JPH07133186A - Apparatus and process for production of silicon single crystal - Google Patents
Apparatus and process for production of silicon single crystalInfo
- Publication number
- JPH07133186A JPH07133186A JP29610993A JP29610993A JPH07133186A JP H07133186 A JPH07133186 A JP H07133186A JP 29610993 A JP29610993 A JP 29610993A JP 29610993 A JP29610993 A JP 29610993A JP H07133186 A JPH07133186 A JP H07133186A
- Authority
- JP
- Japan
- Prior art keywords
- melt
- single crystal
- radiant heat
- temperature difference
- crucible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 64
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 22
- 239000010703 silicon Substances 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 239000000155 melt Substances 0.000 claims abstract description 59
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 29
- 239000001301 oxygen Substances 0.000 claims abstract description 29
- 239000011810 insulating material Substances 0.000 claims abstract description 16
- 239000000463 material Substances 0.000 claims description 2
- 238000009826 distribution Methods 0.000 abstract description 11
- 230000005855 radiation Effects 0.000 abstract description 8
- 238000001816 cooling Methods 0.000 abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 2
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、シリコン単結晶の製造
装置および製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for manufacturing a silicon single crystal.
【0002】[0002]
【従来の技術】半導体素子の基板には主としてシリコン
単結晶が用いられているが、前記単結晶の製造方法の一
つとして、るつぼ内の原料融液から円柱状の単結晶を引
き上げるチョクラルスキー法(以下CZ法という)が用
いられている。CZ法においては、単結晶製造装置のチ
ャンバ内に設置したるつぼに原料である多結晶を充填
し、前記るつぼの外周に設けたヒータによって原料を加
熱溶解した上、シードホルダに取り付けた種子結晶を融
液に浸漬し、シードホルダおよびるつぼを同方向または
逆方向に回転しつつシードホルダを引き上げて単結晶を
成長させる。2. Description of the Related Art A silicon single crystal is mainly used for a substrate of a semiconductor element. One of the methods for producing the single crystal is a Czochralski method for pulling a cylindrical single crystal from a raw material melt in a crucible. The method (hereinafter referred to as the CZ method) is used. In the CZ method, a crucible installed in a chamber of a single crystal manufacturing apparatus is filled with a polycrystal as a raw material, the raw material is heated and melted by a heater provided on the outer periphery of the crucible, and then a seed crystal attached to a seed holder is attached. A single crystal is grown by immersing in the melt and pulling up the seed holder while rotating the seed holder and the crucible in the same direction or opposite directions.
【0003】[0003]
【発明が解決しようとする課題】シリコン単結晶中に含
まれる酸素の濃度は、単結晶の軸方向での変化が大き
く、テールに近づくにつれて濃度が低下する。従って、
単結晶のトップからテールまでの全長にわたって濃度規
格を満足するとは限らない。この酸素濃度は融液の自然
対流に左右され、前記自然対流が抑制されれば低酸素濃
度となる。融液の自然対流を抑制するには、融液の上下
温度差を小さくすればよい。しかしながらCZ法による
シリコン単結晶の製造において、融液の上下温度差を制
御する装置や制御方法は開示されていない。The concentration of oxygen contained in a silicon single crystal greatly changes in the axial direction of the single crystal, and the concentration decreases as it approaches the tail. Therefore,
Concentration standards are not always satisfied over the entire length of the single crystal from top to tail. The oxygen concentration depends on the natural convection of the melt, and if the natural convection is suppressed, the oxygen concentration becomes low. In order to suppress the natural convection of the melt, the difference between the upper and lower temperatures of the melt may be reduced. However, in the production of silicon single crystal by the CZ method, there is no disclosure of a device or a control method for controlling the upper and lower temperature difference of the melt.
【0004】特開昭59−57986は複数段のヒータ
のパワーを制御し、固液界面近傍の温度勾配を低く保つ
単結晶引き上げ方法で、シードホルダ部の温度とるつぼ
底の温度とを測定しながら引き上げ結晶部加熱用の上段
ヒータのパワーを制御するものである。しかし、この方
法は融液の上下温度差を検出するものではないので、融
液の自然対流を制御することはできない。また、特開平
3−137088は固液界面近傍の温度を熱電対により
直接測定して融液温度制御を行う単結晶育成方法である
が、熱電対によって融液が汚染されてOSF発生の原因
となる。更に、高価な熱電対を単結晶引き上げのつど交
換しなければならず、コスト高を招く。Japanese Unexamined Patent Publication (Kokai) No. 59-57986 discloses a method of pulling a single crystal in which the power of a plurality of heaters is controlled to keep the temperature gradient near the solid-liquid interface low, and the temperature of the seed holder and the temperature of the crucible bottom are measured. While controlling the power of the upper heater for heating the pulling crystal part. However, since this method does not detect the temperature difference between the upper and lower sides of the melt, it is not possible to control the natural convection of the melt. Further, Japanese Patent Laid-Open No. 3-137088 is a method for growing a single crystal in which the temperature near the solid-liquid interface is directly measured by a thermocouple to control the melt temperature. However, the thermocouple contaminates the melt and causes the generation of OSF. Become. Furthermore, the expensive thermocouple must be replaced every time the single crystal is pulled, which results in high cost.
