに仕上げられるので、引き上げられるSi単結晶の水平断面における直径が変動すると製品歩留りが低下する。このように製品歩留まりを考慮すれば、引き上げられる単結晶は直胴部全体に亙って同一の直径値を維持していることが望ましい。
【0003】
そのため、従来から単結晶の引き上げにおいては直径制御が実施されており、CZ法における直径制御方法としては、単結晶直径の実測値と目標直径値との偏差を引き上げ速度にフィ−ドバックし、補助的にヒ−タ温度を調整する方法が提案されている。特開平4−219388号公報には、フィ−ドバック制御系を設計し、引き上げ速度のみを操作量とする制御方法が開示されている。
【0004】
また、特開平4−108687号公報には、引き上げ中の単結晶の重量を所定時間ごとに測定し、その単結晶重量の変化量から単結晶外径を算出し、算出された単結晶外径と目標直径値との偏差に応じて加熱手段であるヒ−タの温度を制御することにより単結晶直径の制御を行う方法が開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記した単結晶の引き上げ速度を操作量とする単結晶直径の制御方法では、単結晶直径を制御するために引き上げ速度を調整することから、単結晶の引き上げに伴って引き上げ速度を変動させることになり、結晶成長あるいは結晶欠陥に大きく影響を及ぼす熱的条件も変動させなけばならなくなる。従って、同一直径の単結晶が得られたとしても、引き上げ速度の変動に合わせて単結晶成長過程の熱的条件を変動させることから、結晶欠陥が生じ易くなり、高品質の単結晶が得られにくいといった課題があった。
【0006】
また一方、加熱手段であるヒ−タの温度を制御して単結晶の直径を制御する方法においては、ヒ−タ温度を変更してからその効果が現れて直径が変化し始めるまでの間にいわゆる無駄時間が存在するため応答性が悪く、単結晶の直径制御性能も悪く、あまり実用的ではないといった課題があった。
【0007】
本発明は上記課題に鑑みなされたものであり、結晶欠陥の少ない高品質の単結晶を、単結晶の直径を精度良く制御しながら、しかも効率的に製造することができる単結晶直径の制御方法及び結晶成長装置を提供することを目的としている。
【0008】
【課題を解決するための手段及びその効果】
上記目的を達成するために本発明に係る単結晶直径の制御方法(1)は、シリコン単結晶製造プロセスにおいて直胴部全体に亙って結晶欠陥品質が安定するよう引き上げ速度を一定に固定して引き上げる際に目標直径を維持して単結晶を成長させる単結晶直径の制御方法であって、
結晶用原料を溶融させる坩堝の周囲に配設された加熱手段温度の操作量を設定する際に、
前記加熱手段をステップ状に変化させた場合の前記単結晶直径値の応答をあらかじめ求めて一次遅れ系の伝達関数を仮定するとともに、前記単結晶直径の実測値と記憶されている前記目標直径値との偏差をフィ−ドバックして前記操作量を算出する主ル−プに加え、
前記単結晶と溶融液との界面近傍に現れる周囲よりも高輝度のフュージョンリングの幅の経時的な変動が前記単結晶直径に及ぼす影響量をあらかじめ求め、連続的に検出した前記フュージョンリングの幅の経時的な変動から求めた前記操作量を足しあわせてフィ−ドバックするマイナ−ル−プにより前記加熱手段温度の操作量を演算することにより、単結晶の直径値を目標直径値に制御することを特徴としている。
また、本発明に係る単結晶直径の制御方法(2)は、前記加熱手段温度をステップ状に変化させた場合の前記単結晶直径値の応答特性を、前記加熱手段温度をステップ状に変化させた場合の前記単結晶直径値の応答を調べるステップ応答試験を実施することにより求めることを特徴としている。
【0009】
溶融液から単結晶を引き上げ成長させる場合、図1に示すように、単結晶20と溶融液13との界面22の高さHkは、溶融液表面の高さHyより高くなっており、表面張力により界面端部と溶融液表面との間にメニスカス角(傾斜角)θを有する周囲よりも高輝度のリング状部分(以下、フュージョンリングと記す)21が形成される。フュージョンリング21は溶融液表面に対して傾斜しており、石英坩堝内壁面からの放射光が反射し易いため、溶融液表面の他の箇所に比べて明るく輝いて見える。このフュージョンリング21を撮像して画像処理を施すことにより、フュージョンリング幅Wを求めることは可能である。
フュージョンリング幅Wは単結晶20の直径が増大する前に広がり、単結晶20の直径が減少する前に狭まり、フュージョンリング幅Wの経時的な変動情報は単結晶直径の変動の先行情報として使用し得る。
【0010】
上記単結晶直径の制御方法によれば、単結晶直径の実測値と目標直径値との偏差に加え、単結晶直径の変動の先行情報としてのフュージョンリング幅の経時的な情報を基に、前記加熱手段の温度を設定するので、従来問題となっていた加熱手段の温度を設定してから単結晶の直径が変動するまでの応答時間が大きいという、いわゆる応答遅れの問題を解決することができる。
すなわち、単結晶の直径の実測値が判明する前に、フュージョンリング幅の変動情報を用いて単結晶直径の将来値を精度良く予測することが可能となるため、応答遅れの問題を解決することができる。また、単結晶直径の制御に引き上げ速度を使用しないことから、引き上げ速度をほぼ一定とした安定した単結晶の引き上げが可能となり、結晶欠陥の少ない高品質の単結晶を得ることができる。
【0011】
また、本発明に係る単結晶成長装置(1)は、結晶用原料を溶融させる坩堝と、
該坩堝の周囲に配設された加熱手段と、
前記坩堝内の溶融液よりシリコン単結晶を成長させながら引き上げる昇降手段と、
成長する前記単結晶の直径を計測する計測手段と、
前記単結晶と前記溶融液との界面近傍に表れる周囲よりも高輝度のフュージョンリングの幅を検出する検出手段と、
前記単結晶直径の実測値と目標直径値との偏差と、前記高輝度の前記フュージョンリングの幅の経時的な情報とを基に前記加熱手段の設定温度を算出する温度算出手段と、
算出された前記設定温度に基づいて前記加熱手段への供給電力量を制御する制御手段とを備え、
