JPS63281022A - Level measuring method for molten liquid of single crystal growing device - Google Patents

Level measuring method for molten liquid of single crystal growing device

Info

Publication number
JPS63281022A
JPS63281022A JP11665587A JP11665587A JPS63281022A JP S63281022 A JPS63281022 A JP S63281022A JP 11665587 A JP11665587 A JP 11665587A JP 11665587 A JP11665587 A JP 11665587A JP S63281022 A JPS63281022 A JP S63281022A
Authority
JP
Japan
Prior art keywords
crucible
molten liquid
lower edge
level
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11665587A
Other languages
Japanese (ja)
Other versions
JPH0444215B2 (en
Inventor
Hideo Makino
秀男 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU DENSHI KINZOKU KK
Osaka Titanium Co Ltd
Original Assignee
KYUSHU DENSHI KINZOKU KK
Osaka Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU DENSHI KINZOKU KK, Osaka Titanium Co Ltd filed Critical KYUSHU DENSHI KINZOKU KK
Priority to JP11665587A priority Critical patent/JPS63281022A/en
Publication of JPS63281022A publication Critical patent/JPS63281022A/en
Publication of JPH0444215B2 publication Critical patent/JPH0444215B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To detect a molten liquid level directly by capturing a reference point determined on a radiation screen and a reflection image of the reference surface for the molten liquid surface by a linear sensor, and finding the isolation dimension between the reference point and reflection image on the sensor. CONSTITUTION:A camera 11 is arranged outside facing the observation window 1b of a chamber 1. The linear sensor 2 of the camera 11 is directed crossing the tangent to the curved edge part of the lower edge 5c of the tapered part 5b of the radiation screen 5 and captures an image Na of the lower edge 5c and a reflection image Nb of the edge 5 for the molten liquid surface. Then electric signals corresponding to the images Na and Nb captured by respective photodetecting elements are outputted. An arithmetic control part 13 detects the positions of the images Na and Nb according to the signal level from the sensor 12 and computes the isolation dimension (h) between the lower edge 5c and reflection image from those positions. Therefore, the distance lfrom the lower edge 5c to the molten liquid surface is h/2. A control part 13 compares the distance l with a predetermined reference level value and outputs a control signal to a motor M2 for a crucible 2 so as to eliminate the difference, thereby adjusting the position of the crucible 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチョクラルスキー法(CZ法)によって主とし
て半導体等の単結晶を製造する装置における単結晶原料
の融液面のレベルを測定する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method for measuring the level of the melt surface of a single crystal raw material in an apparatus for manufacturing single crystals, mainly semiconductors, by the Czochralski method (CZ method). Regarding.

〔従来技術〕[Prior art]

この種の単結晶成長装置は一般に第4図に示す如く構成
されている。
This type of single crystal growth apparatus is generally constructed as shown in FIG.

第4図は従来装置の模式的縦断面図であり、図中1はチ
ャンバを示している。チャンバl内にはその中央に黒鉛
容器2a内に石英容器2bを配した二重構造の坩堝2が
配設され、またこの坩堝2の外周にヒータ3、保温壁4
が相互の間に夫々排気用通流路を構成する間隙を隔てて
同心状に配設され、更に前記保温壁4から坩堝2の融液
面の周縁部上にわたって輻射スクリーン5を配設しであ
る。
FIG. 4 is a schematic vertical cross-sectional view of a conventional device, and numeral 1 in the figure indicates a chamber. A double-structured crucible 2 in which a quartz container 2b is arranged inside a graphite container 2a is disposed in the center of the chamber 1, and a heater 3 and a heat-insulating wall 4 are arranged around the outer periphery of the crucible 2.
are disposed concentrically with gaps constituting exhaust passages between them, and a radiation screen 5 is further disposed from the heat insulating wall 4 to the peripheral edge of the melt surface of the crucible 2. be.

チャンバ1の上部壁には単結晶6の引上口1aが開口さ
れており、この引上口1aを通して引上装置を構成する
引上軸をチャンバ1内に導入し、これに固定した種結晶
7の下端に単結晶6を成長させつつ引上げるようになっ
ている。
A pulling port 1a for the single crystal 6 is opened in the upper wall of the chamber 1, and a pulling shaft constituting a pulling device is introduced into the chamber 1 through the pulling port 1a, and a seed crystal fixed to the pulling shaft is introduced into the chamber 1. The single crystal 6 is grown on the lower end of the crystal 7 while being pulled up.

輻射スクリーン5は扁平な環状リム5aとその内側端縁
から下方に向かうに従って縮径した円錐台形のテーバ部
5bとからなり、環状リム5aの外側端縁を保温壁4の
周縁部上に載置して坩堝2、ヒータ3及び融液面等から
の輻射熱を遮断し、単結晶6の引上方向における温度勾
配を高め、また同時にチャンバ1の上方から坩堝2に向
けて送給されるAr等のキャリアガスを坩堝2内に誘導
し、坩堝2から生成されるSiOガス等を坩堝2の下方
に導き、ここからチャンバの外部に排出するようにしで
ある。
The radiation screen 5 consists of a flat annular rim 5a and a truncated conical tapered part 5b whose diameter decreases downward from its inner edge, and the outer edge of the annular rim 5a is placed on the peripheral edge of the heat retaining wall 4. to block radiant heat from the crucible 2, heater 3, melt surface, etc., increase the temperature gradient in the pulling direction of the single crystal 6, and at the same time prevent Ar, etc., from being fed from above the chamber 1 toward the crucible 2. A carrier gas is guided into the crucible 2, and SiO gas etc. generated from the crucible 2 are guided below the crucible 2 and discharged from there to the outside of the chamber.

ところでこのような単結晶成長装置においては単結晶6
の成長条件の変化は多結晶化の要因となるため、温度は
勿論、坩堝2内の融液面レベルについても常に一定に維
持する必要があり、融液面レベルについても常時監視下
におかれ、単結晶6の引上げに伴う融液面のレベル変化
を坩堝2自体の位置調節によって補償することとしてい
る。
By the way, in such a single crystal growth apparatus, the single crystal 6
Changes in the growth conditions of crucible 2 cause polycrystalization, so not only the temperature but also the level of the melt surface in the crucible 2 must be kept constant, and the level of the melt surface must also be constantly monitored. , the change in the level of the melt surface due to the pulling of the single crystal 6 is compensated for by adjusting the position of the crucible 2 itself.

即ち、引上げ中の単結晶直径をφ。、融液面の直径をφ
、として融液面を一定高さに維持するための坩堝上昇速
度Vを下記(11式にて求めている。
That is, the single crystal diameter during pulling is φ. , the diameter of the melt surface is φ
, the crucible rising speed V for maintaining the melt surface at a constant height is determined by the following (Equation 11).

但し、ρC:結晶の比重 ρ、;融液の比重 〔発明が解決しようとする問題点〕 しかし、坩堝2を構成する石英容器2bはその内径にば
らつきがあり、また石英容器2b、黒鉛容器2aともに
SiOとの反応で内面が侵食されて夫々内径が変化する
ため、引上げバッチ毎に数鶴の変動が生じ、正確な補正
が難しく、坩堝2の正確な上昇制御が困難であり、多結
晶化現象の発生頻度が多く、また融液面レベルの変動に
よって融液と輻射スクリーンの下端縁とが接触して融液
を汚染し、更にこれによってSiO等の排ガス通流路が
遮断される等の問題があった。
However, ρC: Specific gravity of crystal ρ; Specific gravity of melt [Problem to be solved by the invention] However, the quartz container 2b constituting the crucible 2 has variations in its inner diameter, and the quartz container 2b and graphite container 2a The inner diameter of both is eroded by the reaction with SiO and the inner diameter of each changes, resulting in variations of several cranes for each pulling batch, making it difficult to make accurate corrections, making it difficult to accurately control the rise of crucible 2, and causing polycrystalline formation. This phenomenon occurs frequently, and due to fluctuations in the melt surface level, the melt comes into contact with the lower edge of the radiant screen, contaminating the melt, and this also blocks the passage of exhaust gases such as SiO. There was a problem.

本発明はかかる事情に鑑みなされたものであってその目
的とするところは格別な改造を施すことなく、既存設備
の一部をそのまま利用して融液面レベルを直接に検出し
得るようにした融液面レベルの測定方法を提供するにあ
る。
The present invention was made in view of the above circumstances, and its purpose is to directly detect the melt level by using a part of the existing equipment as is, without making any special modifications. The present invention provides a method for measuring a melt level.

〔問題点を解決するための手段〕[Means for solving problems]

本発明方法は融液面上方の不動部分である輻射スクリー
ンの一部に基準点を定め、該基準点と融液面に対する基
準点の反射像とをリニアセンサで捉え、リニアセンサ上
における基準点とその反射像との離隔寸法に基づき基準
点から融液面までの距離を算出する。
In the method of the present invention, a reference point is set on a part of the radiation screen that is an immovable part above the melt surface, the reference point and the reflected image of the reference point on the melt surface are captured by a linear sensor, and the reference point is set on the linear sensor. The distance from the reference point to the melt surface is calculated based on the distance between the reference point and the reflected image.

〔作用〕[Effect]

本発明方法はこれによって坩堝自体の変形、容積変化の
如何にかかわらず融液面のレベル変化を直接的に把握す
ることが可能となる。
This makes it possible for the method of the present invention to directly grasp changes in the level of the melt surface, regardless of the deformation or volume change of the crucible itself.

〔実施例〕〔Example〕

以下、本発明方法をその実施例を示す図面に基づき具体
的に説明する。第1図は本発明方法の実施状態を示す模
式的断面図、第2図は測定原理の説明図、第3図(イ)
はりニアセンサとこれで捉えた基準点及びその反射像の
位置関係を示す説明図、第3図(ロ)は信号レベルを示
す波形図であり、図中1はチャンバ、2は坩堝、3はヒ
ータ、4は保温壁を示している。チャンバ1内にはその
側周に沿って保温壁4が配設され、この保温壁4で囲わ
れた中央部に坩堝2が配設され、この坩堝2と保温壁4
との間にヒータ3がこれらとの間に排気用の通気路を構
成する間隙を隔てて配設され、そして前記保温壁4から
坩堝2内の融液面の周縁部上にわたって輻射スクリーン
5が配設されている。
Hereinafter, the method of the present invention will be specifically explained based on drawings showing examples thereof. Figure 1 is a schematic sectional view showing the implementation state of the method of the present invention, Figure 2 is an explanatory diagram of the measurement principle, and Figure 3 (A).
An explanatory diagram showing the positional relationship between the beam near sensor, the reference point captured by it, and its reflected image. Figure 3 (b) is a waveform diagram showing the signal level. In the diagram, 1 is the chamber, 2 is the crucible, and 3 is the heater. , 4 indicates a heat insulation wall. A heat retaining wall 4 is disposed inside the chamber 1 along its side periphery, and a crucible 2 is disposed in the central portion surrounded by the heat retaining wall 4.
A heater 3 is disposed between them with a gap forming an exhaust air passage between them, and a radiant screen 5 extends from the heat retaining wall 4 to the peripheral edge of the melt surface in the crucible 2. It is arranged.

坩堝2はグラファイト製の容器2aの内側に石英製の容
器2bを嵌め合わせた二重構造に構成されており、底部
中央にはチャンバ1の底壁を貫通させた軸2cの上端が
連結され、該軸2Cの下端に連繋したモータM、、M、
にて回転、並びに昇降せしめられるようになっている。
The crucible 2 has a double structure in which a quartz container 2b is fitted inside a graphite container 2a, and the upper end of a shaft 2c passing through the bottom wall of the chamber 1 is connected to the center of the bottom. Motors M, , M, connected to the lower end of the shaft 2C
It can be rotated and raised and lowered.

チャンバ1の上部壁中央にはチャンバ1内の雰囲気ガス
の供給口を兼ねる単結晶の引上口1aが開口され、また
その周囲の1個所には、観察窓1bが開口せしめられて
おり、前記引上口1aには保護筒8が立設され、また観
察窓1bの外方に臨ませてカメラ11が配設されている
A single-crystal pulling port 1a that also serves as a supply port for atmospheric gas in the chamber 1 is opened at the center of the upper wall of the chamber 1, and an observation window 1b is opened at one location around the single-crystal pulling port 1a. A protection tube 8 is provided upright at the pulling port 1a, and a camera 11 is provided facing outside the observation window 1b.

保護筒8の上端からは引上軸7aが垂設されており、そ
の下端にはチャックを介して種結晶7が吊り下げられ、
また引上軸7aの上端はモータM、。
A pulling shaft 7a is suspended from the upper end of the protection tube 8, and a seed crystal 7 is suspended from the lower end of the shaft via a chuck.
Further, the upper end of the pulling shaft 7a is a motor M.

M4を備えた回転、昇降機能に連繋されており、種結晶
7を融液になじませた後、回転させつつ上昇させること
によって、種結晶7の下端に単結晶6を成長せしめるよ
うになっている。
It is connected to the rotation and lifting functions equipped with M4, and after the seed crystal 7 is blended with the melt, the single crystal 6 is grown at the lower end of the seed crystal 7 by rotating and raising it. There is.

輻射スクリーン5は金属製の環状リム5aの内周縁部に
、ここから下方に向かうに従って縮径され、中空の逆円
錐台形をなすよう傾斜させたテーバ部5bを設けて構成
され、環状リム5aの外周縁を保温壁4上に当接懸架せ
しめることにより保温壁4上に保持されている。
The radiation screen 5 is constructed by providing a tapered part 5b on the inner peripheral edge of a metal annular rim 5a, the diameter of which decreases downward from here and is inclined to form a hollow inverted truncated cone shape. It is held on the heat retaining wall 4 by suspending the outer peripheral edge thereof in contact with the heat retaining wall 4.

カメラ11は第2,3図に示す如くレンズllaの結像
位置にリニアセンサ12をその視野中に前記輻射スクリ
ーン5のテーバ部5bの下端縁5C及び融液面に対する
下端縁5cの反射像ポを捉え得るようその設置位置及び
設置角度(30°程度)を設定されている。
As shown in FIGS. 2 and 3, the camera 11 places a linear sensor 12 at the imaging position of the lens lla, and within its field of view, the lower edge 5C of the tapered portion 5b of the radiation screen 5 and the reflected image of the lower edge 5c with respect to the melt surface. The installation position and installation angle (approximately 30 degrees) are set so that the image can be captured.

リニアセンサ12は第3図(イ)に示す如く前記下端縁
5cの曲線状縁部に対する接線と直交する向きであって
、テーバ部5bの下端縁5cの像Na及びその反射像元
の像Nbの両者を共に捉え得る長さに設定されており、
各受光素子で捉えた像Na、 Nbの明るさに応じた電
気信号を出力するようになっており、その出力は演算制
御部13に読み込まれるようになっている。
The linear sensor 12 is oriented perpendicularly to the tangent to the curved edge of the lower edge 5c as shown in FIG. The length is set to capture both of the
It is designed to output an electrical signal according to the brightness of the images Na and Nb captured by each light receiving element, and the output is read into the arithmetic control section 13.

リニアセンサ12で捉えられる像のうち下端縁5cの像
Naは比較的暗く、一方融液面からの反射像Nbは融液
面自体が高温で、しかも下端縁5cの背面がヒータ3等
からの光を反射し、その反射光に融液面が照らされるこ
とから極めて明るくなり、リニアセンサ12を構成する
各部の受光素子から出力される電気信号の信号レベルは
第3図(ロ)に示す如くになる。即ち、像Nbの受像位
置で最も高く、ここから像Naの受像位置までの間は略
一定のレベルを示し、像Naの受像位置を過ぎると信号
レベルは急激に小さくなる。
Among the images captured by the linear sensor 12, the image Na of the lower edge 5c is relatively dark, while the reflected image Nb from the melt surface shows that the melt surface itself is at a high temperature, and that the back surface of the lower edge 5c is exposed to heat from the heater 3, etc. The light is reflected and the melt surface is illuminated by the reflected light, making it extremely bright, and the signal level of the electrical signal output from the light receiving elements of each part of the linear sensor 12 is as shown in Figure 3 (b). become. That is, the signal level is highest at the image receiving position of image Nb, exhibits a substantially constant level from there to the image receiving position of image Na, and decreases rapidly after passing the image receiving position of image Na.

演算制御部13はこれらリニアセンサ12からの信号レ
ベルに基づき像Na、 Nbの位置を検出し、これらの
位置に基づきテーバ部5bの下端縁5cとその反射像元
との離隔寸法りを演算する。
The calculation control unit 13 detects the positions of the images Na and Nb based on the signal levels from these linear sensors 12, and calculates the distance between the lower edge 5c of the tapered portion 5b and the source of the reflected image based on these positions. .

即ち、カメラ11のレンズllaから下端縁5Cまでの
距離をa、またレンズllaからリニアセンサー2まで
の距離をbとし、レンズllaの光軸の傾斜角をθとす
ると以下の関係式が成り立つ。
That is, if the distance from the lens lla of the camera 11 to the lower edge 5C is a, the distance from the lens lla to the linear sensor 2 is b, and the inclination angle of the optical axis of the lens lla is θ, the following relational expression holds true.

−a (Nb −Na) mΔd 但し、 Δd:リニアセンサー2の長手方向における単一受光素
子の大きさ Nb−Na:リニアセンサ上における像Na。
-a (Nb -Na) mΔd However, Δd: Size of a single light receiving element in the longitudinal direction of the linear sensor 2 Nb-Na: Image Na on the linear sensor.

Nb間の寸法 従ってテーバ部5bの下端縁5Cから融液面までの距離
lは下記(3)式によって与えられることとなる。
The distance l from the lower edge 5C of the tapered portion 5b to the melt surface is given by the following equation (3).

1=’/2h  ・・・(3) 演算制御部13は算出したlを予め定めた基準レベル値
と比較し、その差を解消するよう坩堝2用のモータM2
に制御信号を出力し、坩堝2の位置を調節する。
1='/2h (3) The arithmetic control unit 13 compares the calculated l with a predetermined reference level value, and controls the motor M2 for the crucible 2 to eliminate the difference.
A control signal is output to the crucible 2 to adjust the position of the crucible 2.

なお上記実施例においては輻射スクリーン5のテーバ部
5bにおける下端縁5cを基準点にして融液面のレベル
を検出する場合につき説明したが、何らこれに限るもの
ではなく、輻射スクリーン5に代えて基準点とすべき他
の不動の部材を利用し、或いは特別な基準部材を配置す
る構成を採用してもよい。
In the above embodiment, a case has been described in which the level of the melt surface is detected using the lower edge 5c of the tapered portion 5b of the radiation screen 5 as a reference point, but the present invention is not limited to this, and instead of the radiation screen 5, It is also possible to use another immovable member as a reference point or to arrange a special reference member.

〔試験例〕[Test example]

18インチ坩堝を用いてこれに原料であるシリコン多結
晶粒を60kg投入し、直径150flのシリコン単結
晶を1.Owm/分の速度で引上げる過程で前述した如
き本発明方法により融液面レベルを測定し、これに基づ
き坩堝の位置制御を行ったところ、輻射スクリーンの下
端縁と融液面との離隔寸法変化を±0.3鶴の範囲内に
留め得ることが確認された。
Using an 18-inch crucible, 60 kg of silicon polycrystalline grains as a raw material were put into it, and 1.5 kg of silicon single crystal with a diameter of 150 fl. During the pulling process at a speed of Owm/min, the melt surface level was measured by the method of the present invention as described above, and the position of the crucible was controlled based on this. The distance between the lower edge of the radiation screen and the melt surface was It was confirmed that the change could be kept within the range of ±0.3.

上述の実施例は輻射スクリーン5におけるテーバ部5b
の下端縁5cの像Naとその反射像兄の像Nbとの離隔
寸法を求めて融液面レベルを検出し、これに基づき坩堝
の位置制御を行う場合につき説明したが、現実には輻射
スクリーン5の下端縁5Cの位置は不動であるから、リ
ニアセンサ12上における像Nbの位置にのみ着目すれ
ば十分である。
In the above embodiment, the tapered portion 5b in the radiation screen 5
Although we have explained the case where the melt surface level is detected by determining the distance between the image Na of the lower edge 5c and the image Nb of its reflected image, and the position of the crucible is controlled based on this, in reality, the radiation screen Since the position of the lower end edge 5C of 5 is immovable, it is sufficient to focus only on the position of the image Nb on the linear sensor 12.

従って、リニアセンサ12上において像Nbが像Naと
反対側に移動するときは、融液面レベルの下降を、また
像Na側に向けて移動するときは融液面レベルの上昇を
意味するから、像Naの位置が当初定めた位置から変化
しないよう坩堝2の位置及び移動速度制御を行うことと
してもよい。
Therefore, when the image Nb moves to the opposite side of the image Na on the linear sensor 12, it means a decrease in the melt level, and when it moves toward the image Na side, it means an increase in the melt level. , the position and movement speed of the crucible 2 may be controlled so that the position of the image Na does not change from the initially determined position.

〔効果〕〔effect〕

以上の如く本発明方法にあっては融液面上方に基準点を
定め、この基準点から融液面までの距離を求めることと
しであるから坩堝自体の容積変化に影響されることなく
、融液面の変化を正確に検出することが可能となって、
これに相応した坩堝の高さ調節を正確、且つ迅速に行い
得、安定した単結晶成長条件を維持し得て多結晶化現象
の発生頻度を大幅に抑制出来ることは勿論、更に融液面
レベルの変化による融液と輻射スクリーンとの接触、及
びこれによる排ガス通流路の閉鎖等の不都合を未然に防
止し得るなど本発明は優れた効果を奏するものである。
As described above, in the method of the present invention, a reference point is set above the melt surface and the distance from this reference point to the melt surface is determined. It has become possible to accurately detect changes in the liquid level,
It is possible to accurately and quickly adjust the height of the crucible in accordance with this, maintain stable single crystal growth conditions, and greatly suppress the frequency of occurrence of polycrystalline phenomena. The present invention has excellent effects, such as being able to prevent inconveniences such as contact between the melt and the radiation screen due to changes in the temperature, and closure of the exhaust gas passage due to this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実施状態を示す模式図、第2図は
部分拡大説明図、第3図は測定原理を示す説明図、第4
図は従来装置の模式的縦断面図である。 1・・・チャンバ 2・・・坩堝 3・・・ヒータ4・
・・保温壁 5・・・輻射スクリーン 5b・・・テー
パ部5c・・・下端縁 6・・・単結晶 7・・・種結
晶11・・・カメラ 12・・・リニアセンサ 13・
・・演算制御部Na、 Nb・・・像 特 許 出願人 大阪チタニウム製造株式会社(外1名
)代理人 弁理士 河   野   登   夫第 2
 図 第 3 図
Figure 1 is a schematic diagram showing the implementation state of the method of the present invention, Figure 2 is a partially enlarged explanatory diagram, Figure 3 is an explanatory diagram showing the measurement principle, and Figure 4 is an explanatory diagram showing the measurement principle.
The figure is a schematic vertical cross-sectional view of a conventional device. 1... Chamber 2... Crucible 3... Heater 4.
...Heat insulation wall 5...Radiation screen 5b...Tapered portion 5c...Lower edge 6...Single crystal 7...Seed crystal 11...Camera 12...Linear sensor 13.
...Arithmetic control section Na, Nb... Image patent Applicant: Osaka Titanium Manufacturing Co., Ltd. (1 other person) Agent: No. 2 Noboru Kono, patent attorney
Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、坩堝内の融液面の上方であって、単結晶の引上げ域
の周囲に輻射スクリーンを配設した単結晶成長装置にお
ける融液面のレベル測定方法において、前記輻射スクリ
ーンの一部に定めた基準点と該融液面に対する前記基準
点の反射像とを光強度に応じた信号を発するリニアセン
サにて捉え、該リニアセンサ上における前記基準点とそ
の反射像との離隔寸法に基づき融液面のレベルを求める
ことを特徴とする単結晶成長装置における融液面のレベ
ル測定方法。
1. In a method for measuring the level of the melt surface in a single crystal growth apparatus in which a radiation screen is provided above the melt surface in the crucible and around the single crystal pulling area, The reference point and the reflected image of the reference point with respect to the melt surface are captured by a linear sensor that emits a signal according to the light intensity, and the melting is performed based on the distance between the reference point and the reflected image on the linear sensor. A method for measuring the level of a melt surface in a single crystal growth apparatus, characterized by determining the level of the liquid surface.
JP11665587A 1987-05-12 1987-05-12 Level measuring method for molten liquid of single crystal growing device Granted JPS63281022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11665587A JPS63281022A (en) 1987-05-12 1987-05-12 Level measuring method for molten liquid of single crystal growing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11665587A JPS63281022A (en) 1987-05-12 1987-05-12 Level measuring method for molten liquid of single crystal growing device

Publications (2)

Publication Number Publication Date
JPS63281022A true JPS63281022A (en) 1988-11-17
JPH0444215B2 JPH0444215B2 (en) 1992-07-21

Family

ID=14692609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11665587A Granted JPS63281022A (en) 1987-05-12 1987-05-12 Level measuring method for molten liquid of single crystal growing device

Country Status (1)

Country Link
JP (1) JPS63281022A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330484A (en) * 1994-06-03 1995-12-19 Nippon Steel Corp Pulling up device and production of silicon single crystal
JP2007320782A (en) * 2006-05-30 2007-12-13 Sumco Corp Device for monitoring liquid level position of melt in process for growing silicon single crystal
CN110273178A (en) * 2018-03-14 2019-09-24 胜高股份有限公司 The method of pulling up of monocrystalline silicon

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194271A (en) * 1975-02-17 1976-08-18
JPS51126302A (en) * 1975-04-26 1976-11-04 Sanyu Gijutsu Kenkyusho:Kk A method of controlling melt levels of iron etc. and an apparatus for it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194271A (en) * 1975-02-17 1976-08-18
JPS51126302A (en) * 1975-04-26 1976-11-04 Sanyu Gijutsu Kenkyusho:Kk A method of controlling melt levels of iron etc. and an apparatus for it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330484A (en) * 1994-06-03 1995-12-19 Nippon Steel Corp Pulling up device and production of silicon single crystal
JP2007320782A (en) * 2006-05-30 2007-12-13 Sumco Corp Device for monitoring liquid level position of melt in process for growing silicon single crystal
US8012258B2 (en) 2006-05-30 2011-09-06 Sumco Corporation Melt surface position monitoring apparatus in silicon single crystal growth process
CN110273178A (en) * 2018-03-14 2019-09-24 胜高股份有限公司 The method of pulling up of monocrystalline silicon

Also Published As

Publication number Publication date
JPH0444215B2 (en) 1992-07-21

Similar Documents

Publication Publication Date Title
US5656078A (en) Non-distorting video camera for use with a system for controlling growth of a silicon crystal
US8414701B2 (en) Method for manufacturing silicon single crystal in which a crystallization temperature gradient is controlled
JP2001510141A (en) Method and apparatus for controlling silicon crystal growth
TWI770661B (en) Single crystal manufacturing apparatus and single crystal manufacturing method
TW201713805A (en) Method and device of fabricating single crystal
US5660629A (en) Apparatus for detecting the diameter of a single-crystal silicon
JP6627739B2 (en) Single crystal manufacturing method
JP5924090B2 (en) Single crystal pulling method
US6030451A (en) Two camera diameter control system with diameter tracking for silicon ingot growth
JPS63281022A (en) Level measuring method for molten liquid of single crystal growing device
JP2003512987A (en) Crystal growth apparatus and method
US20230357950A1 (en) Manufacturing method of single crystals
US5853479A (en) Apparatus for drawing single crystals by the czochralski method
JPH08239293A (en) Control of diameter of single crystal
KR101028933B1 (en) Single crystal melt level regulation apparatus, single crystal growth apparatus including the regulation apparatus, and single crystal melt level regulation method
JPH07277879A (en) Apparatus for producing single crystal by cz method and melt level control method
WO2023195217A1 (en) Method and apparatus for producing silicon single crystal and method for producing silicon wafer
KR100415172B1 (en) Grower for single crystalline silicon ingot
JPH11130585A (en) Apparatus for pulling single crystal
JP2705810B2 (en) Single crystal pulling device
WO2022118537A1 (en) Method for measuring distance between heat shield member lower end surface and raw material melt surface, method for controlling distance between heat shield member lower end surface and raw material melt surface, and method for producing silicon single crystal
JP3655355B2 (en) Method for detecting optimum melt temperature in semiconductor single crystal manufacturing process
CN214361839U (en) Quartz pin and monocrystalline silicon growth device
JPH07133187A (en) Method for growing semiconductor single crystal
KR20230119435A (en) Apparatus for growing silicon single crystal ingot

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070721

Year of fee payment: 15