【0005】本発明は上記従来の問題点に着目してなさ
れたもので、軸方向酸素濃度分布の均一な単結晶、ある
いは酸素濃度の低い単結晶を得ることができるようなシ
リコン単結晶の製造装置および製造方法を提供すること
を目的としている。The present invention has been made by paying attention to the above-mentioned conventional problems, and produces a silicon single crystal capable of obtaining a single crystal having a uniform axial oxygen concentration distribution or a single crystal having a low oxygen concentration. An object is to provide an apparatus and a manufacturing method.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、本発明に係るシリコン単結晶の製造装置は、るつぼ
の下方に位置する出力可変の下部ヒータまたは下部クー
ラ、融液上方に位置する昇降自在の輻射熱反射板、前記
輻射熱反射板を取り囲むように位置する昇降自在の輻射
熱反射板保温材のいずれか一つ以上と、融液上部および
融液下部の温度測定手段と、前記二つの測定値に基づい
て融液の上下温度差を算出する手段と、算出した前記温
度差の値とあらかじめ定めた温度差プロファイルとを比
較する手段と、前記比較結果に基づいて下部ヒータまた
は下部クーラの出力、輻射熱反射板の位置、輻射熱反射
板保温材の位置あるいはるつぼの位置を制御する手段を
備える構成とし、本発明に係るシリコン単結晶の製造方
法は、チョクラルスキー法によるシリコン単結晶の製造
において、融液表面の温度とるつぼ底面の温度とを測定
することによって融液の上下温度差を算出した上、前記
温度差が単結晶中の酸素濃度と融液の上下温度差との相
関に基づいて設定した温度差プロファイルに追従するよ
うに、下部ヒータまたは下部クーラの出力、輻射熱反射
板の上下方向位置、輻射熱反射板保温材の上下方向位
置、あるいはるつぼの上下方向位置のいずれか一つ以上
を制御することを特徴としている。In order to achieve the above object, the apparatus for producing a silicon single crystal according to the present invention comprises a lower heater or a lower cooler having a variable output located below a crucible, and an elevating unit located above a melt. Free radiant heat reflection plate, any one or more of the radiant heat reflection plate heat insulating material that can be moved up and down so as to surround the radiant heat reflection plate, temperature measuring means of the melt upper part and the melt lower part, and the two measured values Means for calculating the upper and lower temperature difference of the melt based on, a means for comparing the calculated temperature difference value and a predetermined temperature difference profile, the output of the lower heater or the lower cooler based on the comparison result, The method for producing a silicon single crystal according to the present invention is a Czochraluss, comprising a means for controlling the position of the radiant heat reflector, the position of the radiant heat reflector heat insulating material or the position of the crucible. In the production of silicon single crystals by the -method, the upper and lower temperature differences of the melt are calculated by measuring the temperature of the melt surface and the temperature of the bottom of the crucible, and the temperature difference is the oxygen concentration in the single crystal and the melt. The output of the lower heater or lower cooler, the vertical position of the radiant heat reflector, the vertical position of the radiant heat reflector heat insulator, or the crucible so that it follows the temperature difference profile set based on the correlation with the temperature difference between the upper and lower sides. It is characterized by controlling any one or more of the vertical positions.
【0007】[0007]
【作用】上記構成によれば、融液の上下温度差を検出
し、その値が単結晶中の酸素濃度と前記温度差との相関
に基づいて設定した温度差プロファイルに従うように、
下部ヒータまたは下部クーラの出力、輻射熱反射板の位
置、輻射熱反射板保温材の位置のいずれか一つ以上ある
いはるつぼの位置を制御することにしたので、融液の自
然対流が抑制され、軸方向酸素濃度分布の均一な単結
晶、あるいは酸素濃度の低い単結晶を得ることができ
る。According to the above construction, the temperature difference between the upper and lower sides of the melt is detected, and the value follows the temperature difference profile set based on the correlation between the oxygen concentration in the single crystal and the temperature difference.
Since it was decided to control any one or more of the output of the lower heater or lower cooler, the position of the radiant heat reflector, the position of the radiant heat reflector heat insulating material, or the position of the crucible, natural convection of the melt was suppressed and the axial direction was controlled. A single crystal with a uniform oxygen concentration distribution or a single crystal with a low oxygen concentration can be obtained.