前記温度算出・制御手段が、あらかじめ求めた前記フュージョンリングの幅の経時的な変動が前記単結晶直径に及ぼす影響量から、前記検出手段で検出した前記単結晶直径の実測値と記憶されている目標直径値との偏差をフィ−ドバックして前記加熱手段温度の操作量を算出する主ル−プに加え、あらかじめ求めておいた前記フュージョンリング幅の経時的な変動が前記単結晶直径に及ぼす影響量から、前記検出手段で検出したフュージョンリングの幅により操作すべき前記加熱手段温度の操作量を足しあわせるマイナ−ル−プを挿入してフィ−ドバックする機能を有するものであることを特徴としている。
また、本発明に係る単結晶成長装置(2)は、上記単結晶成長装置(1)において、前記温度算出・制御手段には、前記フュージョンリングの幅の経時的な変動が前記単結晶直径に及ぼす影響量として、前記加熱手段温度をステップ状に変化させた場合の前記単結晶直径値の応答を調べるステップ応答試験を実施することにより求められた前記応答特性が記憶されていることを特徴としている。
【0012】
上記した結晶成長装置によれば、溶融液と成長する単結晶との界面近傍に形成されるフュージョンリングの幅を検出し、単結晶直径の変動の先行情報となるフュージョンリング幅の経時的な情報に基づいて前記加熱手段への供給電力量を制御しつつ前記単結晶を引き上げることができるので、従来問題となっていた前記加熱手段の温度を設定してから単結晶の直径が変動するまでの応答時間が大きいという、いわゆる応答遅れの問題を解決しながら、しかも引き上げ速度をほぼ一定とした安定した単結晶の引き上げが可能となり、結晶欠陥の少ない高品質の単結晶を効率的に製造することができる。
【0013】
【発明の実施の形態】
以下、本発明に係る単結晶直径の制御方法及び結晶成長装置の実施の形態を図面に基づいて説明する。
図2は実施の形態に係る結晶成長装置を摸式的に示した断面図であり、図中11は炉本体を示している。炉本体11内の略中央部には有底円筒形状をした石英坩堝12aが配設されており、石英坩堝12a内には単結晶用原料を溶融させた溶融液13が充填されるようになっている。石英坩堝12aは黒鉛製サセプタ12bにより保持されており、これら石英坩堝12aと黒鉛製サセプタ12bとにより坩堝12が構成されている。黒鉛製サセプタ12b下部には回転軸14が取り付けられ、回転軸14の下部には坩堝回転手段と坩堝昇降手段(ともに図示せず)とが接続されており、これら坩堝回転・昇降手段により坩堝12が所定速度で回転させられるとともに、上下方向に駆動されるようになっている。また黒鉛製サセプタ12bの外周には円筒形状をしたヒータ15aが配設され、ヒータ15aには電力供給手段15bが接続されており、これらヒータ15a及び電力供給手段15bを含んで加熱手段15が構成されている。そして電力供給手段15bからの供給電力量を変更することにより、ヒータ15aの温度が調整され、坩堝12内における溶融液13の温度が調節されるようになっている。さらにヒータ15aと炉本体11との間には保温筒15cが配設されている。
【0014】
炉本体11の上方には中空円筒形状をしたケーシング11aが形成されており、ケーシング11a内における坩堝12の回転軸14の同軸上にはワイヤ17が垂下され、ワイヤ17下端部にはシードホルダ17aが装着され、シードホルダ17aには種結晶17bが取り付けられるようになっている。ケーシング11a上部にはワイヤ回転装置18を介してワイヤ引き上げ装置19が配設され、ワイヤ回転装置18及びワイヤ引き上げ装置19はそれぞれモータ18a、19aを備えており、モータ18aを駆動するとワイヤ17が回転させられ、モータ19aを駆動するとワイヤ17が上下方向に移動するようになっている。これらワイヤ17、ワイヤ回転装置18、ワイヤ引き上げ装置19等を含んで昇降手段16が構成されている。
【0015】
炉本体11上部には観測窓11bが形成され、観測窓11bを挟んで単結晶20と対向する所定箇所に2次元のCCDカメラ31が配設されており、CCDカメラ31は画像処理部32に接続されている。これらCCDカメラ31と画像処理部32とを含んで計測・検出手段30が構成されており、単結晶20の周囲に形成されるフュージョンリング21近傍における輝度分布を、CCDカメラ31により撮像するようになっている。
【0016】
そして図3に示したように、この輝度信号が画像処理部32において処理され、所定のしきい値Lにおける2個の輝度強度間の距離が演算され、フュージョンリング21の幅Wが連続的に検出されるようになっている。また計測・検出手段30は前記輝度信号の最大レベルの変化に伴って前記しきい値が補正されるように構成されており、この幅Wが輝度強度により影響を受けるのが防止されるようになっている。また計測・検出手段30は単結晶20の直径Dも測定し得るようになっている。
【0017】
計測・検出手段30は温度算出・制御手段33に接続されており、温度算出・制御手段33は、フュージョンリング幅及び単結晶直径の実測値を取り込む取り込み手段と、単結晶直径の実測値と目標直径値とを比較してヒータ温度の操作量を算出し、それに加えてフュージョンリング幅Wの実測値と所定時間前のフュージョンリング幅Wの実測値とを比較してヒ−タ温度の操作量を算出する温度算出部と、算出されたヒ−タ温度の操作量に基づいて必要とされる供給電力量の制御信号を電力供給手段15bに出力する出力部とを備えている。
【0018】
温度算出・制御手段33は電力供給手段15bに接続されるとともに、モータ19aに接続され、温度算出・制御手段33において演算されたフュージョンリング幅Wの変動状況に応じて必要とされる供給電力量、引き上げ速度情報が加熱手段15及び昇降手段16に出力されるようになっている。
【0019】
このように構成された装置を用い、例えば単結晶20を所定の目標直径DS になるように成長させ、その後できるだけ目標直径DS を維持して単結晶20を成長させる場合、まず石英坩堝12a内にSi単結晶用原料を充填し、加熱手段15により坩堝12を所定温度になるまで加熱し、溶融液13を形成する。次に坩堝12を所定速度で回転させるとともに、種結晶17bを溶融液13の表面に接触させる。そしてワイヤ17を所定速度で回転させつつ引き上げ、溶融液13が凝固して形成される単結晶20を成長させる。
【0020】
次に計測・検出手段30により、ショルダが形成されて単結晶20が所定の目標直径DS にまで成長したことを確認した後、前記引き上げ速度を所定値に設定・固定する。次にフュージョンリング21の幅Wを連続的に検出しながら、フュージョンリング幅Wの変動状況に応じて電力供給手段15bによる供給電力量を調整し、単結晶20の直径Dが所定の目標直径DS に維持されるように制御する。なお単結晶20が引き上げられるにつれ、溶融液13の上面レベルが低下して単結晶20の直径Dが変動するのを防ぐため、前記坩堝昇降手段を用い、溶融液13の上面レベルが常に一定の高さに維持されるように制御する。
【0021】
図4は温度算出・制御手段33の機能を説明するためのブロック図であり、温度算出・制御手段33は、単結晶直径の実測値と記憶されている目標直径値との偏差を加算点1にフィ−ドバックしてヒータ温度の操作量を算出する主ル−プに加え、あらかじめ求めておいたフュージョンリング幅の経時的な変動が単結晶直径に及ぼす影響量から、操作すべきヒ−タ温度の操作量を加算点2に足しあわせる機能を有することを特徴としている。すなわち、主ル−プにフュージョンリング幅Wの変動量からヒ−タ温度操作量を演算するマイナ−ル−プを挿入して加算点2にフィ−ドバックする構成となっている。
【0022】
なお、ヒ−タ温度が単結晶20の直径に及ぼす影響としては、無駄時間のある一次遅れ系の伝達関数を仮定する。また、プロセスの時定数及び無駄時間は、ヒ−タ温度をステップ状に変化させた場合の単結晶直径値の応答を調べるステップ応答試験を実施することにより求める。このように求めた応答特性を基に、例えば改良型限界感度法(比例制御で安定限界を越えて発振状態となるときの比例ゲイン及び限界周期と関連付けてPID制御のパラメ−タを調整するいわゆる限界感度法において、無駄時間を限界周期で除した基準化無駄時間と伝達特性のタイプとから予め決定した乗数因子を用いるパラメ−タ調整方法)により、コントロ−ラC1 、C2 を設計する。
【0023】
図5は、計算機によるシミュレ−ションにより得られた結果を示す線図であり、外乱としてステップ状の変化を与えた場合の応答特性を示しており、単純なフィ−ドバック制御系の応答特性(曲線A)に比べて、フュージョンリング幅の経時的な変動情報を利用した制御系の応答特性(曲線B)では、優れた特性が得られており、フュージョンリング幅の経時的な変動情報を利用することにより、外乱抑制に優れた単結晶直径の制御が可能となり、直径制御特性が大幅に向上することが明らかとなった。
【0024】
上記説明から明らかなように、実施の形態に係る単結晶直径の制御方法によれば、単結晶直径の実測値と目標直径値との偏差に加え、単結晶20と溶融液13との界面近傍に現れるフュージョンリング幅Wの経時的な情報を基に、加熱手段15の温度を設定するので、従来問題となっていた加熱手段15の温度を設定してから単結晶20の直径が変動するまでの応答時間が大きいという、いわゆる応答遅れの問題を解決することができる。
また、単結晶直径の制御に引き上げ速度を使用しないことから、引き上げ速度をほぼ一定とした安定した単結晶20の引き上げが可能となり、結晶欠陥の少ない高品質の単結晶20を得ることができる。
【0025】
また実施の形態に係る結晶成長装置によれば、溶融液13と成長する単結晶20との界面近傍に形成されるフュージョンリング21の幅Wを検出し、単結晶直径の変動の先行情報となるフュージョンリング幅Wの経時的な情報に基づいて加熱手段15への供給電力量を制御しつつ単結晶20を引き上げることができるので、従来問題となっていた加熱手段15の温度を設定してから単結晶20の直径が変動するまでの応答時間が大きいという、いわゆる応答遅れの問題を解決しながら、引き上げ速度をほぼ一定とした安定した単結晶20の引き上げが可能となり、結晶欠陥の少ない高品質の単結晶20を効率的に製造することができる。
【0026】
なお、上記した実施の形態では計測・検出手段30に2次元のCCDカメラ31が用いられた場合について説明したが、1次元のCCDカメラを用いて走査を行わせるようにしてもよい。
【0027】
また、上記した実施の形態では、Si単結晶を成長させる場合について説明したが、CZ法を用いてSi以外の単結晶を成長させる場合にも本発明を同様に適用することができる。
【図面の簡単な説明】
【図1】引き上げられた単結晶と溶融液との界面近傍を示す断面図である。
【図2】本発明の実施の形態に係る結晶成長装置を摸式的に示した断面図である。
【図3】実施の形態に係る結晶成長装置の検出手段により検出されるフュージョンリング近傍における輝度分布と、フュージョンリングの幅との関係を模式的に示した曲線図である。
【図4】実施の形態に係る温度算出・制御手段の機能を示すブロック図である。
【図5】計算機によるシミュレ−ションにより得られた外乱を与えた場合の実施例及び比較例に係る応答特性結果を示す線図である。
【符号の説明】
12 坩堝
13 溶融液
15 加熱手段
16 昇降手段
20 単結晶
21 フュージョンリング
30 計測・検出手段
33 温度算出・制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a single crystal diameter control method and a crystal growth apparatus, and more particularly, for growing a single crystal such as a silicon single crystal used as a semiconductor material while controlling the diameter of the single crystal. The present invention relates to a method for controlling the diameter of a single crystal and a crystal growth apparatus.
[0002]
[Prior art]
There are various methods for growing a single crystal. Among the most typical Czochralski method (hereinafter referred to as CZ method), for example, on the surface of a silicon (hereinafter referred to as Si) melt. A Si single crystal having a cylindrical shape is grown by bringing the seed crystal into contact and pulling it up while controlling the pulling rate. Since the Si single crystal to be pulled is later finished into a cylindrical ingot by grinding the outer peripheral portion, the product yield decreases when the diameter of the pulled Si single crystal in the horizontal section varies. Considering the product yield in this way, it is desirable that the single crystal to be pulled up maintains the same diameter value over the entire straight body.
[0003]
For this reason, diameter control is conventionally performed in pulling a single crystal, and as a diameter control method in the CZ method, the deviation between the measured value of the single crystal diameter and the target diameter value is fed back to the pulling speed to assist. In particular, a method for adjusting the heater temperature has been proposed. Japanese Laid-Open Patent Publication No. 4-219388 discloses a control method in which a feedback control system is designed and only a pulling speed is set as an operation amount.
[0004]
JP-A-4-108687 discloses the weight of a single crystal being pulled up every predetermined time, calculates the single crystal outer diameter from the amount of change in the single crystal weight, and calculates the calculated single crystal outer diameter. Discloses a method for controlling the diameter of a single crystal by controlling the temperature of a heater, which is a heating means, in accordance with the deviation between the target diameter value and the target diameter value.
[0005]
[Problems to be solved by the invention]
However, in the single crystal diameter control method using the pulling speed of the single crystal as described above as the manipulated variable, the pulling speed is adjusted to control the single crystal diameter, and therefore the pulling speed is changed as the single crystal is pulled. In other words, the thermal conditions that greatly affect crystal growth or crystal defects must be changed. Therefore, even if single crystals having the same diameter are obtained, the thermal conditions of the single crystal growth process are changed in accordance with the fluctuation of the pulling rate, so that crystal defects are likely to occur, and high quality single crystals are obtained. There was a problem that it was difficult.
[0006]
On the other hand, in the method of controlling the diameter of the single crystal by controlling the temperature of the heater as the heating means, after the heater temperature is changed, the effect appears and the diameter starts to change. Since there is a so-called dead time, there is a problem that the response is poor, the diameter control performance of the single crystal is poor, and it is not practical.
[0007]
The present invention has been made in view of the above problems, and a single crystal diameter control method capable of efficiently producing a high-quality single crystal with few crystal defects while accurately controlling the diameter of the single crystal. And it aims at providing a crystal growth device.
[0008]
[Means for solving the problems and effects thereof]
In order to achieve the above object, the method (1) for controlling the diameter of a single crystal according to the present invention fixes the pulling rate constant so that the crystal defect quality is stabilized over the entire straight body in the silicon single crystal manufacturing process. A single crystal diameter control method for growing a single crystal while maintaining a target diameter when pulling up,
When setting the operation amount of the heating means temperature disposed around the crucible for melting the crystal raw material,
The response of the single crystal diameter value when the heating means is changed stepwise is preliminarily obtained to assume a transfer function of a first-order lag system, and the measured value of the single crystal diameter and the stored target diameter value In addition to the main loop that calculates the manipulated variable by feeding back the deviation from
The amount of influence over time of the width of the fusion ring that is brighter than the surrounding that appears near the interface between the single crystal and the melt is determined in advance, and the width of the fusion ring that is continuously detected. The diameter of the single crystal is controlled to the target diameter by calculating the amount of operation of the temperature of the heating means by a minor loop that feeds back the amount of operation obtained from the change over time of the material. It is characterized by that.
In addition, the method (2) for controlling the diameter of a single crystal according to the present invention changes the response characteristic of the single crystal diameter value when the heating means temperature is changed stepwise, and the heating means temperature is changed stepwise. It is characterized in that it is obtained by performing a step response test for examining the response of the single crystal diameter value in the case of the above.
[0009]
When pulling and growing a single crystal from the melt, the height Hk of the interface 22 between the single crystal 20 and the melt 13 is higher than the height Hy of the melt surface, as shown in FIG. As a result, a ring-shaped portion (hereinafter referred to as a fusion ring) 21 having a higher luminance than the surrounding having a meniscus angle (inclination angle) θ is formed between the interface end and the melt surface. The fusion ring 21 is inclined with respect to the melt surface, and the radiated light from the inner wall surface of the quartz crucible is easily reflected, so that it appears bright and bright compared to other portions of the melt surface. It is possible to obtain the fusion ring width W by imaging the fusion ring 21 and performing image processing.
The fusion ring width W widens before the diameter of the single crystal 20 increases, and narrows before the diameter of the single crystal 20 decreases. The time-dependent variation information of the fusion ring width W is used as prior information of the variation of the single crystal diameter. Can do.
[0010]
According to the method for controlling the single crystal diameter, in addition to the deviation between the actual measured value of the single crystal diameter and the target diameter value, based on the temporal information of the fusion ring width as the preceding information of the fluctuation of the single crystal diameter, Since the temperature of the heating means is set, it is possible to solve the so-called response delay problem that the response time from the setting of the temperature of the heating means, which has been a problem in the past, until the diameter of the single crystal fluctuates is large. .
In other words, it is possible to accurately predict the future value of the single crystal diameter using the fluctuation information of the fusion ring width before the actual measurement value of the single crystal diameter is known, thereby solving the response delay problem. Can do. In addition, since the pulling speed is not used to control the diameter of the single crystal, it is possible to pull the single crystal stably with the pulling speed almost constant, and a high-quality single crystal with few crystal defects can be obtained.
[0011]
A single crystal growth apparatus (1) according to the present invention comprises a crucible for melting a crystal raw material,
Heating means disposed around the crucible;
Lifting and lowering means for pulling up the silicon single crystal while growing it from the melt in the crucible;
Measuring means for measuring the diameter of the single crystal to be grown;
Detection means for detecting the width of the fusion ring having a higher brightness than the surroundings appearing in the vicinity of the interface between the single crystal and the melt ;
A temperature calculating means for calculating a set temperature of the heating means based on a deviation between an actual measurement value of the single crystal diameter and a target diameter value, and information over time of the width of the fusion ring having the high brightness;
Control means for controlling the amount of power supplied to the heating means based on the calculated set temperature,
The temperature calculation / control means stores the measured value of the single crystal diameter detected by the detection means from the amount of influence that the time-dependent variation of the width of the fusion ring obtained in advance has on the single crystal diameter. In addition to the main loop for calculating the manipulated variable of the heating means temperature by feeding back the deviation from the target diameter value, the variation over time of the fusion ring width determined in advance affects the single crystal diameter. From the influence amount, it has a function of inserting and feeding back a minor loop for adding the operation amount of the heating means temperature to be operated according to the width of the fusion ring detected by the detection means. It is said.
In the single crystal growth apparatus (2) according to the present invention, in the single crystal growth apparatus (1), the temperature calculation / control unit includes a change over time in the width of the fusion ring in the single crystal diameter. As the influence amount exerted, the response characteristic obtained by carrying out a step response test for examining a response of the single crystal diameter value when the heating means temperature is changed stepwise is stored. Yes.
[0012]
According to the crystal growth apparatus described above, the width of the fusion ring formed in the vicinity of the interface between the melt and the growing single crystal is detected, and the time-dependent information of the fusion ring width that is the preceding information of the fluctuation of the single crystal diameter The single crystal can be pulled up while controlling the amount of power supplied to the heating means based on the above, until the diameter of the single crystal fluctuates after setting the temperature of the heating means, which has been a problem in the past Efficiently produce high-quality single crystals with few crystal defects, while solving the so-called response delay problem of large response time, and enabling stable single crystal pulling with a substantially constant pulling speed. Can do.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a single crystal diameter control method and a crystal growth apparatus according to the present invention will be described below with reference to the drawings.
FIG. 2 is a cross-sectional view schematically showing the crystal growth apparatus according to the embodiment, in which 11 denotes a furnace body. A quartz crucible 12a having a bottomed cylindrical shape is disposed in a substantially central portion in the furnace body 11, and the quartz crucible 12a is filled with a melt 13 obtained by melting a raw material for single crystal. ing. The quartz crucible 12a is held by a graphite susceptor 12b, and the crucible 12 is constituted by the quartz crucible 12a and the graphite susceptor 12b. A rotating shaft 14 is attached to the lower portion of the graphite susceptor 12b, and a crucible rotating means and a crucible lifting / lowering means (both not shown) are connected to the lower portion of the rotating shaft 14, and the crucible 12 is rotated by these crucible rotating / lifting means. Is rotated at a predetermined speed and is driven in the vertical direction. Further, a cylindrical heater 15a is disposed on the outer periphery of the graphite susceptor 12b, and a power supply means 15b is connected to the heater 15a. The heating means 15 includes the heater 15a and the power supply means 15b. Has been. And the temperature of the heater 15a is adjusted by changing the electric power supply amount from the electric power supply means 15b, and the temperature of the melt 13 in the crucible 12 is adjusted. Further, a heat retaining cylinder 15 c is disposed between the heater 15 a and the furnace body 11.
[0014]
A hollow cylindrical casing 11 a is formed above the furnace body 11, a wire 17 is suspended on the same axis as the rotating shaft 14 of the crucible 12 in the casing 11 a, and a seed holder 17 a is disposed at the lower end of the wire 17. The seed crystal 17b is attached to the seed holder 17a. A wire pulling device 19 is disposed on the upper portion of the casing 11a via a wire rotating device 18. The wire rotating device 18 and the wire pulling device 19 include motors 18a and 19a, respectively, and the wire 17 rotates when the motor 18a is driven. When the motor 19a is driven, the wire 17 moves in the vertical direction. The lifting / lowering means 16 includes the wire 17, the wire rotating device 18, the wire pulling device 19 and the like.
[0015]
An observation window 11b is formed on the top of the furnace body 11, and a two-dimensional CCD camera 31 is disposed at a predetermined position facing the single crystal 20 with the observation window 11b interposed therebetween. The CCD camera 31 is connected to the image processing unit 32. It is connected. The CCD camera 31 and the image processing unit 32 are included in the measurement / detection means 30 so that the CCD camera 31 images the luminance distribution in the vicinity of the fusion ring 21 formed around the single crystal 20. It has become.
[0016]
Then, as shown in FIG. 3, this luminance signal is processed in the image processing unit 32, the distance between two luminance intensities at a predetermined threshold value L is calculated, and the width W of the fusion ring 21 is continuously increased. It is to be detected. The measuring / detecting means 30 is configured such that the threshold value is corrected in accordance with a change in the maximum level of the luminance signal so that the width W is prevented from being affected by the luminance intensity. It has become. The measuring / detecting means 30 can also measure the diameter D of the single crystal 20.
[0017]
The measurement / detection means 30 is connected to a temperature calculation / control means 33. The temperature calculation / control means 33 takes in the actual values of the fusion ring width and the single crystal diameter, the actual measurement value of the single crystal diameter and the target. The operation value of the heater temperature is calculated by comparing with the diameter value, and in addition to that, the actual value of the fusion ring width W is compared with the actual measurement value of the fusion ring width W a predetermined time before the operation amount of the heater temperature. And an output unit that outputs a control signal for the amount of supplied power required based on the calculated operation amount of the heater temperature to the power supply means 15b.
[0018]
The temperature calculation / control unit 33 is connected to the power supply unit 15b and is also connected to the motor 19a, and the amount of supplied power required according to the fluctuation state of the fusion ring width W calculated by the temperature calculation / control unit 33. The pulling speed information is output to the heating means 15 and the lifting / lowering means 16.
[0019]
If this apparatus constructed using such, for example, a single crystal 20 is grown to a predetermined target diameter D S, then it is possible grow target diameter D S single crystal 20 while maintaining a first quartz crucible 12a The raw material for Si single crystal is filled therein, and the crucible 12 is heated to a predetermined temperature by the heating means 15 to form the melt 13. Next, the crucible 12 is rotated at a predetermined speed, and the seed crystal 17 b is brought into contact with the surface of the melt 13. Then, the wire 17 is pulled up while rotating at a predetermined speed, and the single crystal 20 formed by the solidification of the melt 13 is grown.
[0020]
By then measuring and detecting means 30, after the shoulder is formed single crystal 20 was confirmed to be grown to a predetermined target diameter D S, to set and fix the pull rate to a predetermined value. Next, while continuously detecting the width W of the fusion ring 21, the amount of power supplied by the power supply means 15b is adjusted according to the fluctuation state of the fusion ring width W, so that the diameter D of the single crystal 20 is a predetermined target diameter D. Control to be maintained at S. In order to prevent the upper surface level of the melt 13 from being lowered and the diameter D of the single crystal 20 from fluctuating as the single crystal 20 is pulled up, the upper surface level of the melt 13 is always constant using the crucible lifting / lowering means. Control to maintain the height.
[0021]
FIG. 4 is a block diagram for explaining the function of the temperature calculation / control unit 33. The temperature calculation / control unit 33 adds the deviation between the measured value of the single crystal diameter and the stored target diameter value as an addition point 1. In addition to the main loop that calculates the amount of operation of the heater temperature by feeding back to the heater, the heater to be operated is determined based on the amount of influence that the change over time in the fusion ring width has on the single crystal diameter. It has a function of adding the manipulated variable of temperature to the addition point 2. That is, a minor loop for calculating the heater temperature manipulated variable from the fluctuation amount of the fusion ring width W is inserted into the main loop and fed back to the addition point 2.
[0022]
As the influence of the heater temperature on the diameter of the single crystal 20, a transfer function of a first order lag system with a dead time is assumed. The time constant and dead time of the process are obtained by performing a step response test for examining the response of the single crystal diameter value when the heater temperature is changed stepwise. Based on the response characteristics thus obtained, for example, an improved limit sensitivity method (a so-called method for adjusting PID control parameters in relation to a proportional gain and a limit period when the oscillation state is exceeded by exceeding the stability limit by proportional control). In the limit sensitivity method, controllers C 1 and C 2 are designed by a parameter adjustment method using a multiplier factor determined in advance from the standardized wasted time obtained by dividing the wasted time by the limit period and the type of transfer characteristic. .
[0023]
FIG. 5 is a diagram showing the results obtained by computer simulation, showing the response characteristics when a step-like change is given as a disturbance, and the response characteristics of a simple feedback control system ( Compared to curve A), the control system response characteristics (curve B) using information on fluctuations in the fusion ring width over time has yielded superior characteristics and uses information on fluctuations in the fusion ring width over time. By doing so, it became possible to control the single crystal diameter excellent in disturbance suppression, and the diameter control characteristics were greatly improved.
[0024]
As is apparent from the above description, according to the method for controlling the single crystal diameter according to the embodiment, in addition to the deviation between the measured value of the single crystal diameter and the target diameter value, the vicinity of the interface between the single crystal 20 and the melt 13 Since the temperature of the heating means 15 is set on the basis of the time-lapse information of the fusion ring width W appearing in FIG. 1, until the diameter of the single crystal 20 fluctuates after setting the temperature of the heating means 15 which has been a problem in the past. The so-called response delay problem that the response time is long can be solved.
In addition, since the pulling speed is not used for controlling the single crystal diameter, it is possible to pull the single crystal 20 stably with a substantially constant pulling speed, and it is possible to obtain a high quality single crystal 20 with few crystal defects.
[0025]
Also, according to the crystal growth apparatus according to the embodiment, the width W of the fusion ring 21 formed in the vicinity of the interface between the melt 13 and the growing single crystal 20 is detected, and this is the preceding information on the fluctuation of the single crystal diameter. Since the single crystal 20 can be pulled up while controlling the amount of electric power supplied to the heating means 15 based on the information of the fusion ring width W over time, the temperature of the heating means 15 that has been a problem in the past is set. While solving the so-called response delay problem that the response time until the diameter of the single crystal 20 fluctuates is large, it is possible to pull the single crystal 20 stably with a substantially constant pulling speed, and high quality with few crystal defects The single crystal 20 can be efficiently manufactured.
[0026]
In the above-described embodiment, the case where the two-dimensional CCD camera 31 is used as the measurement / detection unit 30 has been described. However, scanning may be performed using a one-dimensional CCD camera.
[0027]
In the above-described embodiment, the case where the Si single crystal is grown has been described. However, the present invention can be similarly applied to the case where a single crystal other than Si is grown using the CZ method.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the vicinity of an interface between a pulled single crystal and a melt.
FIG. 2 is a cross-sectional view schematically showing a crystal growth apparatus according to an embodiment of the present invention.
FIG. 3 is a curve diagram schematically showing the relationship between the luminance distribution in the vicinity of the fusion ring detected by the detection means of the crystal growth apparatus according to the embodiment and the width of the fusion ring.
FIG. 4 is a block diagram illustrating functions of a temperature calculation / control unit according to the embodiment.
FIG. 5 is a diagram showing response characteristic results according to an example and a comparative example when a disturbance obtained by simulation by a computer is applied.
[Explanation of symbols]
12 Crucible 13 Melt 15 Heating means 16 Lifting means 20 Single crystal 21 Fusion ring 30 Measuring / detecting means 33 Temperature calculation / control means

Claims (4)

シリコン単結晶製造プロセスにおいて直胴部全体に亙って結晶欠陥品質が安定するよう引き上げ速度を一定に固定して引き上げる際に目標直径を維持して単結晶を成長させる単結晶直径の制御方法であって、
結晶用原料を溶融させる坩堝の周囲に配設された加熱手段温度の操作量を設定する際に、
前記加熱手段温度をステップ状に変化させた場合の前記単結晶直径値の応答をあらかじめ求めておき一次遅れ系の伝達関数を仮定するとともに、前記単結晶直径の実測値と記憶されている前記目標直径値との偏差をフィ−ドバックして前記操作量を算出する主ル−プに加え、
前記単結晶と溶融液との界面近傍に現れる周囲よりも高輝度のフュージョンリングの幅の経時的な変動が前記単結晶直径に及ぼす影響量をあらかじめ求めておき、連続的に検出した前記フュージョンリングの幅の経時的な変動から求めた前記操作量を足しあわせてフィ−ドバックするマイナ−ル−プにより前記加熱手段温度の操作量を演算することにより、単結晶の直径値を目標直径値に制御することを特徴とする単結晶直径の制御方法。
A single crystal diameter control method that grows a single crystal while maintaining the target diameter when pulling up with a fixed pulling speed fixed so that the crystal defect quality is stabilized over the entire straight body in the silicon single crystal manufacturing process. There,
When setting the operation amount of the heating means temperature disposed around the crucible for melting the crystal raw material,
The response of the single crystal diameter value when the heating means temperature is changed stepwise is obtained in advance, assuming a transfer function of a first-order lag system, and the measured value of the single crystal diameter and the stored target In addition to the main loop that calculates the manipulated variable by feeding back the deviation from the diameter value,
The amount of influence that the time-dependent variation of the width of the fusion ring having higher brightness than the surrounding that appears in the vicinity of the interface between the single crystal and the melt has on the single crystal diameter is obtained in advance, and the fusion ring is continuously detected. The diameter of the single crystal is set to the target diameter by calculating the amount of operation of the heating means temperature by a minor loop that is fed back by adding the amount of operation obtained from the variation of the width of the material over time. A method of controlling the diameter of a single crystal, characterized by controlling.
前記加熱手段温度をステップ状に変化させた場合の前記単結晶直径値の応答特性を、前記加熱手段温度をステップ状に変化させた場合の前記単結晶直径値の応答を調べるステップ応答試験を実施することにより求めることを特徴とする請求項1記載の単結晶直径の制御方法。A step response test was conducted to examine the response characteristics of the single crystal diameter value when the heating means temperature was changed stepwise, and the response of the single crystal diameter value when the heating means temperature was changed stepwise. The method for controlling the single crystal diameter according to claim 1, wherein the single crystal diameter is obtained by: 結晶用原料を溶融させる坩堝と、
該坩堝の周囲に配設された加熱手段と、
前記坩堝内の溶融液よりシリコン単結晶を成長させながら引き上げる昇降手段と、
成長する前記単結晶の直径を計測する計測手段と、
前記単結晶と前記溶融液との界面近傍に表れる周囲よりも高輝度のフュージョンリングの幅を検出する検出手段と、
前記単結晶直径の実測値と目標直径値との偏差と、前記高輝度の前記フュージョンリングの幅の経時的な情報とを基に前記加熱手段の設定温度を算出する温度算出手段と、
算出された前記設定温度に基づいて前記加熱手段への供給電力量を制御する制御手段とを備え、
前記温度算出・制御手段が、あらかじめ求めておいた前記フュージョンリングの幅の経時的な変動が前記単結晶直径に及ぼす影響量から、前記検出手段で検出した前記単結晶直径の実測値と記憶されている目標直径値との偏差をフィ−ドバックして前記加熱手段温度の操作量を算出する主ル−プに加え、あらかじめ求めておいた前記フュージョンリング幅の経時的な変動が前記単結晶直径に及ぼす影響量から、前記検出手段で検出したフュージョンリングの幅により操作すべき前記加熱手段温度の操作量を足しあわせるマイナ−ル−プを挿入してフィ−ドバックする機能を有するものであることを特徴とする結晶成長装置。
A crucible for melting the crystal raw material;
Heating means disposed around the crucible;
Lifting and lowering means for pulling up the silicon single crystal while growing it from the melt in the crucible;
Measuring means for measuring the diameter of the single crystal to be grown;
Detection means for detecting the width of the fusion ring having a higher brightness than the surroundings appearing in the vicinity of the interface between the single crystal and the melt ;
A temperature calculating means for calculating a set temperature of the heating means based on a deviation between an actual measurement value of the single crystal diameter and a target diameter value, and information over time of the width of the fusion ring having the high brightness;
Control means for controlling the amount of power supplied to the heating means based on the calculated set temperature,
The temperature calculation / control means stores the actual value of the single crystal diameter detected by the detection means from the amount of influence that the temporal variation of the width of the fusion ring obtained in advance has on the single crystal diameter. In addition to the main loop for calculating the operation amount of the heating means temperature by feeding back the deviation from the target diameter value, the change over time of the fusion ring width obtained in advance is the single crystal diameter It has a function of inserting and feeding back a minor loop for adding the operation amount of the heating means temperature to be operated by the width of the fusion ring detected by the detection means from the influence amount on the detection means. A crystal growth apparatus characterized by the above.
前記温度算出・制御手段には、前記フュージョンリングの幅の経時的な変動が前記単結晶直径に及ぼす影響量として、前記加熱手段温度をステップ状に変化させた場合の前記単結晶直径値の応答を調べるステップ応答試験を実施することにより求められた前記応答特性が記憶されていることを特徴とする請求項3記載の単結晶成長装置。The temperature calculation / control means includes a response of the single crystal diameter value when the temperature of the heating means is changed in steps as an influence amount on the single crystal diameter due to a change in the width of the fusion ring over time. 4. The single crystal growth apparatus according to claim 3, wherein the response characteristic obtained by performing a step response test is stored.
JP19697699A 1999-07-12 1999-07-12 Single crystal diameter control method and crystal growth apparatus Expired - Lifetime JP4035924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19697699A JP4035924B2 (en) 1999-07-12 1999-07-12 Single crystal diameter control method and crystal growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19697699A JP4035924B2 (en) 1999-07-12 1999-07-12 Single crystal diameter control method and crystal growth apparatus

Publications (2)

Publication Number Publication Date
JP2001019588A JP2001019588A (en) 2001-01-23
JP4035924B2 true JP4035924B2 (en) 2008-01-23

Family

ID=16366780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19697699A Expired - Lifetime JP4035924B2 (en) 1999-07-12 1999-07-12 Single crystal diameter control method and crystal growth apparatus

Country Status (1)

Country Link
JP (1) JP4035924B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110685007A (en) * 2019-10-11 2020-01-14 浙江晶盛机电股份有限公司 Method for measuring crystal diameter in process of growing silicon single crystal by Czochralski method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4955237B2 (en) * 2005-08-12 2012-06-20 Sumco Techxiv株式会社 Control system and method for time-varying control target with dead time
JP5116222B2 (en) * 2005-08-12 2013-01-09 Sumco Techxiv株式会社 Single crystal manufacturing apparatus and method
JP4918897B2 (en) * 2007-08-29 2012-04-18 株式会社Sumco Silicon single crystal pulling method
JP4947044B2 (en) * 2008-12-16 2012-06-06 株式会社Sumco Melt surface position detection device for single crystal pulling device and single crystal pulling device
JP5446277B2 (en) * 2009-01-13 2014-03-19 株式会社Sumco Method for producing silicon single crystal
JP5182234B2 (en) * 2009-06-22 2013-04-17 株式会社Sumco Method for producing silicon single crystal
DE102009056638B4 (en) * 2009-12-02 2013-08-01 Siltronic Ag Method for drawing a single crystal of silicon with a section of constant diameter
JP5854757B2 (en) * 2011-10-21 2016-02-09 三菱マテリアルテクノ株式会社 Single crystal ingot diameter control method
JP5716689B2 (en) * 2012-02-06 2015-05-13 信越半導体株式会社 Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
KR101874712B1 (en) 2016-12-07 2018-07-04 에스케이실트론 주식회사 Ingot growth control apparatus and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110685007A (en) * 2019-10-11 2020-01-14 浙江晶盛机电股份有限公司 Method for measuring crystal diameter in process of growing silicon single crystal by Czochralski method
CN110685007B (en) * 2019-10-11 2021-02-12 浙江晶盛机电股份有限公司 Method for measuring crystal diameter in process of growing silicon single crystal by Czochralski method

Also Published As

Publication number Publication date
JP2001019588A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
CN109196144B (en) Method and apparatus for manufacturing silicon single crystal
EP2011905B1 (en) Method for measuring distance between reference reflector and melt surface
US6241818B1 (en) Method and system of controlling taper growth in a semiconductor crystal growth process
US9260796B2 (en) Method for measuring distance between lower end surface of heat insulating member and surface of raw material melt and method for controlling thereof
CN111690980A (en) Crystal growth control method, device and system for shouldering process and computer storage medium
KR20020081287A (en) Method for controlling growth of a silicon crystal to minimize growth rate and diameter deviations
JP4035924B2 (en) Single crystal diameter control method and crystal growth apparatus
KR100669300B1 (en) Method and apparatus for preparing molten silicon melt from polycrystalline silicon charge
KR20120030028A (en) Single crystal pulling-up apparatus and single crystal pulling-up method
JP6939714B2 (en) Method for measuring the distance between the melt surface and the seed crystal, method for preheating the seed crystal, and method for producing a single crystal
JP3704710B2 (en) Method of setting seed crystal deposition temperature and silicon single crystal manufacturing apparatus
JP3867476B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JP2003176199A (en) Apparatus and method for pulling single crystal
JP3484758B2 (en) Crystal growth apparatus and crystal growth method
KR101540863B1 (en) Apparatus for controlling diameter of single crystal ingot and Ingot growing apparatus having the same and method thereof
KR102064617B1 (en) Ingot growing controller and ingot growing control method for it
CN216304033U (en) System for monitoring state of liquid level of silicon melt in single crystal furnace and state of crucible
WO2022075061A1 (en) Method for producing single crystals
JP3611364B2 (en) Single crystal diameter control method
US20240125006A1 (en) Method for detecting surface state of raw material melt, method for producing single crystal, and apparatus for producing cz single crystal
JPS61122187A (en) Apparatus for pulling up single crystal
JP3670504B2 (en) Silicon single crystal manufacturing method
KR101379798B1 (en) Apparatus and method for growing monocrystalline silicon ingots
KR101607162B1 (en) Single crystal growing method
JP2004099346A (en) Apparatus and process for pulling single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4035924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term