JPH0710674A - Method for growing inorganic compound signal crystal - Google Patents

Method for growing inorganic compound signal crystal

Info

Publication number
JPH0710674A
JPH0710674A JP15235693A JP15235693A JPH0710674A JP H0710674 A JPH0710674 A JP H0710674A JP 15235693 A JP15235693 A JP 15235693A JP 15235693 A JP15235693 A JP 15235693A JP H0710674 A JPH0710674 A JP H0710674A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
volatile element
inorganic compound
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15235693A
Other languages
Japanese (ja)
Inventor
Hiroshi Kawakami
博 川上
Chiku Katano
築 片野
Makoto Saito
真 斉藤
Hideo Okada
英夫 岡田
Shinichiro Kawabata
紳一郎 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP15235693A priority Critical patent/JPH0710674A/en
Publication of JPH0710674A publication Critical patent/JPH0710674A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a single crystal of high quality by controlling the solid-liquid interface so as to provide a curved surface of an upward curved convex form in a method for growing an inorganic compound single crystal containing a volatile element according to a vertical boat growth method. CONSTITUTION:A hermetically sealed type crucible having a volatile element holding part capable of producing a volatile element atmosphere in the upper part and a seed crystal holding part at the lower end is used to grow an inorganic compound single crystal while forcedly cooling the lower end of the crucible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発光ダイオード、レー
ザーダイオードなどのデバイスの製造に適した高品質の
揮発性元素を有する無機化合物単結晶の成長方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing an inorganic compound single crystal having a high quality volatile element, which is suitable for manufacturing a device such as a light emitting diode or a laser diode.

【0002】[0002]

【従来の技術】III-V族化合物、II-VI族化合物等の揮発
性元素を含有する無機化合物単結晶は、通常は、チョコ
ラルスキイ法(Cz法)または温度勾配法(GF法)あ
るいは水平ブリッジマン法(HB法)等の水平ボート成
長法により製造されている。これらの成長法のうち、C
z法は円形断面の単結晶が得られるが、高温度勾配の条
件下で成長させるため、転位密度が大となるという欠点
を有し、一方水平ボート成長法は、転位密度が低い単結
晶が得られるが、断面が半円形となるので円形基板を切
り出すと原料歩留りが低下するという欠点を持ってい
る。
2. Description of the Related Art Inorganic compound single crystals containing volatile elements such as III-V group compounds and II-VI group compounds are usually produced by the Czochralski method (Cz method) or the temperature gradient method (GF method). It is manufactured by a horizontal boat growth method such as the horizontal Bridgman method (HB method). Of these growth methods, C
Although the z method can obtain a single crystal having a circular cross section, it has a drawback that the dislocation density becomes large because the single crystal is grown under the condition of a high temperature gradient. Although it can be obtained, it has a drawback that the raw material yield decreases when a circular substrate is cut out because the cross section becomes a semicircle.

【0003】そこで、低温度勾配の条件下で円形断面の
単結晶を得るために、単結晶成長用ボートをほぼ鉛直に
保持する垂直ボート成長法が開発された(特公平2−3
3680号公報、特表昭64−500020号公報、特
開昭64−37486号公報、特開昭63−85082
号公報)。
Therefore, in order to obtain a single crystal having a circular cross section under the condition of a low temperature gradient, a vertical boat growth method has been developed in which the single crystal growth boat is held substantially vertically (Japanese Patent Publication No. 2-3).
Japanese Patent No. 3680, Japanese Patent Publication No. 64-500020, Japanese Patent Laid-Open No. 64-37486, Japanese Patent Laid-Open No. 63-85082.
Issue).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、垂直ボ
ート成長法では、固液界面を上凸型に湾曲した面に保持
することが容易でなく、この結果、転位密度増大、双晶
の発生等の問題があった。
However, in the vertical boat growth method, it is not easy to maintain the solid-liquid interface on the curved surface of the upward convex shape, and as a result, dislocation density increases, twinning occurs, etc. There was a problem.

【0005】[0005]

【課題を解決するための手段】本発明者等は、垂直ボー
ト成長法において、固液界面を上凸型に湾曲した面に保
持して、高品質の単結晶を成長させる方法を開発するこ
とを目的として鋭意研究を重ねた結果、本発明に到達し
たものである。本発明の上記の目的は、揮発性元素を含
有する無機化合物単結晶を、ほぼ鉛直に保持した坩堝中
を用いて揮発性元素雰囲気中で成長させる方法におい
て、上部に揮発性元素雰囲気を発生させる揮発性元素保
持部を有し、下端部に種結晶設置部を有する密閉型坩堝
を用いて、該坩堝の下端部を強制的に冷却しながら無機
化合物単結晶を成長させる方法によって達せられる。
The inventors of the present invention have developed a method for growing a high quality single crystal by holding a solid-liquid interface on an upward convex curved surface in a vertical boat growth method. The present invention has been achieved as a result of intensive research conducted for the purpose of The above-mentioned object of the present invention is to produce an inorganic compound single crystal containing a volatile element, in a method of growing it in a volatile element atmosphere using a crucible held substantially vertically, in which a volatile element atmosphere is generated in the upper part. This can be achieved by a method of growing an inorganic compound single crystal while forcibly cooling the lower end of the crucible using a closed crucible having a volatile element holding part and a seed crystal installation part at the lower end.

【0006】本発明方法を図1に基づいて説明する。図
1は、本発明方法の実施に用いられる装置の一例の縦断
面模型図である。図1において、1は坩堝である。坩堝
1は、密閉型の構造が採用される。これは、揮発性元素
の雰囲気を保持し坩堝外に漏らさないようにするためで
ある。坩堝1を密閉型の構造とするには、坩堝上端にす
り合わせの蓋部を設けるのが好ましい。揮発性元素の雰
囲気中で成長させることにより、単結晶成長中に揮発性
元素が融液及び単結晶表面から揮発して転位等結晶欠陥
の原因となるのを防止できる。坩堝1を熱分解窒化ほう
素(pBN)を用いて作成した場合、すり合わせ部を高
温にさらすとすり合わせ部が焼結する場合があるので、
1100℃以下、より好ましくは、1000℃以下の温
度に保持するのが好ましい。
The method of the present invention will be described with reference to FIG. FIG. 1 is a schematic vertical sectional view of an example of an apparatus used for carrying out the method of the present invention. In FIG. 1, 1 is a crucible. The crucible 1 has a closed structure. This is to keep the atmosphere of volatile elements and prevent them from leaking out of the crucible. In order to make the crucible 1 a closed type structure, it is preferable to provide a lid portion for rubbing on the upper end of the crucible. By growing in the atmosphere of a volatile element, it is possible to prevent the volatile element from volatilizing from the melt and the surface of the single crystal during the growth of the single crystal to cause crystal defects such as dislocation. When the crucible 1 is made of pyrolytic boron nitride (pBN), if the rubbed portion is exposed to a high temperature, the rubbed portion may sinter.
It is preferable to maintain the temperature at 1100 ° C. or lower, more preferably 1000 ° C. or lower.

【0007】単結晶を成長させる場合、坩堝1に所望の
無機化合物の多結晶を設置する。また、各構成元素を坩
堝に設置して合成反応と単結晶成長を同一坩堝中で行っ
てもよい。坩堝1中に揮発性元素の雰囲気を形成するに
は、坩堝の上部に揮発性元素保持部2を設ける。2を坩
堝下部に設けると坩堝下端部を強制冷却できないので好
ましくない。揮発性元素保持部2と坩堝1の本体とは細
管3を介して接続し、細管3の周囲には断熱材4を配置
して、熱的に絶縁するのが好ましい。これは、最適の揮
発性元素の蒸気圧を与える温度と単結晶成長に適した温
度が異なるからである。例えば、GaAs単結晶を成長させ
る場合、揮発性元素保持部2には、砒素を設置する。砒
素の雰囲気は、約1気圧が適当であるので、揮発性元素
保持部2の温度は、600〜700℃に調節する。な
お、断熱材としては、グラファイトのブロック、ファイ
バー、炭化珪素、珪素等のブロックが用いられる。
To grow a single crystal, a crucible 1 is provided with a polycrystal of a desired inorganic compound. Alternatively, each constituent element may be placed in a crucible and the synthetic reaction and single crystal growth may be performed in the same crucible. In order to form the atmosphere of the volatile element in the crucible 1, the volatile element holding portion 2 is provided on the upper part of the crucible. If 2 is provided in the lower part of the crucible, the lower end of the crucible cannot be forcibly cooled, which is not preferable. It is preferable that the volatile element holding portion 2 and the main body of the crucible 1 are connected via a thin tube 3, and a heat insulating material 4 is arranged around the thin tube 3 so as to be thermally insulated. This is because the temperature at which the vapor pressure of the volatile element is optimal and the temperature suitable for single crystal growth are different. For example, when growing a GaAs single crystal, arsenic is installed in the volatile element holding portion 2. Since the atmosphere of arsenic is appropriately about 1 atm, the temperature of the volatile element holding unit 2 is adjusted to 600 to 700 ° C. As the heat insulating material, a block of graphite, a fiber, a block of silicon carbide, silicon, or the like is used.

【0008】揮発性元素とは、III-V族化合物の場合
は、V族元素、II-VI族化合物の場合は、VI族元素をい
う。坩堝1の材質は、石英等でもよいが、Si等の不純物
の溶出の少ない熱分解窒化ほう素(pBN)が好まし
い。5は、融液である。また、6は、単結晶である。融
液5と単結晶6の界面は上方に凸に湾曲した曲面である
と転位等の結晶欠陥が生じても発達しないので高品質の
単結晶が得られる。
The volatile element means a group V element in the case of a III-V group compound and a group VI element in the case of a II-VI group compound. The material of the crucible 1 may be quartz or the like, but it is preferable to use pyrolytic boron nitride (pBN) which hardly elutes impurities such as Si. 5 is a melt. Further, 6 is a single crystal. If the interface between the melt 5 and the single crystal 6 is a curved surface that is convexly curved upward, it does not develop even if a crystal defect such as a dislocation occurs, so that a high quality single crystal can be obtained.

【0009】7は、坩堝1の種結晶設置部である。種結
晶として細い棒状の結晶を用いる場合は、図示のように
種結晶設置部を細くするが、太い結晶を用いる場合は、
必ずしも細くする必要はない。8は、種結晶の融解を防
止する目的で用いられる断熱材である。断熱材8は、坩
堝1の周囲に配置されたヒーターからの輻射熱が種結晶
7に及ばないようにするものである。
Reference numeral 7 is a seed crystal installation portion of the crucible 1. When a thin rod-shaped crystal is used as the seed crystal, the seed crystal installation portion is thinned as shown, but when a thick crystal is used,
It does not necessarily have to be thin. 8 is a heat insulating material used for the purpose of preventing melting of the seed crystal. The heat insulating material 8 prevents radiant heat from a heater arranged around the crucible 1 from reaching the seed crystal 7.

【0010】9は、坩堝1の下端部を強制冷却する冷却
部である。坩堝下端部を強制冷却することにより固液界
面を上凸状に制御することが可能になる。強制冷却する
方法は、図1に示すように、グラファイト等で製造した
ブロックの内部に窒素等の気体を通過させて行うのが好
ましい。10は、坩堝1並びに断熱材4及び8等必要な
部材を封入した石英封管である。石英封管10は、砒素
その他のV族元素,VI族元素が外部に盛れるのを防止す
る。
Reference numeral 9 is a cooling section for forcibly cooling the lower end of the crucible 1. By forcibly cooling the lower end of the crucible, the solid-liquid interface can be controlled to have an upward convex shape. As shown in FIG. 1, the forced cooling is preferably performed by passing a gas such as nitrogen through a block made of graphite or the like. Reference numeral 10 denotes a quartz sealed tube in which necessary members such as the crucible 1 and the heat insulating materials 4 and 8 are enclosed. The quartz sealed tube 10 prevents arsenic and other group V elements and group VI elements from being deposited outside.

【0011】強制冷却は、石英封管8を冷却部9上に載
置することによって行うのがよい。単結晶を成長させる
には石英封管10をヒーター中に設置して、ヒーターの
電力を制御して固液界面を上方へ移動させるか、ヒータ
ーを機械的に移動させて単結晶を成長させる。
Forced cooling is preferably carried out by placing the quartz sealed tube 8 on the cooling section 9. In order to grow a single crystal, the quartz sealed tube 10 is installed in a heater and the electric power of the heater is controlled to move the solid-liquid interface upward, or the heater is mechanically moved to grow the single crystal.

【0012】[0012]

【発明の効果】本発明方法によると、固液界面の制御が
容易であるので結晶欠陥の少ない高品質の単結晶を得る
ことができるので産業上の利用価値は大である。
According to the method of the present invention, since the solid-liquid interface can be easily controlled, a high-quality single crystal with few crystal defects can be obtained, which is of great industrial utility value.

【0013】[0013]

【実施例】本発明を実施例及び比較例に基づいて具体的
に説明する。 実施例 図1で示す装置を用いてGaAs単結晶を成長させた。pB
N製の坩堝(内径56mm、直胴部長200mm)の下
端部に4mm×4mm×50mmの種結晶を設置し、坩
堝内に別途合成したGaAs多結晶を2kg設置した。揮発
性元素保持部には、砒素を5g設置した。pBN製坩堝
をすり合わせを有する蓋で覆った後、断熱材とともに石
英封管中に設置し、封管内部を真空にして100〜50
0℃に加熱、処理した後、熔封した。
EXAMPLES The present invention will be specifically described based on Examples and Comparative Examples. Example A GaAs single crystal was grown using the apparatus shown in FIG. pB
A 4 mm × 4 mm × 50 mm seed crystal was placed at the lower end of an N crucible (inner diameter 56 mm, straight barrel length 200 mm), and 2 kg of separately synthesized GaAs polycrystal was placed in the crucible. 5 g of arsenic was placed in the volatile element holder. After covering the crucible made of pBN with a lid having a lap, the quartz crucible was placed in a quartz sealed tube together with a heat insulating material, and the inside of the sealed tube was evacuated to 100 to 50.
It was heated to 0 ° C., treated, and then sealed.

【0014】この石英封管を電気炉内に設置し、冷却部
に窒素を5l/分の速度で流して冷却した。電気炉を昇
温し、多結晶を融解した後、電気炉を制御して6℃/c
mの温度勾配(上部が高温側)を形成した。石英封管を
冷却部とともに2mm/分の速度で下方に移動させて結
晶成長させた。
This quartz sealed tube was placed in an electric furnace, and nitrogen was passed through the cooling section at a rate of 5 l / min to cool it. After heating the electric furnace to melt the polycrystal, control the electric furnace to 6 ° C / c
A temperature gradient of m (upper side is hot side) was formed. The quartz sealed tube was moved downward together with the cooling section at a speed of 2 mm / min to grow crystals.

【0015】得られた単結晶は、直胴部の長さ約16c
m,単結晶長は、12.8cmであった。エッチピット
密度(EPD)は、定径後1cmの位置で7×103c
m−2、定径後5cmの位置で、5×103cm−2、
また、同10cmの位置で6×103cm−2あった。 比較例 冷却部を除いたこと以外は、実施例と同様にしてGaAs単
結晶を成長させた。
The resulting single crystal has a straight body length of about 16c.
m, the single crystal length was 12.8 cm. Etch pit density (EPD) is 7 × 103c at a position 1 cm after the constant diameter.
m-2, at a position 5 cm after the constant diameter, 5 × 103 cm-2,
Further, it was 6 × 10 3 cm −2 at the position of 10 cm. Comparative Example A GaAs single crystal was grown in the same manner as in Example except that the cooling part was omitted.

【0016】得られた結晶は、コーン状部の後半から粒
界(バウンダリー)が生じており、直胴部は単結晶とな
らなかった。以上の実施例及び比較例から明らかな通
り、本発明方法のように坩堝下端部を冷却することによ
り単結晶の収量は飛躍的に増加した。
In the obtained crystal, grain boundaries (boundaries) were formed from the latter half of the cone-shaped portion, and the straight body portion was not a single crystal. As is clear from the above Examples and Comparative Examples, the yield of single crystals was dramatically increased by cooling the lower end of the crucible as in the method of the present invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明方法の実施に使用される単結晶
成長装置の1例の縦断面模型図である。
FIG. 1 is a schematic vertical cross-sectional view of an example of a single crystal growth apparatus used for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・・・密閉型坩堝 2・・・・・・揮発性元素保持部 3・・・・・・細管 4・・・・・・断熱材 5・・・・・・融液 6・・・・・・単結晶 7・・・・・・種結晶設置部 8・・・・・・断熱材 9・・・・・・冷却部 10・・・・・石英封管 1 ・ ・ Closed crucible 2 ・ ・ Volatile element holding part 3 ・ ・ ・ ・ Small tube 4 ・ ・ Heat insulation material 5 ・ ・ ・ ・ ・ ・ ・ ・ Melting liquid 6 ・・ ・ ・ ・ ・ Single crystal 7 ・ ・ ・ Seed crystal installation part 8 ・ ・ ・ ・ ・ ・ Insulating material 9 ・ ・ ・ ・ Cooling part 10 ・ ・ ・ Quartz sealed tube

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 英夫 茨城県牛久市東猯穴町1000番地 三菱化成 株式会社筑波工場内 (72)発明者 川端 紳一郎 茨城県牛久市東猯穴町1000番地 三菱化成 株式会社筑波工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Okada 1000 Higashihuinana-cho, Ushiku-shi, Ibaraki Mitsubishi Kasei Co., Ltd.Tsukuba Plant (72) Inventor Shinichiro Kawabata 1000 Higashihuinaka-cho, Ushiku-shi, Ibaraki Mitsubishi Kasei Co., Ltd. Tsukuba factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】揮発性元素を含有する無機化合物単結晶
を、ほぼ鉛直に保持した坩堝中を用いて揮発性元素雰囲
気中で成長させる方法において、上部に揮発性元素雰囲
気を発生させる揮発性元素保持部を有し、下端部に種結
晶設置部を有する密閉型坩堝を用いて、該坩堝の下端部
を強制的に冷却しながら無機化合物単結晶を成長させる
ことをすることを特徴とする方法。
1. A method for growing an inorganic compound single crystal containing a volatile element in a volatile element atmosphere using a crucible held substantially vertically, in which volatile element atmosphere for generating a volatile element atmosphere Using a closed crucible having a holding portion and a seed crystal installation portion at the lower end, a method for growing an inorganic compound single crystal while forcibly cooling the lower end of the crucible .
【請求項2】揮発性元素を含有する無機化合物が、III-
V族化合物である請求項1項の方法。
2. An inorganic compound containing a volatile element is III-
The method of claim 1 which is a Group V compound.
JP15235693A 1993-06-23 1993-06-23 Method for growing inorganic compound signal crystal Pending JPH0710674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15235693A JPH0710674A (en) 1993-06-23 1993-06-23 Method for growing inorganic compound signal crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15235693A JPH0710674A (en) 1993-06-23 1993-06-23 Method for growing inorganic compound signal crystal

Publications (1)

Publication Number Publication Date
JPH0710674A true JPH0710674A (en) 1995-01-13

Family

ID=15538757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15235693A Pending JPH0710674A (en) 1993-06-23 1993-06-23 Method for growing inorganic compound signal crystal

Country Status (1)

Country Link
JP (1) JPH0710674A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7788782B2 (en) 2005-09-08 2010-09-07 Honda Motor Co., Ltd. Suspension assembly positioning method
CN106062258A (en) * 2014-02-27 2016-10-26 株式会社日立制作所 Crucible for crystal growth, crystal growth apparatus provided therewith, and method for growing crystals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7788782B2 (en) 2005-09-08 2010-09-07 Honda Motor Co., Ltd. Suspension assembly positioning method
CN106062258A (en) * 2014-02-27 2016-10-26 株式会社日立制作所 Crucible for crystal growth, crystal growth apparatus provided therewith, and method for growing crystals

Similar Documents

Publication Publication Date Title
EP0068021B1 (en) The method and apparatus for forming and growing a single crystal of a semiconductor compound
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
JPH0710674A (en) Method for growing inorganic compound signal crystal
JPH0570276A (en) Device for producing single crystals
KR100485023B1 (en) Apparatus for forming SiC Single Crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2690420B2 (en) Single crystal manufacturing equipment
JPH069290A (en) Method for growing compound semiconductor single crystal
JPH05330995A (en) Production of silicon carbide single crystal and apparatus therefor
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP2010030868A (en) Production method of semiconductor single crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JPH0867593A (en) Method for growing single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JP3154351B2 (en) Single crystal growth method
JPH08109094A (en) Production of compound semiconductor single crystal
JPH03193689A (en) Production of compound semiconductor crystal
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JPH08319189A (en) Production of single crystal and device therefor
JPH0952789A (en) Production of single crystal
JPH08301696A (en) Production of compound semiconductor crystal and device therefor
JPH08290991A (en) Method for growing compound semiconductor single crystal
JPS63233091A (en) Process and apparatus for producing single crystal of compound semiconductor
JPH02229783A (en) Method for growing single crystal of compound semiconductor by vertical type boat method