【0008】[0008]
【実施例】以下に、本発明に係るシリコン単結晶の製造
装置および製造方法の実施例について、図面を参照して
説明する。図1は、融液の上下温度差を制御する手段を
含むシリコン単結晶製造装置の部分模式図である。チャ
ンバ1の中心に回転ならびに昇降自在にるつぼ軸2が設
けられ、このるつぼ軸2の上端にるつぼ3が設置されて
いる。4は前記るつぼ3の底部外面に当接する熱電対
(または黒体温度計)、5はシリコン単結晶、6はシリ
コン単結晶5に加えられる輻射熱を遮断する逆円錐状の
輻射熱反射板、7は前記輻射熱反射板6を取り囲むよう
に設けた円筒状の輻射熱反射板保温材である。前記輻射
熱反射板6は輻射熱反射板昇降装置6aにより、輻射熱
反射板保温材7は輻射熱反射板保温材昇降装置7aによ
り、それぞれ昇降自在である。また、るつぼ3の下方に
はるつぼ軸2を取り巻く環状の下部ヒータ8または水冷
式下部クーラ9のいずれか一方が設置されている。10
はるつぼ3内に貯留された融液、11はるつぼ3を取り
囲むメインヒータ、12は保温筒、13は輻射温度計で
ある。融液10の表面温度は、輻射熱反射板6の上端の
フランジに透明部分を設け、この透明部分を通して輻射
温度計で測定してもよく、輻射熱反射板6の下端に黒体
温度計または熱電対を取着して測定してもよい。なお、
図1には融液の上下温度差を制御する手段として、輻射
熱反射板6、輻射熱反射板保温材7、下部ヒータ8また
は水冷式下部クーラ9を記載したが、実際の単結晶製造
装置ではこれらをすべて備えなくてもよい。Embodiments of the silicon single crystal manufacturing apparatus and method according to the present invention will be described below with reference to the drawings. FIG. 1 is a partial schematic diagram of a silicon single crystal manufacturing apparatus including means for controlling the temperature difference between the upper and lower sides of a melt. A crucible shaft 2 is provided at the center of the chamber 1 so as to be rotatable and movable up and down, and a crucible 3 is installed at an upper end of the crucible shaft 2. 4 is a thermocouple (or a black body thermometer) that abuts on the outer surface of the bottom of the crucible 3, 5 is a silicon single crystal, 6 is a conical radiant heat reflector that blocks radiant heat applied to the silicon single crystal 5, and 7 is It is a cylindrical radiant heat reflector heat insulating material provided so as to surround the radiant heat reflector plate 6. The radiant heat reflector 6 can be raised and lowered by a radiant heat reflector raising / lowering device 6a, and the radiant heat reflector heat insulating material 7 can be raised and lowered by a radiant heat reflector warmer raising / lowering device 7a. Further, below the crucible 3, either an annular lower heater 8 surrounding the crucible shaft 2 or a water-cooled lower cooler 9 is installed. 10
The melt stored in the crucible 3, 11 is a main heater surrounding the crucible 3, 12 is a heat insulating cylinder, and 13 is a radiation thermometer. The surface temperature of the melt 10 may be measured by a radiation thermometer through a transparent portion provided on the flange at the upper end of the radiant heat reflecting plate 6, and a black body thermometer or a thermocouple may be provided at the lower end of the radiant heat reflecting plate 6. You may attach and measure. In addition,
FIG. 1 shows the radiant heat reflection plate 6, the radiant heat reflection plate heat insulating material 7, the lower heater 8 or the water-cooled lower cooler 9 as means for controlling the temperature difference between the upper and lower parts of the melt, but in the actual single crystal production apparatus, these are shown. Does not have to be equipped with all.
【0009】4aはテレメータで、上記熱電対4の出力
信号は回転ならびに昇降するるつぼ軸2の下部に取着し
た送信機を介して受信機に送られ、制御部14に入力さ
れる。8aは下部ヒータ用電源、9aは水冷式下部クー
ラ9の流量を調節するバルブ、2b,6b,7bはそれ
ぞれるつぼ軸2、輻射熱反射板6、輻射熱反射板保温材
7を昇降させるサーボモータ、9bは水冷式下部クーラ
9のバルブ9aを駆動するサーボモータである。また、
2c,6c,7c,8c,9cはパワーアンプ、15は
融液温度差指令部である。Reference numeral 4a is a telemeter, and the output signal of the thermocouple 4 is sent to a receiver through a transmitter attached to the lower part of the crucible shaft 2 that rotates and moves up and down, and is input to the control unit 14. Reference numeral 8a is a power source for the lower heater, 9a is a valve for adjusting the flow rate of the water-cooled lower cooler 9, 2b, 6b and 7b are servomotors for raising and lowering the crucible shaft 2, the radiant heat reflecting plate 6, and the radiant heat reflecting plate heat insulating material 7, 9b. Is a servo motor for driving the valve 9a of the water-cooled lower cooler 9. Also,
2c, 6c, 7c, 8c and 9c are power amplifiers, and 15 is a melt temperature difference command section.
【0010】融液10の表面温度は輻射温度計13によ
り、るつほ底面の温度は熱電対4によってそれぞれ測定
され、制御部14に入力される。制御部14は、融液1
0の上下温度差を所定の温度差プロファイルに追従させ
るため、前記入力値と融液温度差指令部15からの入力
値とに基づいて、るつぼ軸昇降用サーボモータ2b、輻
射熱反射板昇降用サーボモータ6b、輻射熱反射板保温
材昇降用サーボモータ7b、下部ヒータ用電源8a、水
冷式下部クーラのバルブ用サーボモータ9bのいずれか
一つまたは二つ以上を駆動する。The surface temperature of the melt 10 is measured by the radiation thermometer 13 and the temperature of the bottom surface of the crucible is measured by the thermocouple 4, which are input to the control unit 14. The controller 14 controls the melt 1
In order to make the upper and lower temperature difference of 0 follow a predetermined temperature difference profile, based on the input value and the input value from the melt temperature difference command section 15, the crucible shaft raising / lowering servo motor 2b and the radiation heat reflecting plate raising / lowering servo are set. Any one or more of the motor 6b, the radiant heat reflection plate heat insulating material raising / lowering servomotor 7b, the lower heater power source 8a, and the valve servomotor 9b for the water-cooled lower cooler are driven.
【0011】図2は上記制御を行う制御装置のブロック
図の一例で、融液の上下温度差を下部ヒータで制御する
場合を示す。融液表面温度T1 検出手段すなわち図1に
示した輻射温度計13の出力信号と、るつぼ底温度T2
送受信手段すなわちテレメータ4aを介してるつぼ底温
度T2 検出手段すなわち熱電対4の出力信号とが融液上
下温度差Td =T1 −T2 演算手段21に入力され、前
記演算結果は融液温度差指令信号T0 出力手段すなわち
図1に示した融液温度差指令部15からの出力信号とと
もに、△T=T0 −Td 演算手段22に入力される。ま
た、制御限界値△TL 記憶手段23および前記△T=T
0 −Td 演算手段22の出力信号は、△TL と△Tとの
比較判定手段24によって比較・判定され、電力指令信
号W0 出力手段25または△Tに基づく電力W1 の設定
・演算手段26に入力される。前記W1 の演算結果は、
電力補正指令信号W1 出力手段27に入力される。FIG. 2 is an example of a block diagram of a control device which performs the above control, and shows a case where the lower heater controls the temperature difference between the upper and lower portions of the melt. Melt surface temperature T1 detection means, that is, the output signal of the radiation thermometer 13 shown in FIG. 1 and the crucible bottom temperature T2
The crucible bottom temperature T2 detecting means, that is, the output signal of the thermocouple 4, is inputted to the melt temperature difference Td = T1-T2 calculating means 21 via the transmitting / receiving means, ie, the telemeter 4a, and the calculation result is the melt temperature difference command signal. It is input to the ΔT = T0-Td calculating means 22 together with the output signal from the T0 output means, that is, the melt temperature difference command section 15 shown in FIG. Further, the control limit value ΔTL storage means 23 and the above ΔT = T
The output signal of the 0-Td calculation means 22 is compared / determined by the comparison / determination means 24 of ΔTL and ΔT, and is input to the power command signal W0 output means 25 or the setting / calculation means 26 of the power W1 based on ΔT. To be done. The calculation result of W1 is
The power correction command signal W1 is input to the output means 27.
【0012】一方、下部ヒータ電圧検出手段28および
下部ヒータ電流検出手段29の出力信号は下部ヒータ電
力WF 演算手段30に入力され、次いでWF −W0,1 演
算手段31を介してWF −W0,1 と△WL との比較・判
定手段32に入力される。そして、電力制御限界値△W
L 記憶手段33の出力信号と比較した結果が、電力指令
信号W0 出力手段25または△Tに基づく電力W1 の設
定・演算手段26に出力される。On the other hand, the output signals of the lower heater voltage detecting means 28 and the lower heater current detecting means 29 are input to the lower heater power WF calculating means 30, and then WF-W0,1 via the WF-W0,1 calculating means 31. And .DELTA.WL are input to the comparison / determination means 32. Then, the power control limit value ΔW
The result of comparison with the output signal of the L storage means 33 is output to the power command signal W0 output means 25 or the setting / calculation means 26 of the power W1 based on ΔT.
【0013】電力指令信号W0 出力手段25または電力
補正指令信号W1 出力手段27の出力信号は下部ヒータ
電源用パワーアンプ8cで増幅され、下部ヒータ用電源
8aに入力される。これにより、融液の上下温度差を所
定の温度差プロファイルに追従させるように下部ヒータ
8の出力が調節される。The output signal of the power command signal W0 output means 25 or the power correction command signal W1 output means 27 is amplified by the lower heater power supply power amplifier 8c and input to the lower heater power supply 8a. As a result, the output of the lower heater 8 is adjusted so that the upper and lower temperature difference of the melt follows a predetermined temperature difference profile.
【0014】図3は上記制御を行うフローチャートの一
例で、融液の上下温度差を下部ヒータで制御する場合を
示す。各ステップの左肩に記載した数字はステップ番号
である。ステップ1で融液温度差指令信号T0 が読み込
まれ、ステップ2で融液表面温度T1 、るつぼ底温度T
2 および制御限界値△TL が読み込まれる。次にステッ
プ3で△TL とT0 −|T1 −T2 |の絶対値とを比較
し、△TL ≧|T0−|T1 −T2 ‖であればステップ
4で融液温度差指令信号T0 に基づく電力指令信号W0
を出力する。そしてステップ5で下部ヒータ電圧V、下
部ヒータ電流Iおよび電力制御限界値△WL を読み込
み、ステップ6で前記△WL とV・I−W0 の絶対値と
を比較し、△WL ≧|V・I−W0 |の場合はステップ
1に戻る。また、前記ステップ3で△TL <|T0 −|
T1 −T2 ‖の場合はステップ7で電力補正指令信号W
1 を出力した上、ステップ5に進む。そして、ステップ
6で△WL ≧|V・I−W1 |の場合はステップ1に戻
る。ステップ6で△WL <|V・I−W0,1 |の場合は
ステップ7に戻る。FIG. 3 is an example of a flow chart for performing the above control, and shows a case where the lower heater is used to control the upper and lower temperature differences of the melt. The number on the left shoulder of each step is the step number. The melt temperature difference command signal T0 is read in step 1, and the melt surface temperature T1 and crucible bottom temperature T are read in step 2.
2 and the control limit value ΔTL are read. Next, in step 3, ΔTL is compared with the absolute value of T0 − | T1 −T2 |, and if ΔTL ≧ | T0 − | T1 −T2 ‖, the power based on the melt temperature difference command signal T0 is calculated in step 4. Command signal W0
Is output. Then, in step 5, the lower heater voltage V, the lower heater current I, and the power control limit value ΔWL are read, and in step 6, the ΔWL and the absolute value of V · I−W0 are compared, and ΔWL ≧ | V · I If -W0 |, return to step 1. In step 3, ΔTL <| T0 − |
If T1−T2‖, the power correction command signal W is output in step 7.
Output 1 and proceed to step 5. If .DELTA.WL .gtoreq..vertline..vertline.V.multidot.I-W1.vertline. In step 6, the process returns to step 1. If .DELTA.WL <.vertline.V.multidot.I-W0,1.vertline. In step 6, the process returns to step 7.
【0015】シリコン単結晶の予備引き上げにおいて、
単結晶のトップからテールに至るまでの間、融液表面温
度を輻射温度計を用いて測定し、同時にるつぼ底面の温
度を熱電対を用いて測定した。前記両者の温度差と育成
した単結晶の酸素濃度との相関を求め、単結晶のトップ
からテールに至るまでの間の制御目標とすべき温度差プ
ロファイルを設定した。In preliminary pulling of a silicon single crystal,
The temperature of the melt surface was measured using a radiation thermometer from the top to the tail of the single crystal, and at the same time, the temperature of the bottom surface of the crucible was measured using a thermocouple. The correlation between the temperature difference between the two and the oxygen concentration of the grown single crystal was obtained, and the temperature difference profile to be the control target from the top to the tail of the single crystal was set.
【0016】融液の上下温度差制御の手段として、下部
ヒータの出力を制御した場合の一例を説明する。直径2
4インチの石英るつぼに105kgの多結晶シリコンを
装填して溶解した後、直径8インチの単結晶の引き上げ
に当たり、上記温度差プロファイルに従うように下部ヒ
ータ8の出力を制御した。育成した8インチの単結晶で
は、トップからテールまでの酸素濃度分布がほぼ均一と
なった。An example of controlling the output of the lower heater will be described as a means for controlling the difference between the upper and lower temperatures of the melt. Diameter 2
After loading 105 kg of polycrystalline silicon into a 4-inch quartz crucible and melting it, when pulling a single crystal with an 8-inch diameter, the output of the lower heater 8 was controlled so as to follow the temperature difference profile. In the grown 8-inch single crystal, the oxygen concentration distribution from the top to the tail was almost uniform.
【0017】輻射熱反射板と融液表面との距離を調節す
ることによって融液の上下温度差が設定した温度差プロ
ファイル通りになるように制御した実施例では、単結晶
の引き上げ初期において前記距離を小さくし、引き上げ
後期においては大きくした。この方法を用いた場合も軸
方向酸素濃度が均一な単結晶が得られた。In an embodiment in which the distance between the radiant heat reflector and the surface of the melt is controlled so that the temperature difference between the upper and lower temperatures of the melt conforms to the set temperature difference profile, the distance is adjusted at the initial stage of pulling the single crystal. It was reduced and increased in the latter half of the pulling. Even when this method was used, a single crystal having a uniform axial oxygen concentration was obtained.
【0018】輻射熱反射板保温材の位置を調節すること
によって融液の上下温度差が設定した温度差プロファイ
ル通りになるように制御した実施例の場合、単結晶の引
き上げ初期においては単結晶中の酸素濃度が高くなるの
で、融液10の上下温度差が小さくなるように輻射熱反
射板保温材7の位置を低くして輻射熱反射板6を保温し
た。輻射熱反射板保温材7を下げるとメインヒータ11
の出力が下がり、るつぼ底の温度が下がるので融液上下
の温度差が小さくなる。これに伴って融液の自然対流が
抑制され、酸素濃度が下がる。引き上げ後期においては
輻射熱反射板保温材7の位置を高くし、輻射熱反射板保
温性能を落とした。このようにして、軸方向酸素濃度が
均一な単結晶を得ることができた。In the case of the embodiment in which the position of the radiant heat reflection plate heat insulating material is adjusted so that the temperature difference between the upper and lower temperatures of the melt follows the set temperature difference profile, in the initial stage of pulling up the single crystal, Since the oxygen concentration becomes high, the position of the radiant heat reflector heat insulating material 7 was lowered so that the temperature difference between the upper and lower temperatures of the melt 10 was small, and the radiant heat reflector 6 was kept warm. When the radiant heat reflector heat insulating material 7 is lowered, the main heater 11
Output decreases and the temperature at the bottom of the crucible decreases, so the temperature difference between the top and bottom of the melt becomes smaller. Along with this, natural convection of the melt is suppressed, and the oxygen concentration drops. In the latter stage of pulling up, the position of the radiant heat reflector heat insulating material 7 was raised to deteriorate the radiant heat reflector heat insulating performance. Thus, a single crystal having a uniform axial oxygen concentration could be obtained.
【0019】るつぼ位置を調節することによって融液の
上下温度差が温度差プロファイル通りになるように制御
した実施例の場合、るつぼ3の上下方向移動範囲は、メ
インヒータ11の上端とるつぼ3の上端の位置とが一致
する状態を基準として±30mmとした。単結晶の引き
上げ初期においてはるつぼ3を基準位置から下方に30
mm移動させ、引き上げ後期においては基準位置から上
方に30mm移動させることによって、軸方向酸素濃度
が均一な単結晶を得た。In the case of an embodiment in which the upper and lower temperature differences of the melt are controlled by adjusting the crucible position so as to follow the temperature difference profile, the vertical movement range of the crucible 3 is the upper end of the main heater 11 and that of the crucible 3. It was set to ± 30 mm with reference to the state where the position of the upper end coincides. In the initial stage of pulling the single crystal, the crucible 3 is moved downward from the reference position by 30
A single crystal having a uniform axial oxygen concentration was obtained by moving it by 30 mm and moving it upward by 30 mm from the reference position in the latter stage of pulling.
【0020】水冷式下部クーラの流量を調節することに
よって融液の上下温度差が温度差プロファイル通りにな
るように制御した実施例では、単結晶の引き上げ初期に
おけるは前記流量を60リットル/分として冷却能力を
高め、引き上げ後期においては10リットル/分に冷却
能力を落とした。この方法により、軸方向酸素濃度分布
を13±0.6×1017atoms/cc:old A
STMから12±0.3×1017atoms/cc:o
ld ASTMに改善することができた。In an embodiment in which the upper and lower temperature differences of the melt are controlled according to the temperature difference profile by adjusting the flow rate of the water-cooled lower cooler, the flow rate is set to 60 liters / minute in the initial stage of pulling the single crystal. The cooling capacity was increased, and the cooling capacity was lowered to 10 liters / minute in the latter stage of pulling. By this method, the oxygen concentration distribution in the axial direction was 13 ± 0.6 × 10 17 atoms / cc: old A
12 ± 0.3 × 10 17 atoms / cc: o from STM
ld ASTM could be improved.
【0021】上記の各実施例と比較するため、直径24
インチの石英るつぼに105kgの多結晶シリコンを装
填し、融液の上下温度差に関する制御を行わずに直径8
インチの単結晶を育成した。直胴長1000mmの単結
晶の軸方向酸素濃度分布は13±0.8×1017ato
ms/cc:old ASTMであり、濃度の変動幅が
大きい。For comparison with the above embodiments, the diameter 24
An inch quartz crucible was loaded with 105 kg of polycrystalline silicon, and the diameter was 8 without controlling the temperature difference of the melt.
An inch single crystal was grown. The axial oxygen concentration distribution of a single crystal with a straight body length of 1000 mm is 13 ± 0.8 × 10 17 ato
ms / cc: old ASTM, and the fluctuation range of the concentration is large.
【0022】[0022]
【発明の効果】以上説明したように本発明によれば、シ
リコン単結晶の軸方向酸素濃度の分布が融液の自然対流
に左右される点に着目し、前記自然対流を制御する手段
として融液の上下温度差を検出し、その値が単結晶中の
酸素濃度と前記温度差との相関に基づいて設定した温度
差プロファイルに従うように、下部ヒータまたは下部ク
ーラの出力、輻射熱反射板の位置、輻射熱反射板保温材
の位置のいずれか一つ以上あるいはるつぼの位置を制御
する単結晶製造装置および製造方法としたので、この製
造装置および製造方法を用いることによって、単結晶の
軸方向酸素濃度分布を均一にすることができ、単結晶の
製造歩留りが向上する。また、低酸素濃度で、かつ軸方
向酸素濃度分布の均一なシリコン単結晶を育成すること
ができるようになり、多様な品質規格に対応することが
できるようになる。As described above, according to the present invention, attention is paid to the fact that the distribution of the oxygen concentration in the axial direction of a silicon single crystal depends on the natural convection of the melt, and as a means for controlling the natural convection, the melting The temperature difference between the upper and lower sides of the liquid is detected, and the output of the lower heater or lower cooler and the position of the radiant heat reflector are adjusted so that the value follows the temperature difference profile set based on the correlation between the oxygen concentration in the single crystal and the temperature difference. Since the single crystal manufacturing apparatus and manufacturing method for controlling the position of any one or more of the radiant heat reflector heat insulating material or the position of the crucible are used, by using this manufacturing apparatus and manufacturing method, the axial oxygen concentration of the single crystal is determined. The distribution can be made uniform, and the production yield of single crystals is improved. Further, it becomes possible to grow a silicon single crystal having a low oxygen concentration and a uniform oxygen concentration distribution in the axial direction, and it becomes possible to comply with various quality standards.
【図1】融液の上下温度差を制御する手段を含むシリコ
ン単結晶製造装置の部分模式図である。FIG. 1 is a partial schematic view of a silicon single crystal production apparatus including means for controlling the temperature difference between upper and lower melts.
【図2】上記制御を行う制御装置のブロック図の一例で
ある。FIG. 2 is an example of a block diagram of a control device that performs the above control.
【図3】上記制御を行うフローチャートの一例である。FIG. 3 is an example of a flowchart for performing the above control.
2…るつぼ軸、3…るつぼ、4…熱電対(るつぼ底温度
T2 検出手段)、5…シリコン単結晶、6…輻射熱反射
板、7…輻射熱反射板保温材、8…下部ヒータ、9…水
冷式下部クーラ、10…融液、13…輻射温度計(融液
表面温度T1検出手段)、14…制御部、15…融液温
度差指令部(融液温度差指令信号T0出力手段)。2 ... crucible shaft, 3 ... crucible, 4 ... thermocouple (crucible bottom temperature T2 detecting means), 5 ... silicon single crystal, 6 ... radiant heat reflector, 7 ... radiant heat reflector heat retaining material, 8 ... lower heater, 9 ... water cooling Lower cooler, 10 ... Melt, 13 ... Radiation thermometer (melt surface temperature T1 detecting means), 14 ... Control section, 15 ... Melt temperature difference command section (melt temperature difference command signal T0 output means).
Claims (2)
ヒータまたは下部クーラ、融液上方に位置する昇降自在
の輻射熱反射板、前記輻射熱反射板を取り囲むように位
置する昇降自在の輻射熱反射板保温材のいずれか一つ以
上と、融液上部および融液下部の温度測定手段と、前記
二つの測定値に基づいて融液の上下温度差を算出する手
段と、算出した前記温度差の値とあらかじめ定めた温度
差プロファイルとを比較する手段と、前記比較結果に基
づいて下部ヒータまたは下部クーラの出力、輻射熱反射
板の位置、輻射熱反射板保温材の位置あるいはるつぼの
位置を制御する手段を備えたことを特徴とするシリコン
単結晶の製造装置。1. A lower heater or a lower cooler having a variable output located below a crucible, a radiant heat reflecting plate which can be raised and lowered above a melt, and a radiant heat reflecting plate which can be raised and lowered so as to surround the radiant heat reflecting plate. Any one or more of the material, the temperature measuring means of the melt upper and melt lower, means for calculating the upper and lower temperature difference of the melt based on the two measured values, and the value of the calculated temperature difference Means for comparing with a predetermined temperature difference profile, and means for controlling the output of the lower heater or the lower cooler, the position of the radiant heat reflector, the position of the radiant heat reflector heat insulating material or the position of the crucible based on the comparison result An apparatus for producing a silicon single crystal characterized by the above.
晶の製造において、融液表面の温度とるつぼ底面の温度
とを測定することによって融液の上下温度差を算出した
上、前記温度差が単結晶中の酸素濃度と融液の上下温度
差との相関に基づいて設定した温度差プロファイルに追
従するように、下部ヒータまたは下部クーラの出力、輻
射熱反射板の上下方向位置、輻射熱反射板保温材の上下
方向位置、あるいはるつぼの上下方向位置のいずれか一
つ以上を制御することを特徴とするシリコン単結晶の製
造方法。2. In the production of a silicon single crystal by the Czochralski method, the temperature difference between the upper and lower sides of the melt is calculated by measuring the temperature of the melt surface and the temperature of the bottom surface of the crucible, and the temperature difference is the single crystal. The output of the lower heater or lower cooler, the vertical position of the radiant heat reflection plate, and the radiant heat reflection plate heat insulating material so as to follow the temperature difference profile set based on the correlation between the oxygen concentration in the melt and the temperature difference between the melt and the melt. A method for producing a silicon single crystal, characterized by controlling at least one of a vertical position and a vertical position of a crucible.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05296109A JP3085568B2 (en) | 1993-11-01 | 1993-11-01 | Apparatus and method for producing silicon single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05296109A JP3085568B2 (en) | 1993-11-01 | 1993-11-01 | Apparatus and method for producing silicon single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07133186A true JPH07133186A (en) | 1995-05-23 |
JP3085568B2 JP3085568B2 (en) | 2000-09-11 |
Family
ID=17829256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05296109A Expired - Fee Related JP3085568B2 (en) | 1993-11-01 | 1993-11-01 | Apparatus and method for producing silicon single crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3085568B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001240492A (en) * | 2000-02-29 | 2001-09-04 | Komatsu Electronic Metals Co Ltd | Cz method based single crystal pulling-up equipment smoothly performing recharge.additional charge |
WO2003029533A1 (en) * | 2001-09-28 | 2003-04-10 | Komatsu Denshi Kinzoku Kabushiki Kaisha | Single crystal semiconductor manufacturing apparatus and method, and single crystal ingot |
JP2007084417A (en) * | 2005-09-21 | 2007-04-05 | Siltron Inc | Apparatus for growing high quality silicon single crystal ingot and growing method using the apparatus |
WO2008114822A1 (en) * | 2007-03-19 | 2008-09-25 | Mnk-Sog Silicon, Inc. | Method and apparatus for manufacturing silicon ingot |
JP2010155726A (en) * | 2008-12-26 | 2010-07-15 | Sumco Corp | Method for growing single crystal and single crystal grown by the same |
KR101339151B1 (en) * | 2012-07-18 | 2013-12-09 | 주식회사 엘지실트론 | Apparatus and method for growing monocrystalline silicon ingots |
JP2013256424A (en) * | 2012-06-14 | 2013-12-26 | Sumitomo Metal Mining Co Ltd | Apparatus for growing sapphire single crystal |
