JP3455580B2 - Silicon single crystal pulling apparatus and manufacturing method - Google Patents

Silicon single crystal pulling apparatus and manufacturing method

Info

Publication number
JP3455580B2
JP3455580B2 JP12280294A JP12280294A JP3455580B2 JP 3455580 B2 JP3455580 B2 JP 3455580B2 JP 12280294 A JP12280294 A JP 12280294A JP 12280294 A JP12280294 A JP 12280294A JP 3455580 B2 JP3455580 B2 JP 3455580B2
Authority
JP
Japan
Prior art keywords
melt
single crystal
silicon
measuring device
position measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12280294A
Other languages
Japanese (ja)
Other versions
JPH07330484A (en
Inventor
剛 山内
忠士 三浦
清 小島
Original Assignee
ワッカー・エヌエスシーイー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ワッカー・エヌエスシーイー株式会社 filed Critical ワッカー・エヌエスシーイー株式会社
Priority to JP12280294A priority Critical patent/JP3455580B2/en
Publication of JPH07330484A publication Critical patent/JPH07330484A/en
Application granted granted Critical
Publication of JP3455580B2 publication Critical patent/JP3455580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チョクラルスキー法
(CZ法)によるシリコン単結晶の製造に際して、シリ
コン単結晶中の酸素の濃度制御並びに酸素誘起積層欠陥
(OSF)に代表される結晶欠陥の発生を防止するため
の装置および製造方法に関するものである。
The present invention relates to controlling the concentration of oxygen in a silicon single crystal and crystal defects represented by oxygen induced stacking faults (OSF) in the production of a silicon single crystal by the Czochralski method (CZ method). The present invention relates to an apparatus and a manufacturing method for preventing the occurrence of

【0002】[0002]

【従来の技術】単結晶の製造方法として、坩堝内の融液
から結晶を成長させつつ引上げるCZ法が広く行なわれ
ている。このCZ法のシリコン単結晶の製造に際して、
特開昭64−72986号に示されるように、アルゴン
に代表される不活性気体を断熱性円筒と融液面間を流す
ことにより融液からの蒸発物を抑えて、蒸発物の付着に
よるシリコン単結晶の有転位化を防止している。また、
アルゴンの流量、炉圧、断熱性円筒と融液面間の距離を
調整して、結晶中の酸素制御並びにOSFなどの結晶欠
陥を低減している。
2. Description of the Related Art As a method for producing a single crystal, the CZ method, in which a crystal is pulled from a melt in a crucible while growing, is widely used. When manufacturing the silicon single crystal of the CZ method,
As disclosed in JP-A-64-72986, an inert gas typified by argon is caused to flow between a heat insulating cylinder and a melt surface to suppress evaporative substances from the melt, and silicon due to the adhered evaporative substances is suppressed. It prevents dislocation of the single crystal. Also,
The flow rate of argon, the furnace pressure, and the distance between the heat insulating cylinder and the melt surface are adjusted to control oxygen in the crystal and reduce crystal defects such as OSF.

【0003】炉内における融液面の位置を測定する方法
としては、例えば特開昭61−86943号に示される
ように、融液面に向けて光を投射し、融液面からの反射
光を検知して投射孔路または反射孔路の変化から測定し
ようとする方法が提案されている。また特開昭63−2
81022号には、融液面上部に設置された輻射スクリ
ーンの一部に基準点を定め、この基準点と融液面に対す
る基準点の反射像とをリニアセンサで捕え、リニアセン
サ上における基準点とその反射像との離隔寸法に基づき
基準点から融液面までの距離を算出しようとする方法が
提案されている。
As a method for measuring the position of the melt surface in the furnace, for example, as shown in Japanese Patent Laid-Open No. 61-86943, light is projected toward the melt surface and reflected light from the melt surface is used. There has been proposed a method for detecting and measuring from the change in the projection hole path or the reflection hole path. In addition, JP-A-63-2
In No. 81022, a reference point is set on a part of a radiation screen installed above the melt surface, a linear sensor captures this reference point and a reflection image of the reference point with respect to the melt surface, and the reference point on the linear sensor A method has been proposed in which the distance from the reference point to the melt surface is calculated based on the distance between the reflected image and the reflected image.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、シリコ
ン単結晶の製造の際、炉内は、高温状態になるために炉
内の部材が熱膨張する。また、シリコンの融液を保持し
ている坩堝を構成する石英ガラスが軟化する。これらの
熱による変形にともない、引上げ炉内の部材と融液面と
の相対位置を正確に設定することが困難である。このた
めに、シリコン単結晶の有転位化の防止、結晶中の酸素
の制御並びにOSFなどの結晶欠陥を低減する効果が失
われてしまう。
However, during the production of a silicon single crystal, the inside of the furnace is in a high temperature state, so that the members inside the furnace are thermally expanded. Further, the quartz glass forming the crucible holding the silicon melt is softened. Due to these heat deformations, it is difficult to accurately set the relative position between the member in the pulling furnace and the melt surface. As a result, the effects of preventing dislocation of the silicon single crystal, controlling oxygen in the crystal, and reducing crystal defects such as OSF are lost.

【0005】したがって、本発明は、坩堝中の融液から
シリコン単結晶を引上げる装置であって、炉内部材と融
液表面との相対位置を測定して、その位置を制御しなが
らシリコン単結晶を引上げる装置および製造方法を提供
することを目的とするものである。本発明はまた、簡単
な調整によりシリコン単結晶育成時において、シリコン
単結晶の有転位化の防止、結晶中の酸素の制御ならびに
OSFなどの結晶欠陥を低減することが可能になる製造
方法を提供することを目的とする。
Therefore, the present invention is an apparatus for pulling a silicon single crystal from a melt in a crucible, which measures the relative position between a member in the furnace and the surface of the melt and controls the position of the silicon single crystal. An object of the present invention is to provide an apparatus and a manufacturing method for pulling a crystal. The present invention also provides a manufacturing method capable of preventing dislocation of a silicon single crystal, controlling oxygen in the crystal, and reducing crystal defects such as OSF during the growth of the silicon single crystal by simple adjustment. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明は、坩堝中の融液からシリコン単結晶を引き上げる装
置であって、断熱性円筒である炉内部材と融液表面との
相対位置を、炉内部材に設置されかつ全長Lが次式
(1) L=ΔL/(ΔT・β) (1)[ただし、式中、ΔLは、単結晶育成時の温度差ΔTを
約1400℃としたときの熱による膨張(≦0.1m
m)であり、またβは融液位置測定装置の材質の線熱膨
張率である。]で表わされる融液位置測定装置を融液と
接触させることにより測定し、 その相対位置を制御しな
がらシリコン単結晶を引き上げる装置。
Means for Solving the Problems The present invention for achieving the above object is an apparatus for pulling a silicon single crystal from a melt in a crucible, the relative position of a furnace inner member being a heat insulating cylinder and a melt surface. and it is installed in the furnace member and the total length L is the formula
(1) L = ΔL / (ΔT · β) (1) [where ΔL is the temperature difference ΔT during single crystal growth.
Thermal expansion (approx. 0.1m)
m), and β is the linear thermal expansion of the material of the melt position measuring device.
It is a stretch rate. ] The melt position measuring device represented by
A device that pulls a silicon single crystal while making contact measurements and controlling its relative position.

【0007】本発明はまた、坩堝中の融液からシリコン
単結晶を引き上げる方法であって、断熱性円筒である炉
内部材と融液表面との相対位置を、該炉内部材に設置さ
れかつ全長Lが次式(1) L=ΔL/(ΔT・β) (1)[ただし、式中、ΔLは、単結晶育成時の温度差ΔTを
約1400℃としたときの熱による膨張(≦0.1m
m)であり、またβは融液位置測定装置の材質の線熱膨
張率である。]で表わされる融液位置測定装置を融液と
接触させることにより測定し、その相対位置を制御しな
がらシリコン単結晶を引き上げる方法である。
The present invention also relates to silicon from the melt in the crucible.
A method of pulling a single crystal, which is a heat insulating cylinder
The relative position between the inner member and the surface of the melt was set on the inner member of the furnace.
And the total length L is given by the following equation (1) L = ΔL / (ΔT · β) (1) [wherein, ΔL is the temperature difference ΔT during single crystal growth
Thermal expansion (approx. 0.1m)
m), and β is the linear thermal expansion of the material of the melt position measuring device.
It is a stretch rate. ] The melt position measuring device represented by
Measure by touching and do not control the relative position.
It is a method of pulling a silicon single crystal.

【0008】[0008]

【作用】本発明のシリコン単結晶の製造装置によると、
製造装置内の部材と融液面との相対位置を制御できる。
このために、シリコン単結晶の有転位化を防止、結晶中
の酸素の制御ならびにOSFなどの結晶欠陥を低減する
ことが可能になる。
According to the apparatus for producing a silicon single crystal of the present invention,
It is possible to control the relative position between the member in the manufacturing apparatus and the melt surface.
Therefore, it becomes possible to prevent dislocation of a silicon single crystal from occurring, control oxygen in the crystal, and reduce crystal defects such as OSF.

【0009】以下、本発明を実施態様に基づきより詳細
に説明する。図1は、本発明のシリコン単結晶引上げ装
置の一実施態様の構成を示す断面図である。この実施態
様のシリコン単結晶引上げ装置においては、坩堝1中の
融液2からシリコン単結晶3が引上げられる。図1にお
いて、融液2は管状のヒーター5で加熱され、管状の断
熱材6で覆われている。また、坩堝1は下方において支
持台7に接続され、さらに支持台7が炉外部に設けられ
た坩堝駆動装置15に接続されることにより坩堝は上下
動および回転可能に支持されている。8は単結晶を成長
させる種結晶である。引上げ炉外壁9内の矢印11,1
2は炉内ガス流れを示す。結晶3を取り囲むように管体
4が設置されている。さらに、管体4に、管体4の下端
部位に接合される固定ピン17を介して融液位置測定装
置10が設置されている。融液位置測定装置10の詳細
を図2に示す。図2の融液位置測定装置10において、
融液位置測定端16が最下端になるように固定部位置
(固定ピン17を挿通した固定用穴19の位置)と測定
端16を結んだ軸上に重心が来るように設計してある。
融点位置測定装置10を構成する材質は、シリコン融液
を保持する坩堝と同様の高純度石英ガラス製で十分であ
るが、高純度な石英結晶、炭素、窒化珪素、炭化珪素、
炭素にこれら窒化珪素、炭化珪素をコーティングしたも
の、シリコン単結晶の原料と同じシリコンなども使用で
きる(なお、固定ピン17の材質は、高融点材料であれ
ば良く、モリブデンやタングステン等の金属ならびに高
純度な炭素、窒化珪素、炭化珪素、炭素にこれら窒化珪
素、炭化珪素をコーティングしたもの、またシリコンな
ども使用できる。)。
Hereinafter, the present invention will be described in more detail based on the embodiments. FIG. 1 is a sectional view showing the configuration of an embodiment of the silicon single crystal pulling apparatus of the present invention. In the silicon single crystal pulling apparatus of this embodiment, the silicon single crystal 3 is pulled from the melt 2 in the crucible 1. In FIG. 1, the melt 2 is heated by a tubular heater 5 and covered with a tubular heat insulating material 6. Further, the crucible 1 is connected to a support base 7 below, and the support base 7 is connected to a crucible drive device 15 provided outside the furnace so that the crucible is supported so as to be vertically movable and rotatable. Reference numeral 8 is a seed crystal for growing a single crystal. Arrows 11 and 1 in the outer wall 9 of the pulling furnace
2 shows the gas flow in the furnace. A tube body 4 is installed so as to surround the crystal 3. Further, the melt position measuring device 10 is installed in the tube body 4 via a fixing pin 17 joined to the lower end portion of the tube body 4. Details of the melt position measuring device 10 are shown in FIG. In the melt position measuring device 10 of FIG.
It is designed so that the center of gravity is located on the axis connecting the fixed portion position (position of the fixing hole 19 through which the fixing pin 17 is inserted) and the measuring end 16 so that the melt position measuring end 16 becomes the lowermost end.
The melting point position measuring device 10 may be made of high-purity quartz glass similar to the crucible holding the silicon melt, but high-purity quartz crystal, carbon, silicon nitride, silicon carbide,
It is also possible to use carbon coated with silicon nitride or silicon carbide, or the same silicon as the raw material of the silicon single crystal (the material of the fixing pin 17 may be a high melting point material, such as molybdenum and tungsten). High-purity carbon, silicon nitride, silicon carbide, carbon coated with these silicon nitride and silicon carbide, and silicon can also be used.).

【0010】融液位置測定装置10の全長Lは、例とし
て線熱膨張率βの高い炭素の約5×10-6/degを用
い、さらに、単結晶育成時の温度差ΔTを約1400℃
とすると熱による膨張ΔLを0.1mm以下にするに
は、
The total length L of the melt position measuring device 10 is, for example, about 5 × 10 -6 / deg of carbon having a high coefficient of linear thermal expansion β, and the temperature difference ΔT at the time of growing a single crystal is about 1400 ° C.
Then, in order to reduce the thermal expansion ΔL to 0.1 mm or less,

【0011】[0011]

【数1】 [Equation 1]

【0012】の計算より、融液位置測定装置10の全長
Lは、14mm以下であれば良いことになる。さらに、
高純度石英ガラスの場合は線熱膨張率が約4×10-7
degであるので、同様な計算より全長Lが200mm
以下であれば熱膨張長さを0.1mm以下にすることが
できる。シリコン製の融液位置測定装置10ではシリコ
ン融液と接触させた場合に、融液位置測定装置10が溶
解したり、またシリコン融液が凝固し融液位置測定装置
10の全長が変わる可能性があるので、図3に示すよう
に表面に切り込みないし目盛り18等の印加工を行なう
ことにより、シリコン製の融液位置測定装置10の再使
用が可能になる。
From the calculation of, the total length L of the melt position measuring device 10 should be 14 mm or less. further,
In the case of high-purity quartz glass, the coefficient of linear thermal expansion is about 4 × 10 -7 /
Since it is deg, the total length L is 200 mm from the same calculation.
If it is below, the thermal expansion length can be set to 0.1 mm or less. In the melt position measuring device 10 made of silicon, when the melt position measuring device 10 is brought into contact with the silicon melt, the melt position measuring device 10 may be melted or the silicon melt may be solidified to change the entire length of the melt position measuring device 10. Therefore, as shown in FIG. 3, the melt position measuring device 10 made of silicon can be reused by making a notch on the surface or marking the scale 18 or the like.

【0013】なお、融液位置測定装置10の形状は、シ
リコン融液との接触部の面積が十分に小さいものであれ
ば、図2または図3に示す形状に限定されるものではな
いことは明らかであろう。
The shape of the melt position measuring apparatus 10 is not limited to the shape shown in FIG. 2 or 3 as long as the area of the contact portion with the silicon melt is sufficiently small. Would be obvious.

【0014】融液位置測定装置10を用いて管体4とシ
リコン融液との距離を測定して、シリコン中の酸素濃度
との関係を図4に整理した。上記の距離が長くなるにつ
れて、シリコン中の酸素濃度が増加することが判明し
た。図4の結果より酸素濃度を0.1×1017/cc以
下に制御するためには、上記の間隔を0.1mmの精度
で制御する必要があることを発見した。また、OSFな
どのシリコン単結晶中の結晶欠陥はシリコン中の酸素濃
度が高くなると発生が増加するので、変動を低減するこ
とにより必然的にOSF等結晶欠陥の低減が可能になる
と考えられる。
The distance between the tube body 4 and the silicon melt was measured using the melt position measuring device 10, and the relationship with the oxygen concentration in silicon was arranged in FIG. It was found that the oxygen concentration in silicon increases as the distance increases. From the result of FIG. 4, it was discovered that the above-mentioned interval must be controlled with an accuracy of 0.1 mm in order to control the oxygen concentration to 0.1 × 10 17 / cc or less. Further, since the crystal defects in the silicon single crystal such as OSF increase as the oxygen concentration in silicon increases, it is considered that the crystal defects in the OSF and the like can be inevitably reduced by reducing the fluctuation.

【0015】以上の効果をシリコン単結晶の製造におい
て発揮させるために、図5に示すように融液位置測定装
置10を用いて融液との位置を測定する。図5の(a)
は、原料が溶解して融液面が形成された状態を示す。次
工程として図5の(b)に融液位置測定装置で、融液表
面の位置測定の方法を示す。支持台7を駆動装置15で
移動させることにより、融液面2と融液位置測定装置1
0とが接触するのを画像処理装置13で検出する。更
に、図5の(c)および(d)に示すように、画像処理
装置13の信号を用いて計算機14で融液と管体4下端
の距離を所望値に設定するための移動距離を算出する。
その移動距離データに基づき、駆動装置15で支持台7
を移動させる。以上一連の融液制御は、図6に示す制御
フローに従って行なわれる。
In order to exert the above effects in the production of a silicon single crystal, the position with the melt is measured by using the melt position measuring device 10 as shown in FIG. FIG. 5 (a)
Indicates a state in which the raw material is melted and a melt surface is formed. As a next step, FIG. 5B shows a method for measuring the position of the melt surface with the melt position measuring device. By moving the support base 7 by the driving device 15, the melt surface 2 and the melt position measuring device 1
The image processing device 13 detects the contact with 0. Further, as shown in (c) and (d) of FIG. 5, the moving distance for setting the distance between the melt and the lower end of the tube 4 to a desired value is calculated by the computer 14 using the signal of the image processing device 13. To do.
Based on the moving distance data, the drive device 15 supports the support base 7
To move. The above-described series of melt control is performed according to the control flow shown in FIG.

【0016】測定の際に融液位置測定装置10は融液に
接触することになるが、短時間でかつ接触面積が小さい
のでシリコン融液の純度を低減することは生じない。融
液の純度を問題とするような場合は、融液位置測定装置
10を原料と同じシリコン、単結晶シリコンを使用すれ
ばよい。さらに、シリコン単結晶製造時に融液位置測定
装置10の長さをシリコン融液に接触しないようにする
ことにより、シリコン融液内の流れを乱すことはない。
During the measurement, the melt position measuring device 10 comes into contact with the melt, but since the contact area is small and the contact area is small, the purity of the silicon melt is not reduced. If the purity of the melt is a problem, the melt position measuring device 10 may use the same silicon or single crystal silicon as the raw material. Furthermore, by preventing the length of the melt position measuring device 10 from coming into contact with the silicon melt during the production of a silicon single crystal, the flow in the silicon melt is not disturbed.

【0017】なお、上記実施態様においては、炉内部材
として直管状の管体4を配置した例を示したが、炉内部
材としてはこのようなものに何ら限定されるものではな
く、例えばテーパ管状ないし漏斗状のものなどといった
その他の形状の断熱円筒、さらには水冷機構、加熱機構
を備えたものなどというように従来公知の各種のもので
あり得る。
In the above embodiment, an example in which the straight tubular body 4 is arranged as the furnace inner member has been shown, but the furnace inner member is not limited to this, and for example, a taper may be used. It may be of various types known in the art, such as a tubular or funnel-shaped heat insulating cylinder having another shape, a water cooling mechanism, a heating mechanism, or the like.

【0018】[0018]

【実施例】以下、本発明を実施例によりさらに具体的に
説明する。図1に示す装置において、外側から黒鉛坩堝
1bで補強された内側直径18インチの石英坩堝1a
に、原料として60kgの多結晶シリコンを装入して溶
解し、直径155mmのシリコン単結晶3を引き上げ
た。アルゴンガスを矢印の方向に流し、装置内をアルゴ
ン雰囲気とした。引上げに使用した管体4の全長は約5
00mmで熱膨張により約3〜5mmほど長さが変動す
る。融液位置測定装置10の材質は高純度石英ガラス製
とし、全長を50mmとした。融液位置測定装置10を
用いて、シリコン融液面2と融液位置測定装置下端とが
接触するのを画像処理装置で検出する。画像処理装置1
3の信号を用いて、0.1mm以下の精度で液面位置を
制御するように、駆動装置15で支持台7を移動させ
て、本実施例では、管体4の下端とシリコン融液面2と
の間隔を20.0mmに制御した。
EXAMPLES The present invention will be described in more detail below with reference to examples. In the apparatus shown in FIG. 1, a quartz crucible 1a having an inner diameter of 18 inches, which is reinforced with a graphite crucible 1b from the outside.
Then, 60 kg of polycrystalline silicon as a raw material was charged and melted, and a silicon single crystal 3 having a diameter of 155 mm was pulled up. Argon gas was caused to flow in the direction of the arrow to make the inside of the apparatus an argon atmosphere. The total length of the tube 4 used for pulling up is about 5
At 00 mm, the length changes by about 3 to 5 mm due to thermal expansion. The material of the melt position measuring device 10 was made of high-purity quartz glass and had a total length of 50 mm. Using the melt position measuring device 10, the contact between the silicon melt surface 2 and the lower end of the melt position measuring device is detected by the image processing device. Image processing device 1
3 is used to move the support base 7 by the drive device 15 so as to control the liquid surface position with an accuracy of 0.1 mm or less, and in this embodiment, the lower end of the tube 4 and the silicon melt surface are used. The distance from 2 was controlled to 20.0 mm.

【0019】本発明方法を使用した場合の効果例を図7
に示す。融液位置測定装置10を使用する前後の引上げ
インゴットの酸素濃度、OSFに密度の平均値変化を示
した。各データは、約700mmの定径部を有するシリ
コン単結晶から100mmの間隔で8部位において採取
した酸素濃度/OSF測定用試験片を評価することによ
り得た。酸素濃度は赤外吸収法で測定した。OSFの測
定法は、1100℃で60分の湿式酸化を行った後、選
択エッチング(ライト液で90秒)でエッチピット観察
によるものである。図7中の各単結晶の酸素濃度・OS
F密度は、8部位の平均値で代表した。図7において、
本発明方法を使用する以前では、酸素濃度の変動が約±
0.5×1017/cc(JEIDA)、OSF発生平均
が約5個/cm2 であったのが、本発明方法を使用する
ことにより酸素濃度の変動が±0.1×1017/cc
(JEIDA)に抑えられ、OSF発生が平均1個/c
2以下に低減していることが明らかである。また、結
晶の有転位化率は本発明方法使用前が約10%であった
のに対して、本発明方法使用後は約1%に低減した。
FIG. 7 shows an example of the effect of using the method of the present invention.
Shown in. The oxygen concentration and OSF of the pulled ingot before and after using the melt position measuring apparatus 10 are shown as average density changes. Each data was obtained by evaluating the oxygen concentration / OSF measurement test pieces collected at 8 sites from a silicon single crystal having a constant diameter portion of about 700 mm at intervals of 100 mm. The oxygen concentration was measured by the infrared absorption method. The OSF is measured by performing wet oxidation at 1100 ° C. for 60 minutes and then observing etch pits by selective etching (90 seconds with a light solution). Oxygen concentration and OS of each single crystal in FIG.
The F density was represented by the average value of 8 sites. In FIG.
Prior to using the method of the present invention, variations in oxygen concentration were about ±
0.5 × 10 17 / cc (JEIDA), the average OSF generation was about 5 pieces / cm 2 , but the oxygen concentration fluctuation was ± 0.1 × 10 17 / cc by using the method of the present invention.
(JEIDA), OSF generation is 1 / c on average
It is clear that it is reduced to m 2 or less. The dislocation ratio of the crystal was about 10% before the method of the present invention was used, while it was reduced to about 1% after the method of the present invention was used.

【0020】[0020]

【発明の効果】以上述べたように本発明のシリコン単結
晶の製造装置によれば、製造装置内の部材と融液面との
相対位置を例えば0.1mm以下といった精度で制御す
ることができ、シリコン単結晶の有転位化の防止、結晶
中の酸素の制御ならびにOSFなどの結晶欠陥を低減す
ることが可能になる。
As described above, according to the silicon single crystal manufacturing apparatus of the present invention, the relative position between the member in the manufacturing apparatus and the melt surface can be controlled with an accuracy of, for example, 0.1 mm or less. It is possible to prevent dislocation of a silicon single crystal, control oxygen in the crystal, and reduce crystal defects such as OSF.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明の実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】は、高純度石英製の融液位置測定装置を示した
図である。
FIG. 2 is a view showing a melt position measuring device made of high-purity quartz.

【図3】は、シリコン単結晶製の融液位置測定装置を示
し、(a)は平面図、(b)は正面図、(c)は側面図
である。
FIG. 3 shows a melt position measuring device made of a silicon single crystal, (a) is a plan view, (b) is a front view, and (c) is a side view.

【図4】は、管体下端とシリコン融液表面との距離とシ
リコン中の酸素濃度の関係を示したものである。
FIG. 4 shows the relationship between the distance between the lower end of the tubular body and the surface of the silicon melt and the oxygen concentration in silicon.

【図5】は、本発明に係る融液位置測定の各工程を示す
図であり、(a)は原料溶解完了時、(b)は融液位置
測定時、(c)および(d)は単結晶引上げ時における
管体下端と融液表面との位置関係をそれぞれ示すもので
ある。
5A and 5B are diagrams showing respective steps of melt position measurement according to the present invention, where FIG. 5A is when the raw material dissolution is completed, FIG. 5B is the melt position measurement, and FIGS. 3 shows the positional relationship between the lower end of the tubular body and the surface of the melt when pulling the single crystal.

【図6】は、融液位置制御装置の制御フローを示す。FIG. 6 shows a control flow of the melt position control device.

【図7】は、本発明方法を使用した場合の効果例を示し
た図である。
FIG. 7 is a diagram showing an example of effects when the method of the present invention is used.

【符号の説明】[Explanation of symbols]

1…坩堝、 1a…石英坩堝、1b…黒鉛
坩堝、 2…融液、3…シリコン単結晶、 4
…管体、5…ヒーター、 6…断熱材、7…支
持台、 8…種結晶、9…炉外壁、
10…融液位置測定装置、11,12…炉内ガス流
れ、13…画像処理装置、 14…計算機、15…ル
ツボ駆動装置(上下・回転可能)、16…融液位置測定
端、 17…固定ピン、18…目盛り、 19
…固定用穴。
1 ... crucible, 1a ... quartz crucible, 1b ... graphite crucible, 2 ... melt, 3 ... silicon single crystal, 4
... tubular body, 5 ... heater, 6 ... heat insulating material, 7 ... support base, 8 ... seed crystal, 9 ... furnace outer wall,
10 ... Melt position measuring device, 11, 12 ... Furnace gas flow, 13 ... Image processing device, 14 ... Calculator, 15 ... Crucible driving device (vertical / rotatable), 16 ... Melt position measuring end, 17 ... Fixed Pin, 18 ... Scale, 19
… Fixing holes.

フロントページの続き (56)参考文献 特開 昭62−87481(JP,A) 特開 平3−122089(JP,A) 特開 昭56−125296(JP,A) 特開 昭61−86943(JP,A) 特開 昭61−163188(JP,A) 特開 昭63−281022(JP,A) 特開 昭64−72986(JP,A) 特開 平4−328425(JP,A) 特開 平6−234592(JP,A) 特開 平6−316481(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 Continuation of the front page (56) Reference JP 62-87481 (JP, A) JP 3-122089 (JP, A) JP 56-125296 (JP, A) JP 61-86943 (JP , A) JP 61-163188 (JP, A) JP 63-281022 (JP, A) JP 64-72986 (JP, A) JP 4-328425 (JP, A) JP JP 6-234592 (JP, A) JP-A-6-316481 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C30B 1/00-35/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 坩堝中の融液からシリコン単結晶を引き
上げる装置であって、断熱性円筒である炉内部材と融液
表面との相対位置を、炉内部材に設置されかつ全長L
が次式(1) L=ΔL/(ΔT・β) (1)[ただし、式中、ΔLは、単結晶育成時の温度差ΔTを
約1400℃としたときの熱による膨張(≦0.1m
m)であり、またβは融液位置測定装置の材質の線熱膨
張率である。]で表わされる融液位置測定装置を融液と
接触させることにより測定し、 その相対位置を制御しな
がらシリコン単結晶を引き上げる装置。
1. A device for pulling a silicon single crystal from the melt in the crucible, the relative position of the furnace member and the melt surface is a thermally insulating cylinder is installed in the furnace member and the total length L
Is the following equation (1) L = ΔL / (ΔT · β) (1) [wherein, ΔL is the temperature difference ΔT during single crystal growth
Thermal expansion (approx. 0.1m)
m), and β is the linear thermal expansion of the material of the melt position measuring device.
It is a stretch rate. ] The melt position measuring device represented by
A device that pulls a silicon single crystal while making contact measurements and controlling its relative position.
【請求項2】 該炉内部材は結晶を取り囲むように形成
された直管状の管体であり、前記融液位置測定装置は、
該管体下部付近に設置されたものである請求項1に記載
の装置。
2. The in- furnace member is formed so as to surround a crystal.
Is a straight tubular body, the melt position measuring device,
The device according to claim 1, which is installed near the lower part of the tubular body.
Equipment.
【請求項3】 該融液位置測定装置は目盛りを備え、か
つその先端はシリコン融液との接触部面積が十分に小さ
いものである請求項1または2に記載の装置。
3. The melt position measuring device is provided with a scale,
The tip has a sufficiently small contact area with the silicon melt.
The device according to claim 1 or 2, which is a device.
【請求項4】 該融液位置測定装置の材質は式(1)を
満たす範囲で、かつ炭素、石英ガラス、石英結晶、窒化
珪素、炭素に窒化珪素または炭化珪素をコーティングし
たものおよびシリコン単結晶の原料と同じシリコンより
なる群から選ばれたものである請求項1〜3のいずれか
一つの装置。
4. The material of the melt position measuring device is defined by the formula (1).
Carbon, quartz glass, quartz crystal, nitriding within the range
Silicon or carbon coated with silicon nitride or silicon carbide
And the same silicon as the raw material of the silicon single crystal
4. The method according to claim 1, which is selected from the group consisting of
One device.
【請求項5】 坩堝中の融液からシリコン単結晶を引き
上げる方法であって、断熱性円筒である炉内部材と融液
表面との相対位置を、該炉内部材に設置されかつ全長L
が次式(1) L=ΔL/(ΔT・β) (1)[ただし、式中、ΔLは、単結晶育成時の温度差ΔTを
約1400℃としたときの熱による膨張(≦0.1m
m)であり、またβは融液位置測定装置の材質の線熱膨
張率である。]で表わされる融液位置測定装置を融液と
接触させることにより測定し、その相対位置を制御しな
がらシリコン単結晶を引き上げる方法
Pull the silicon single crystal from 5.坩堝中of the melt
Method for raising the temperature, and a furnace member and a melt which are heat insulating cylinders
The relative position with respect to the surface is set in the furnace member and the total length L
Is the following equation (1) L = ΔL / (ΔT · β) (1) [wherein, ΔL is the temperature difference ΔT during single crystal growth
Thermal expansion (approx. 0.1m)
m), and β is the linear thermal expansion of the material of the melt position measuring device.
It is a stretch rate. ] The melt position measuring device represented by
Measure by touching and do not control the relative position.
A method of pulling a silicon single crystal .
JP12280294A 1994-06-03 1994-06-03 Silicon single crystal pulling apparatus and manufacturing method Expired - Fee Related JP3455580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12280294A JP3455580B2 (en) 1994-06-03 1994-06-03 Silicon single crystal pulling apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12280294A JP3455580B2 (en) 1994-06-03 1994-06-03 Silicon single crystal pulling apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JPH07330484A JPH07330484A (en) 1995-12-19
JP3455580B2 true JP3455580B2 (en) 2003-10-14

Family

ID=14845002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12280294A Expired - Fee Related JP3455580B2 (en) 1994-06-03 1994-06-03 Silicon single crystal pulling apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP3455580B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101080569B1 (en) 2009-01-21 2011-11-04 주식회사 엘지실트론 Method for Measuring and Controlling Melting Gap in Cz-Si crystal growth

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929817B2 (en) 2006-04-25 2012-05-09 信越半導体株式会社 Method for measuring distance between reference reflector and melt surface, method for controlling melt surface position using the same, and apparatus for producing silicon single crystal
JP5161169B2 (en) * 2009-08-06 2013-03-13 Sumco Techxiv株式会社 Silicon single crystal pulling apparatus and pulling method
JP5567800B2 (en) * 2009-08-06 2014-08-06 Sumco Techxiv株式会社 Silicon single crystal pulling apparatus and pulling method
JP5404264B2 (en) * 2009-09-07 2014-01-29 Sumco Techxiv株式会社 Single crystal silicon manufacturing method and single crystal silicon manufacturing apparatus
WO2016038817A1 (en) 2014-09-12 2016-03-17 信越半導体株式会社 Single crystal production method
CN113684532A (en) * 2020-05-08 2021-11-23 西安奕斯伟材料科技有限公司 Molten silicon liquid level ranging assembly for crystalline silicon melting furnace and crystalline silicon melting furnace

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125296A (en) * 1980-03-07 1981-10-01 Ricoh Co Ltd Temperature measurment for crystal growth
JPS6186943A (en) * 1984-10-04 1986-05-02 Mitsubishi Chem Ind Ltd Optical catalyst
JPS61163188A (en) * 1985-01-14 1986-07-23 Komatsu Denshi Kinzoku Kk Process for doping impurity in pulling method of silicon single crystal
JPS6287481A (en) * 1985-10-09 1987-04-21 Mitsubishi Metal Corp Method of setting the initial melting position in single crystal-pulling-up apparatus
JPS63281022A (en) * 1987-05-12 1988-11-17 Osaka Titanium Seizo Kk Level measuring method for molten liquid of single crystal growing device
JPS6472986A (en) * 1987-09-14 1989-03-17 Toshiba Corp Apparatus for producing semiconductor single crystal
JPH0774116B2 (en) * 1989-10-05 1995-08-09 信越半導体株式会社 Method and apparatus for adjusting oxygen concentration in Si single crystal
JPH04328425A (en) * 1991-04-26 1992-11-17 Sumitomo Metal Ind Ltd Method and apparatus for measuring position of liquid level and method and apparatus for lifting up single crystal
JPH06316481A (en) * 1993-05-06 1994-11-15 Kawasaki Steel Corp Crystal pulling up method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101080569B1 (en) 2009-01-21 2011-11-04 주식회사 엘지실트론 Method for Measuring and Controlling Melting Gap in Cz-Si crystal growth

Also Published As

Publication number Publication date
JPH07330484A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
EP2128310B1 (en) Method for measuring distance between lower end surface of heat shielding member and material melt surface, and method for controlling the distance
US7264674B2 (en) Method for pulling a single crystal
US8414701B2 (en) Method for manufacturing silicon single crystal in which a crystallization temperature gradient is controlled
US7033070B2 (en) Method and apparatus for measuring temperature
JP3455580B2 (en) Silicon single crystal pulling apparatus and manufacturing method
JP2010100451A (en) Method for measuring distance between melt level and lower edge part of structure in furnace, method for controlling melt level position using the same, method for producing single crystal and single crystal production device
JP2735960B2 (en) Liquid level control method
JP2880092B2 (en) Single crystal manufacturing method
JPH07133186A (en) Apparatus and process for production of silicon single crystal
JPH08290994A (en) Seed crystal of silicon single crystal
JP3611364B2 (en) Single crystal diameter control method
JP3109950B2 (en) Method for growing semiconductor single crystal
JP2001146496A (en) Single crystal pulling method
JPH07277879A (en) Apparatus for producing single crystal by cz method and melt level control method
JP2003055084A (en) Device and method for pulling single crystal
JP2579761B2 (en) Control method of single crystal diameter
JPH052636B2 (en)
JP4128278B2 (en) Single crystal manufacturing equipment
JP2549607Y2 (en) Crystal growth equipment
JP4407539B2 (en) Method for simulating pulling speed of single crystal ingot
JP2543449B2 (en) Crystal growth method and apparatus
JP2855498B2 (en) Semiconductor single crystal pulling equipment
JPH0140800B2 (en)
JPH0543106Y2 (en)
JP2609712B2 (en) Single crystal manufacturing method and temperature measuring jig therefor

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees