JPH0444215B2 - - Google Patents

Info

Publication number
JPH0444215B2
JPH0444215B2 JP62116655A JP11665587A JPH0444215B2 JP H0444215 B2 JPH0444215 B2 JP H0444215B2 JP 62116655 A JP62116655 A JP 62116655A JP 11665587 A JP11665587 A JP 11665587A JP H0444215 B2 JPH0444215 B2 JP H0444215B2
Authority
JP
Japan
Prior art keywords
crucible
melt surface
level
single crystal
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62116655A
Other languages
Japanese (ja)
Other versions
JPS63281022A (en
Inventor
Hideo Makino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU DENSHI KINZOKU KK
OOSAKA CHITANIUMU SEIZO KK
Original Assignee
KYUSHU DENSHI KINZOKU KK
OOSAKA CHITANIUMU SEIZO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU DENSHI KINZOKU KK, OOSAKA CHITANIUMU SEIZO KK filed Critical KYUSHU DENSHI KINZOKU KK
Priority to JP11665587A priority Critical patent/JPS63281022A/en
Publication of JPS63281022A publication Critical patent/JPS63281022A/en
Publication of JPH0444215B2 publication Critical patent/JPH0444215B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチヨクラルスキー法(CZ法)によつ
て主として半導体等の単結晶を製造する装置にお
ける単結晶原料の融液面のレベルを測定する方法
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention uses the Czyochralski method (CZ method) to measure the level of the melt surface of a single crystal raw material in an apparatus that mainly manufactures single crystals such as semiconductors. Regarding how to.

〔従来の技術〕[Conventional technology]

この種の単結晶成長装置は一般に第4図に示す
如く構成されている。
This type of single crystal growth apparatus is generally constructed as shown in FIG.

第4図は従来装置の模式的縦断面図であり、図
中1はチヤンバを示している。チヤンバ1内には
その中央に黒鉛容器2a内に石英容器2bを配し
た二重構造の坩堝2が配設され、またこの坩堝2
の外周にヒータ3、保温壁4が相互の間に夫々排
気用通流路を構成する間隙を隔てて同心状に配設
され、更に前記保温壁4から坩堝2の融液面の周
縁部上にわたつて輻射スクリーン5を配設してあ
る。
FIG. 4 is a schematic vertical sectional view of a conventional device, and numeral 1 in the figure indicates a chamber. Inside the chamber 1, a double-structured crucible 2 in which a quartz container 2b is arranged inside a graphite container 2a is disposed at the center.
A heater 3 and a heat insulating wall 4 are disposed concentrically on the outer periphery of the crucible 2 with a gap forming an exhaust flow path between them. A radiation screen 5 is provided over the area.

チヤンバ1の上部壁には単結晶6の引上口1a
が開口されており、この引上口1aを通して引上
装置を構成する引上軸をチヤンバ1内に導入し、
これに固定した種結晶7の下端に単結晶6を成長
させつつ引上げるようになつている。
The upper wall of the chamber 1 has a pulling port 1a for the single crystal 6.
is opened, and a pulling shaft constituting a pulling device is introduced into the chamber 1 through this pulling port 1a,
The single crystal 6 is grown on the lower end of the seed crystal 7 fixed thereto and pulled up.

輻射スクリーン5は扁平な環状リム5aとその
内側縁端から下方に向かうに従つて縮径した円錐
台形のテーパ部5bとからなり、環状リム5aの
外側端縁を保温壁4の周縁部上に載置して坩堝
2、ヒータ3及び融液面等からの輻射熱を遮断
し、単結晶6の引上方向における温度勾配を高
め、また同時にチヤンバ1の上方から坩堝2に向
けて送給されるAr等のキヤリアガスを坩堝2内
に誘導し、坩堝2から生成されるSiOガス等を坩
堝2の下方に導き、ここからチヤンバの外部に排
出するようにしてある。
The radiation screen 5 consists of a flat annular rim 5a and a truncated conical tapered part 5b whose diameter decreases downward from the inner edge of the rim 5a. It is placed on the chamber 1 to block radiant heat from the crucible 2, heater 3, melt surface, etc., increase the temperature gradient in the pulling direction of the single crystal 6, and at the same time feed the single crystal 6 from above to the crucible 2. A carrier gas such as Ar is guided into the crucible 2, and SiO gas etc. generated from the crucible 2 are guided below the crucible 2 and discharged from there to the outside of the chamber.

ところでこのような単結晶成長装置においては
単結晶6の成長条件の変化は多結晶化の要因とな
るため、温度は勿論、坩堝2内の融液面レベルに
ついても常に一定に維持する必要があり、融液面
レベルについても常時監視下におかれ、単結晶6
の引上げに伴う融液面のレベル変化を坩堝2自体
の位置調節によつて補償することとしている。
By the way, in such a single crystal growth apparatus, changes in the growth conditions of the single crystal 6 can cause polycrystalization, so it is necessary to always maintain a constant temperature as well as the level of the melt surface in the crucible 2. , the melt level is also constantly monitored, and the single crystal 6
The change in the level of the melt surface caused by the pulling up of the crucible 2 is compensated for by adjusting the position of the crucible 2 itself.

即ち、引上げ中の単結晶直径をφC、融液面の
直径をφLとして融液面を一定高さに維持するた
めの坩堝上昇速度Vを下記(1)式にて求めている。
That is, assuming that the diameter of the single crystal being pulled is φ C and the diameter of the melt surface is φ L , the crucible rising speed V for maintaining the melt surface at a constant height is determined by the following equation (1).

V=結晶上昇速度×φC 2/φL 2×ρC/ρL …(1) 但し、ρC:結晶の比重 ρL:融液の比重 〔発明が解決しようとする問題点〕 しかし、坩堝2を構成する石英容器2bはその
内径にばらつきがあり、また石英容器2b、黒鉛
容器2aともにSiOとの反応で内面が侵食されて
夫々内径が変化するため、引上げバツチ毎に数mm
の変動が生じ、正確な補正が難しく、坩堝2の正
確な上昇制御が困難であり、多結晶化現象の発生
頻度が多く、また融液面レベルの変動によつて融
液と輻射スクリーンの下端縁とが接触して融液を
汚染し、更にこれによつてSiO等の排ガス通流路
が遮断される等の問題があつた。
V=crystal rising speed×φ C 2L 2 ×ρ CL …(1) However, ρ C : Specific gravity of crystal ρ L : Specific gravity of melt [Problem to be solved by the invention] However, The inner diameter of the quartz container 2b that makes up the crucible 2 varies, and the inner diameters of both the quartz container 2b and the graphite container 2a change due to corrosion due to the reaction with SiO, so the inner diameter varies by several mm for each pulling batch.
fluctuations occur, making it difficult to make accurate corrections, making it difficult to accurately control the rise of the crucible 2, causing polycrystalline phenomena to occur frequently, and fluctuations in the melt surface level causing the lower end of the melt and radiation screen to There were problems such as contact with the edges and contaminating the melt, and this also blocking the passage of exhaust gases such as SiO.

本発明はかかる事情に鑑みなされたものであつ
てその目的とするところは格別な改造を施すこと
なく、既存設備の一部をそのまま利用して融液面
レベルを直接に検出し得るようにした融液面レベ
ルの測定方法を提供するにある。
The present invention was made in view of the above circumstances, and its purpose is to directly detect the melt level by using a part of the existing equipment as is, without making any special modifications. The present invention provides a method for measuring a melt level.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る単結晶成長装置における融液面の
レベル測定方法は、昇降移動される坩堝の上方で
あつて、単結晶の引上げ域の周囲に輻射スクリー
ンを配設した単結晶成長装置における前記坩堝内
の融液面のレベルを測定する方法において、前記
輻射スクリーンの一部に定めた基準点と該融液面
に対する前記基準点の反射像とを光強度に応じた
信号を発するリニアセンサにて捉え、該リニアセ
ンサ上における前記基準点とその反射像との離隔
寸法に基づき融液面のレベルを求めることを特徴
とする。
A method for measuring the level of a melt surface in a single crystal growth apparatus according to the present invention is provided in a single crystal growth apparatus in which a radiation screen is provided above a crucible that is moved up and down and around a single crystal pulling area. In the method of measuring the level of the melt surface in the radiation screen, a reference point set on a part of the radiation screen and a reflected image of the reference point with respect to the melt surface are measured using a linear sensor that emits a signal according to the light intensity. The level of the melt surface is determined based on the distance between the reference point and its reflected image on the linear sensor.

〔作用〕[Effect]

本発明方法はこれによつて坩堝自体の変形、容
積変化の如何にかかわらず融液面のレベル変化を
直接的に把握することが可能となる。
This makes it possible for the method of the present invention to directly grasp changes in the level of the melt surface, regardless of the deformation or volume change of the crucible itself.

〔実施例〕 以下、本発明方法をその実施例を示す図面に基
づき具体的に説明する。第1図は本発明方法の実
施状態を示す模式的断面図、第2図は測定原理の
説明図、第3図イはリニアセンサとこれで捉えた
基準点及びその反射像の位置関係を示す説明図、
第3図ロは信号レベルを示す波形図であり、図中
1はチヤンバ、2は坩堝、3はヒータ、4は保温
壁を示している。チヤンバ1内にはその側周に沿
つて保温壁4が配設され、この保温壁4で囲われ
た中央部に坩堝2が配設され、この坩堝2と保温
壁4との間にヒータ3がこれらとの間に排気用の
通気路を構成する間隙を隔てて配設され、そして
前記保温壁4から坩堝2内の融液面の周縁部上に
わたつて輻射スクリーン5が配設されている。
[Example] Hereinafter, the method of the present invention will be specifically explained based on drawings showing examples thereof. Fig. 1 is a schematic cross-sectional view showing the implementation state of the method of the present invention, Fig. 2 is an explanatory diagram of the measurement principle, and Fig. 3 A shows the positional relationship between the linear sensor, the reference point captured by it, and its reflected image. Explanatory diagram,
FIG. 3B is a waveform diagram showing the signal level, in which 1 indicates the chamber, 2 the crucible, 3 the heater, and 4 the heat retaining wall. A heat retaining wall 4 is disposed inside the chamber 1 along its side periphery, a crucible 2 is disposed in the center surrounded by the heat retaining wall 4, and a heater 3 is installed between the crucible 2 and the heat retaining wall 4. are arranged with a gap forming an exhaust air passage between them, and a radiant screen 5 is arranged extending from the heat retaining wall 4 to the peripheral edge of the melt surface in the crucible 2. There is.

坩堝2はグラフアイト製の容器2aの内側に石
英製の容器2bを嵌め合わせた二重構造に構成さ
れており、底部中央にはチヤンバ1の底壁を貫通
させた軸2cの上端が連結され、該軸2cの下端
に連繋したモータM1,M2にて回転、並びに昇降
せしめられるようになつている。
The crucible 2 has a double structure in which a quartz container 2b is fitted inside a graphite container 2a, and the upper end of a shaft 2c passing through the bottom wall of the chamber 1 is connected to the center of the bottom. The shaft 2c is rotated and raised and lowered by motors M 1 and M 2 connected to the lower end of the shaft 2c.

チヤンバ1の上部壁中央にはチヤンバ1内の雰
囲気ガスの供給口を兼ねる単結晶の引上口1aが
開口され、またその周囲の1個所には、観察窓1
bが開口せしめられており、前記引上口1aには
保護筒8が立設され、また観察窓1bの外方に臨
ませてカメラ11が配設されている。
At the center of the upper wall of the chamber 1 is opened a single crystal pulling port 1a which also serves as a supply port for the atmospheric gas inside the chamber 1, and at one location around it is an observation window 1.
b is opened, a protective tube 8 is erected at the pulling port 1a, and a camera 11 is disposed facing the outside of the observation window 1b.

保護筒8の上端からは引上軸7aが垂設されて
おり、その下端にはチヤツクを介して種結晶7が
吊り下げられ、また引上軸7aの上端はモータ
M3,M4を備えた回転、昇降機能に連繋されてお
り、種結晶7を融液になじませた後、回転させつ
つ上昇させることによつて、種結晶7の下端に単
結晶6を成長せしめるようになつている。
A pulling shaft 7a is suspended from the upper end of the protection tube 8, and a seed crystal 7 is suspended from the lower end of the shaft via a chuck.
It is connected to the rotation and lifting functions equipped with M 3 and M 4 , and after blending the seed crystal 7 with the melt, by rotating and raising it, the single crystal 6 is placed at the lower end of the seed crystal 7. It is designed to encourage growth.

輻射スクリーン5は金属製の環状リム5aの内
周縁部に、ここから下方に向かうに従つて縮径さ
れ、中空の逆円錐台形をなすよう傾斜させたテー
パ部5bを設けて構成され、環状リム5aの外周
縁を保温壁4上に当接懸架せしめることにより保
温壁4上に保持されている。
The radiation screen 5 is constructed by providing a tapered part 5b on the inner peripheral edge of a metal annular rim 5a, the diameter of which decreases downward from here and is inclined to form a hollow inverted truncated cone shape. The outer peripheral edge of 5a is held on the heat retaining wall 4 by abutting and suspending it on the heat retaining wall 4.

カメラ11は第2,3図に示す如くレンズ11
aの結像位置にリニアセンサ12をその視野中に
前記輻射スクリーン5のテーパ部5bの下端縁5
c及び融液面に対する下端縁5cの反射像5を
捉え得るようその設置位置及び設置角度(30゜程
度)を設定されている。
The camera 11 has a lens 11 as shown in FIGS.
The lower edge 5 of the tapered portion 5b of the radiation screen 5 is placed in the field of view of the linear sensor 12 at the imaging position a.
The installation position and installation angle (approximately 30 degrees) are set so as to capture the reflected image 5 of the lower edge 5c with respect to the lower edge 5c and the melt surface.

リニアセンサ12は第3図イに示す如く前記下
端縁5cの曲線状縁部に対する接線と直交する向
きであつて、テーパ部5bの下端縁5cの像Na
及びその反射像5の像Nbの両者を共に捉え得
る長さに設定されており、各受光素子で捉えた像
Na,Nbの明るさに応じた電気信号を出力するよ
うになつており、その出力は演算制御部13に読
み込まれるようになつている。
The linear sensor 12 is oriented perpendicularly to the tangent to the curved edge of the lower edge 5c as shown in FIG.
It is set to a length that can capture both the image Nb of the reflected image 5, and the image captured by each light receiving element.
It is designed to output an electrical signal according to the brightness of Na and Nb, and the output is read into the arithmetic control section 13.

リニアセンサ12で捉えられる像のうち下端縁
5cの像Naは比較的暗く、一方融液面からの反
射像Nbは融液面自体が高温で、しかも下端縁5
cの背面がヒータ3等からの光を反射し、その反
射光に融液面が照らされることから極めて明るく
なり、リニアセンサ12を構成する各部の受光素
子から出力される電気信号の信号レベルは第3図
ロに示す如くになる。即ち、像Nbの受像位置で
最も高く、ここから像Naの受像位置までの間は
略一定のレベルを示し、像Naの受像位置を過ぎ
ると信号レベルは急激に小さくなる。
Among the images captured by the linear sensor 12, the image Na of the lower edge 5c is relatively dark, while the reflected image Nb from the melt surface shows that the melt surface itself is at a high temperature.
The back surface of C reflects the light from the heater 3, etc., and the surface of the melt is illuminated by the reflected light, making it extremely bright, and the signal level of the electrical signal output from the light receiving elements of each part of the linear sensor 12 is The result will be as shown in Figure 3B. That is, the signal level is highest at the image receiving position of image Nb, exhibits a substantially constant level from there to the image receiving position of image Na, and decreases rapidly after passing the image receiving position of image Na.

演算制御部13はこれらリニアセンサ12から
の信号レベルに基づき像Na,Nbの位置を検出
し、これらの位置に基づきテーパ部5bの下端縁
5cとその反射像5との離隔寸法hを演算す
る。
The calculation control unit 13 detects the positions of the images Na and Nb based on the signal levels from these linear sensors 12, and calculates the distance h between the lower edge 5c of the tapered portion 5b and the reflected image 5 based on these positions. .

即ち、カメラ11のレンズ11aから下端縁5
cまでの距離をa、またレンズ11aからリニア
センサ12までの距離をbとし、レンズ11aの
光軸の傾斜角をθとすると以下の関係式が成り立
つ。
That is, from the lens 11a of the camera 11 to the lower edge 5
When the distance to c is a, the distance from the lens 11a to the linear sensor 12 is b, and the inclination angle of the optical axis of the lens 11a is θ, the following relational expression holds true.

h sinθ+h・Nb−Na/bΔd cosθ =a/b・(Nb−Na)・Δd ∴h=a/b・(Nb−Na)・Δd/sinθ+Nb−Na/b
・Δd cosθ h=a・(Nb−Na)・Δd/b sinθ−cosθ(Nb−N
a)・Δd…(2) 但し、 Δd:リニアセンサ12の長手方向における
単一受光素子の大きさ Nb−Na:リニアセンサ上における像Na,
Nb間の寸法 従つてテーパ部5bの下端縁5cから融液面ま
での距離lは下記(3)式によつて与えられることと
なる。
h sinθ+h・Nb−Na/bΔd cosθ=a/b・(Nb−Na)・Δd ∴h=a/b・(Nb−Na)・Δd/sinθ+Nb−Na/b
・Δd cosθ h=a・(Nb−Na)・Δd/b sinθ−cosθ(Nb−N
a)・Δd…(2) However, Δd: Size of a single light receiving element in the longitudinal direction of the linear sensor 12 Nb−Na: Image Na on the linear sensor,
Dimension between Nb Therefore, the distance l from the lower edge 5c of the tapered portion 5b to the melt surface is given by the following equation (3).

l=1/2h …(3) 演算制御部13は算出したlを予め定めた基準
レベル値と比較し、その差を解消するよう坩堝2
用のモータM2に制御信号を出力し、坩堝2の位
置を調節する。
l=1/2h...(3) The calculation control unit 13 compares the calculated l with a predetermined reference level value, and adjusts the crucible 2 to eliminate the difference.
A control signal is output to the motor M 2 for adjusting the position of the crucible 2.

なお上記実施例においては輻射スクリーン5の
テーパ部5bにおける下端縁5cを基準点にして
融液面のレベルを検出する場合につき説明した
が、何らこれに限るものではなく、輻射スクリー
ン5に代えて基準点とすべき他の不動の部材を利
用し、或いは特別な基準部材を配置する構成を採
用してもよい。
In the above embodiment, a case has been described in which the level of the melt surface is detected using the lower edge 5c of the tapered portion 5b of the radiation screen 5 as a reference point, but the present invention is not limited to this, and instead of the radiation screen 5. It is also possible to use another immovable member as a reference point or to arrange a special reference member.

〔試験例〕[Test example]

18インチ坩堝を用いてこれに原料であるシリコ
ン多結晶粒を60Kg投入し、直径150mmのシリコン
単結晶を1.0mm/分の速度で引上げる過程で前述
した如き本発明方法により融液面レベルを測定
し、これに基づき坩堝の位置制御を行つたとこ
ろ、輻射スクリーンの下端縁と融液面との離隔寸
法変化を±0.3mmの範囲内に留め得ることが確認
された。
Using an 18-inch crucible, 60 kg of silicon polycrystalline grains as a raw material were put into it, and during the process of pulling a silicon single crystal with a diameter of 150 mm at a speed of 1.0 mm/min, the melt surface level was lowered by the method of the present invention as described above. When the position of the crucible was controlled based on the measurements, it was confirmed that the change in the distance between the lower edge of the radiation screen and the melt surface could be kept within a range of ±0.3 mm.

上述の実施例は輻射スクリーン5におけるテー
パ部5bの下端縁5cの像Naとその反射像5
の像Nbとの離隔寸法を求めて融液面レベルを検
出し、これに基づき坩堝の位置制御を行う場合に
つき説明したが、現実には輻射スクリーン5の下
端縁5cの位置は不動であるから、リニアセンサ
12上における像Nbの位置にのみ着目すれば十
分である。
The above embodiment is based on the image Na of the lower edge 5c of the tapered portion 5b in the radiation screen 5 and its reflected image 5.
Although the case has been described in which the melt surface level is detected by determining the separation dimension from the image Nb and the position of the crucible is controlled based on this, in reality, the position of the lower edge 5c of the radiation screen 5 does not move. , it is sufficient to focus only on the position of the image Nb on the linear sensor 12.

従つて、リニアセンサ12上において像Nbが
像Naと反対側に移動するときは、融液面レベル
の下降を、また像Na側に向けて移動するときは
融液面レベルの上昇を意味するから、像Naの位
置が当初定めた位置から変化しないよう坩堝2の
位置及び移動速度制御を行うこととしてもよい。
Therefore, when the image Nb moves to the opposite side of the image Na on the linear sensor 12, it means a decrease in the melt level, and when it moves towards the image Na side, it means an increase in the melt level. Therefore, the position and movement speed of the crucible 2 may be controlled so that the position of the image Na does not change from the initially determined position.

〔効果〕〔effect〕

以上の如く本発明方法にあつては融液面上方を
覆う輻射スクリーンに基準点を定め、この基準点
と融液面からの基準点の反射像を検出して両者の
距離を求めることとしてあるから坩堝自体の容積
変化に影響されることなく、融液面の変化を正確
に検出することが可能となつて、これに相応した
坩堝の高さ調節を正確、且つ迅速に行い得、安定
した単結晶成長条件を維持し得て多結晶化現象の
発生頻度を大幅に抑制出来ることは勿論、更に融
液面レベルの変化による融液と輻射スクリーンと
の接触、及びこれによる排ガス通流路の閉鎖等の
不都合を未然に防止し得るなど本発明は優れた効
果を奏するものである。
As described above, in the method of the present invention, a reference point is set on the radiation screen covering above the melt surface, and the distance between this reference point and the reflected image of the reference point from the melt surface is detected to determine the distance between the two. This makes it possible to accurately detect changes in the melt surface without being affected by changes in the volume of the crucible itself, and to adjust the crucible height accordingly, accurately and quickly. Not only can single-crystal growth conditions be maintained and the frequency of polycrystalization phenomenon can be greatly suppressed, but also the contact between the melt and the radiation screen due to changes in the melt surface level, and the resulting obstruction of the exhaust gas flow path. The present invention has excellent effects such as being able to prevent inconveniences such as closure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施状態を示す模式図、
第2図は部分拡大説明図、第3図は測定原理を示
す説明図、第4図は従来装置の模式的縦断面図で
ある。 1…チヤンバ、2…坩堝、3…ヒータ、4…保
温壁、5…輻射スクリーン、5b…テーパ部、5
c…下端縁、6…単結晶、7…種結晶、11…カ
メラ、12…リニアセンサ、13…演算制御部、
Na,Nb…像。
FIG. 1 is a schematic diagram showing the implementation state of the method of the present invention,
FIG. 2 is a partially enlarged explanatory diagram, FIG. 3 is an explanatory diagram showing the principle of measurement, and FIG. 4 is a schematic vertical sectional view of a conventional device. 1... Chamber, 2... Crucible, 3... Heater, 4... Heat insulation wall, 5... Radiation screen, 5b... Taper part, 5
c...lower edge, 6...single crystal, 7...seed crystal, 11...camera, 12...linear sensor, 13...arithmetic control unit,
Na, Nb...image.

Claims (1)

【特許請求の範囲】[Claims] 1 昇降移動される坩堝の上方であつて、単結晶
の引上げ域の周囲に輻射スクリーンを配設した単
結晶成長装置における前記坩堝内の融液面のレベ
ルを測定する方法において、前記輻射スクリーン
の一部に定めた基準点と該融液面に対する前記基
準点の反射像とを光強度に応じた信号を発するリ
ニアセンサにて捉え、該リニアセンサ上における
前記基準点とその反射像との離隔寸法に基づき融
液面のレベルを求めることを特徴とする単結晶成
長装置における融液面のレベル測定方法。
1. In a method for measuring the level of a melt surface in a crucible in a single crystal growth apparatus in which a radiation screen is provided above a crucible that is moved up and down and around a single crystal pulling area, the radiation screen is A reference point defined in a part and a reflected image of the reference point on the melt surface are captured by a linear sensor that emits a signal according to the light intensity, and the separation between the reference point and the reflected image on the linear sensor is determined. A method for measuring the level of a melt surface in a single crystal growth apparatus, characterized in that the level of the melt surface is determined based on dimensions.
JP11665587A 1987-05-12 1987-05-12 Level measuring method for molten liquid of single crystal growing device Granted JPS63281022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11665587A JPS63281022A (en) 1987-05-12 1987-05-12 Level measuring method for molten liquid of single crystal growing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11665587A JPS63281022A (en) 1987-05-12 1987-05-12 Level measuring method for molten liquid of single crystal growing device

Publications (2)

Publication Number Publication Date
JPS63281022A JPS63281022A (en) 1988-11-17
JPH0444215B2 true JPH0444215B2 (en) 1992-07-21

Family

ID=14692609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11665587A Granted JPS63281022A (en) 1987-05-12 1987-05-12 Level measuring method for molten liquid of single crystal growing device

Country Status (1)

Country Link
JP (1) JPS63281022A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3455580B2 (en) * 1994-06-03 2003-10-14 ワッカー・エヌエスシーイー株式会社 Silicon single crystal pulling apparatus and manufacturing method
JP4784401B2 (en) 2006-05-30 2011-10-05 株式会社Sumco Molten liquid level monitoring device in silicon single crystal growth process
CN110273178A (en) * 2018-03-14 2019-09-24 胜高股份有限公司 The method of pulling up of monocrystalline silicon

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194271A (en) * 1975-02-17 1976-08-18
JPS51126302A (en) * 1975-04-26 1976-11-04 Sanyu Gijutsu Kenkyusho:Kk A method of controlling melt levels of iron etc. and an apparatus for it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5194271A (en) * 1975-02-17 1976-08-18
JPS51126302A (en) * 1975-04-26 1976-11-04 Sanyu Gijutsu Kenkyusho:Kk A method of controlling melt levels of iron etc. and an apparatus for it

Also Published As

Publication number Publication date
JPS63281022A (en) 1988-11-17

Similar Documents

Publication Publication Date Title
US5665159A (en) System for controlling growth of a silicon crystal
US5846318A (en) Method and system for controlling growth of a silicon crystal
US8414701B2 (en) Method for manufacturing silicon single crystal in which a crystallization temperature gradient is controlled
US9959611B2 (en) Method and apparatus for manufacturing single crystal
US5656078A (en) Non-distorting video camera for use with a system for controlling growth of a silicon crystal
TWI770661B (en) Single crystal manufacturing apparatus and single crystal manufacturing method
US5660629A (en) Apparatus for detecting the diameter of a single-crystal silicon
JP6477356B2 (en) Single crystal manufacturing method and manufacturing apparatus
JP5924090B2 (en) Single crystal pulling method
JP6939714B2 (en) Method for measuring the distance between the melt surface and the seed crystal, method for preheating the seed crystal, and method for producing a single crystal
US6030451A (en) Two camera diameter control system with diameter tracking for silicon ingot growth
TW201732097A (en) Single crystal manufacturing method and device
JPH0444215B2 (en)
US20230357950A1 (en) Manufacturing method of single crystals
JP2005187291A (en) Melt surface position detecting apparatus of single crystal pulling device
KR101028933B1 (en) Single crystal melt level regulation apparatus, single crystal growth apparatus including the regulation apparatus, and single crystal melt level regulation method
JPH07277879A (en) Apparatus for producing single crystal by cz method and melt level control method
KR101528063B1 (en) Apparatus for measuring the diameter of ingot, ingot growing apparatus having the same and method for ingot growing
WO2023195217A1 (en) Method and apparatus for producing silicon single crystal and method for producing silicon wafer
JP6090501B2 (en) Single crystal pulling method
JP2789064B2 (en) Single crystal pulling method and pulling apparatus
KR20240155336A (en) Method and device for manufacturing silicon single crystal and method for manufacturing silicon wafer
KR20230094497A (en) Verification device of light brightness sensor for growing device of single crystal ingot
JPH10167880A (en) Method for growing single crystal and device therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070721

Year of fee payment: 15