JP2017226558A (en) * | 2016-06-20 | 2017-12-28 | 住友金属鉱山株式会社 | Temperature raising device, crystal growing device, temperature control method for resistance heater, and crystal growth method |
WO2021157183A1 (en) * | 2020-02-06 | 2021-08-12 | 信越半導体株式会社 | Single crystal production method and single crystal pulling apparatus |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107604430A (en) * | 2016-07-11 | 2018-01-19 | 上海超硅半导体有限公司 | Low oxygen content monocrystalline silicon growing method |
-
1993
- 1993-11-01 JP JP05296109A patent/JP3085568B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001240492A (en) * | 2000-02-29 | 2001-09-04 | Komatsu Electronic Metals Co Ltd | Cz method based single crystal pulling-up equipment smoothly performing recharge.additional charge |
EP2251462A2 (en) * | 2001-09-28 | 2010-11-17 | Komatsu Denshi Kinzoku Kabushiki Kaisha | Single crystal semiconductor manufacturing apparatus and manufacturing method, and single crystal ingot |
WO2003029533A1 (en) * | 2001-09-28 | 2003-04-10 | Komatsu Denshi Kinzoku Kabushiki Kaisha | Single crystal semiconductor manufacturing apparatus and method, and single crystal ingot |
US7160386B2 (en) | 2001-09-28 | 2007-01-09 | Komatsu Denshi Kinzoku Kabushiki Kaisha | Single crystal semiconductor manufacturing apparatus and manufacturing method, and single crystal ingot |
EP2251462A3 (en) * | 2001-09-28 | 2011-10-12 | Komatsu Denshi Kinzoku Kabushiki Kaisha | Single crystal semiconductor manufacturing apparatus and manufacturing method, and single crystal ingot |
US7918934B2 (en) | 2001-09-28 | 2011-04-05 | Sumco Techxiv Corporation | Single crystal semiconductor manufacturing apparatus and manufacturing method, and single crystal ingot |
JP2007084417A (en) * | 2005-09-21 | 2007-04-05 | Siltron Inc | Apparatus for growing high quality silicon single crystal ingot and growing method using the apparatus |
WO2008114822A1 (en) * | 2007-03-19 | 2008-09-25 | Mnk-Sog Silicon, Inc. | Method and apparatus for manufacturing silicon ingot |
JP2010155726A (en) * | 2008-12-26 | 2010-07-15 | Sumco Corp | Method for growing single crystal and single crystal grown by the same |
JP2013256424A (en) * | 2012-06-14 | 2013-12-26 | Sumitomo Metal Mining Co Ltd | Apparatus for growing sapphire single crystal |
KR101339151B1 (en) * | 2012-07-18 | 2013-12-09 | 주식회사 엘지실트론 | Apparatus and method for growing monocrystalline silicon ingots |
JP2017226558A (en) * | 2016-06-20 | 2017-12-28 | 住友金属鉱山株式会社 | Temperature raising device, crystal growing device, temperature control method for resistance heater, and crystal growth method |
WO2021157183A1 (en) * | 2020-02-06 | 2021-08-12 | 信越半導体株式会社 | Single crystal production method and single crystal pulling apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3085568B2 (en) | 2000-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6110274A (en) | Process and apparatus for producing polycrystalline semiconductor | |
US5849080A (en) | Apparatus for producing polycrystalline semiconductors | |
US5714004A (en) | Process for producing polycrystalline semiconductors | |
JPH08268794A (en) | Method for growing single crystal silicon | |
JP3085568B2 (en) | Apparatus and method for producing silicon single crystal | |
JPH04149092A (en) | Method and device for controlling growth of cone part | |
JP4853802B2 (en) | Method for producing silicon single crystal | |
JP4293395B2 (en) | CZ method single crystal ingot manufacturing apparatus and method | |
JP3368113B2 (en) | Manufacturing method of polycrystalline semiconductor | |
JP2001019588A (en) | Method for controlling diameter of single crystal and device for growing crystal | |
JP2735960B2 (en) | Liquid level control method | |
JPH09175889A (en) | Single crystal pull-up apparatus | |
JPH08259381A (en) | Pulling up-controlling method for single crystal | |
JP4306009B2 (en) | Single crystal ingot manufacturing apparatus and method | |
JPH09118585A (en) | Apparatus for pulling up single crystal and method for pulling up single crystal | |
JP2826085B2 (en) | Liquid temperature control method for single crystal pulling furnace | |
JP2732723B2 (en) | Liquid surface temperature control method | |
JPH11130585A (en) | Apparatus for pulling single crystal | |
JP2003055084A (en) | Device and method for pulling single crystal | |
JPS61122187A (en) | Apparatus for pulling up single crystal | |
JPH0859388A (en) | Device for producing single crystal | |
JPH05124890A (en) | Semiconductor single crystal growing device | |
JP2549607Y2 (en) | Crystal growth equipment | |
JPH0615436B2 (en) | Liquid phase epitaxial growth system | |
KR20190084675A (en) | Apparatus and method for silicon single crystal growth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |