JPH0570276A - Device for producing single crystals - Google Patents
Device for producing single crystalsInfo
- Publication number
- JPH0570276A JPH0570276A JP23192091A JP23192091A JPH0570276A JP H0570276 A JPH0570276 A JP H0570276A JP 23192091 A JP23192091 A JP 23192091A JP 23192091 A JP23192091 A JP 23192091A JP H0570276 A JPH0570276 A JP H0570276A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- heaters
- crucible
- heater
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/46—Sulfur-, selenium- or tellurium-containing compounds
- C30B29/48—AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、成長炉内の温度分布
を制御して単結晶を制御するための装置に関し、特に、
GaAs、GaP、GaSb、InAs、InPおよび
InSbなどのIII−V属化合物半導体単結晶ならび
に、CdTe、Hg1-X CdX TeおよびZnSeなど
のII−VI属化合物半導体単結晶を製造するための装
置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for controlling a temperature distribution in a growth furnace to control a single crystal, and in particular,
Apparatus for producing III-V group compound semiconductor single crystal such as GaAs, GaP, GaSb, InAs, InP and InSb, and II-VI group compound semiconductor single crystal such as CdTe, Hg 1-X Cd X Te and ZnSe Regarding
【0002】[0002]
【従来の技術】水平ブリッジマン法(HB法)、垂直ブ
リッジマン法(VB法)、水平温度勾配付固化法(HG
F法)および垂直温度勾配付固化法(VGF法)では、
成長炉内の温度分布を厳密に制御する必要があることか
ら、複数のヒータを隣接して配置する多段ヒータ構造が
取られている。図4に、VGF法を行なう従来装置の一
例を示す。VGF装置80において、チャンバ55内
に、断熱筒58が設けられ、断熱筒58内には隣接する
10個のヒータ1〜10に囲まれて、石英管25が設け
られる。石英管25内には、先端部が細くなったるつぼ
20が載置される。るつぼ20の先端部には種結晶21
が取付けられ、種結晶21から単結晶24が成長するよ
う、その上方に融液23が収容される。また、るつぼ2
0の上部開口は蓋22で覆われ、融液23の表面が輻射
によって冷えるのを防いでいる。石英管25の下部には
リザーバ63が設けられ、高解離圧成分26が収容され
る。石英管25は密封されており、リザーバ63部分の
温度を制御することによって、石英管25内の高解離圧
成分の蒸気圧が調節される。以上のように構成される装
置において、ヒータ1〜10の出力を調整することによ
り、徐々に種結晶側から温度を降下させて単結晶を成長
させていく。2. Description of the Related Art Horizontal Bridgman method (HB method), vertical Bridgman method (VB method), solidification method with horizontal temperature gradient (HG)
F method) and the vertical temperature gradient solidification method (VGF method),
Since it is necessary to strictly control the temperature distribution in the growth furnace, a multi-stage heater structure in which a plurality of heaters are arranged adjacent to each other has been adopted. FIG. 4 shows an example of a conventional device for performing the VGF method. In the VGF device 80, a heat insulating cylinder 58 is provided in the chamber 55, and a quartz tube 25 is provided in the heat insulating cylinder 58, surrounded by ten adjacent heaters 1 to 10. In the quartz tube 25, the crucible 20 having a thin tip is placed. A seed crystal 21 is provided at the tip of the crucible 20.
Is attached, and the melt 23 is housed above it so that the single crystal 24 grows from the seed crystal 21. Also, crucible 2
The upper opening of 0 is covered with a lid 22 to prevent the surface of the melt 23 from being cooled by radiation. A reservoir 63 is provided below the quartz tube 25, and the high dissociation pressure component 26 is stored therein. The quartz tube 25 is sealed, and the vapor pressure of the high dissociation pressure component in the quartz tube 25 is adjusted by controlling the temperature of the reservoir 63 portion. In the apparatus configured as described above, by adjusting the outputs of the heaters 1 to 10, the temperature is gradually decreased from the seed crystal side to grow a single crystal.
【0003】一方、液体カプセル引上法(LEC法)の
場合、ヒータは2〜3段が一般的であるが、将来はさら
に多段化が進むものと考えられる。特に引上げ法による
化合物半導体単結晶の成長では、成長する単結晶の転位
密度を低く抑えるために成長軸方向の温度勾配を小さく
する必要があり、多段ヒータを用いて各ヒータの出力を
制御し、目的の温度勾配を精度よく作り出さねばならな
い。On the other hand, in the case of the liquid capsule pull-up method (LEC method), the number of heaters is generally 2 to 3, but it is considered that the number of heaters will be further increased in the future. In particular, in the growth of compound semiconductor single crystal by the pulling method, it is necessary to reduce the temperature gradient in the growth axis direction in order to keep the dislocation density of the growing single crystal low, and to control the output of each heater using a multi-stage heater, The target temperature gradient must be created accurately.
【0004】[0004]
【発明が解決しようとする課題】以上示してきた結晶成
長法において良質の単結晶を成長させるためには、成長
炉内の温度分布を精密に制御する必要がある。しかしな
がら、従来の単結晶製造装置では、近接する複数のヒー
タからの熱対流および輻射のため、個々のヒータによる
温度制御の精度に限界があった。In order to grow a good quality single crystal in the crystal growth method described above, it is necessary to precisely control the temperature distribution in the growth furnace. However, in the conventional single crystal manufacturing apparatus, the accuracy of temperature control by each heater is limited due to thermal convection and radiation from a plurality of heaters adjacent to each other.
【0005】この発明の目的は、単結晶製造装置におい
て、ヒータによる温度制御の精度を向上させることによ
り、転位密度の低い良質な結晶を再現性よく製造するこ
とができる装置を提供することにある。An object of the present invention is to provide an apparatus capable of producing a good quality crystal having a low dislocation density with good reproducibility by improving the accuracy of temperature control by a heater in a single crystal producing apparatus. ..
【0006】[0006]
【課題を解決するための手段】この発明に従う単結晶の
製造装置は、隣接した複数のヒータを有する装置におい
て、各ヒータを仕切る遮蔽部材をさらに設けたことを特
徴とする。The apparatus for producing a single crystal according to the present invention is characterized in that an apparatus having a plurality of heaters adjacent to each other is further provided with a shielding member for partitioning each heater.
【0007】この発明に従う遮蔽部材は、カーボン、石
英、パイロリティックボロンナイトライド(PBN)、
ボロンナイトライド(BN)、SiC、Si3 N4 およ
びAlNなどの材料で形成することができるほか、カー
ボンに石英、PBN、BN、SiC、Si3 N4 および
AlNの少なくともいずれかを被覆した材料より形成す
ることができる。The shielding member according to the present invention includes carbon, quartz, pyrolytic boron nitride (PBN),
It can be formed of a material such as boron nitride (BN), SiC, Si 3 N 4 and AlN, and a material in which carbon is coated with at least one of quartz, PBN, BN, SiC, Si 3 N 4 and AlN. Can be formed more.
【0008】この発明に従う装置は、特にGaAs、G
aP、GaSb、InAs、InPおよびInSbなど
のIII−V属化合物半導体単結晶および、CdTe、
Hg 1-X CdX TeおよびZnSeなどのII−VI属
化合物半導体単結晶を製造する装置とすることができ
る。The device according to the invention is particularly suitable for GaAs, G
aP, GaSb, InAs, InP and InSb, etc.
III-V compound semiconductor single crystal and CdTe,
Hg 1-XCdXII-VI genus such as Te and ZnSe
It can be used as a device for manufacturing compound semiconductor single crystals.
It
【0009】また、この発明に従う装置は、チョクラル
スキー法、LEC法、HB法、VB法、HGF法、およ
びVGF法に従って単結晶を製造する装置とすることが
できる。The apparatus according to the present invention can be an apparatus for producing a single crystal according to the Czochralski method, LEC method, HB method, VB method, HGF method, and VGF method.
【0010】[0010]
【作用】この発明によれば、複数のヒータを有する単結
晶の製造装置において、各ヒータは遮蔽部材によって仕
切られるので、近接するヒータからの熱対流おび輻射は
遮蔽部材によって阻止される。このため個々のヒータに
よる温度制御について精度の向上を図ることができる。
温度制御の精度を向上させれば、結晶成長における固液
界面の制御をより厳密に行なうことができ、双晶、リネ
ージおよびフリーズアウト等の発生を抑制して転位密度
の低い単結晶を製造できるようになる。According to the present invention, in a single crystal manufacturing apparatus having a plurality of heaters, since each heater is partitioned by the shielding member, the convection and radiation from the adjacent heaters are blocked by the shielding member. Therefore, the accuracy of temperature control by each heater can be improved.
If the accuracy of temperature control is improved, the solid-liquid interface in crystal growth can be controlled more strictly, and twin crystals, lineage, freezeout, etc. can be suppressed and a single crystal with a low dislocation density can be manufactured. Like
【0011】[0011]
【実施例】1.VGF法への適用例 図1(a)に、この発明をVGF法の装置に適用した具
体例を示す。VGF装置70において、チャンバ55内
には断熱筒58が設けられ、断熱筒58内には石英管2
5が設けられる。石英管25の周囲には、隣接する10
個のヒータ1〜10が配置されている。また、各ヒータ
の間には、カーボンにPBNをコーティングした遮蔽板
11〜19が断熱筒58に取付けるようにしてそれぞれ
設けられる。遮蔽板11〜19は、図1(b)に示すよ
うに中に穴が開いた円板形状である。石英管25内に
は、先端部が細くなったるつぼ20が載置される。るつ
ぼ20の先端部には種結晶21が取付けられ、種結晶2
1から単結晶24が成長するようその上方に原料融液2
3が収容される。また、るつぼ20の上部開口は蓋22
で覆われ、原料融液23の表面が輻射によって冷えるの
を防いでいる。石英管25の下部には、リザーバ63が
設けられ、高解離圧成分26が収容される。石英管25
は密封されており、リザーバ63部分の温度を制御する
ことによって、石英管25内の高解離圧成分の蒸気圧が
調節される。なお、石英管25の代りに、PBN、パイ
ロリティックグラファイト(PG)、PBNコーティン
グカーボン、PGコーティングカーボンおよびモリブデ
ンなどの材料で形成された気密容器を用いてもよい。[Example] 1. Example of Application to VGF Method FIG. 1A shows a specific example in which the present invention is applied to an apparatus of the VGF method. In the VGF device 70, a heat insulating cylinder 58 is provided in the chamber 55, and the quartz tube 2 is provided in the heat insulating cylinder 58.
5 are provided. Around the quartz tube 25, adjacent 10
Individual heaters 1 to 10 are arranged. Further, between the heaters, shielding plates 11 to 19 in which carbon is coated with PBN are provided so as to be attached to the heat insulating cylinder 58. The shielding plates 11 to 19 are disk-shaped with holes formed therein as shown in FIG. In the quartz tube 25, the crucible 20 having a thin tip is placed. A seed crystal 21 is attached to the tip of the crucible 20, and the seed crystal 2
1 so that a single crystal 24 grows above the raw material melt 2
3 are accommodated. Further, the upper opening of the crucible 20 has a lid 22.
The surface of the raw material melt 23 is covered with, and is prevented from being cooled by radiation. A reservoir 63 is provided below the quartz tube 25 to contain the high dissociation pressure component 26. Quartz tube 25
Is sealed, and the vapor pressure of the high dissociation pressure component in the quartz tube 25 is adjusted by controlling the temperature of the reservoir 63. Instead of the quartz tube 25, an airtight container made of a material such as PBN, pyrolytic graphite (PG), PBN coated carbon, PG coated carbon and molybdenum may be used.
【0012】以上のように構成される装置を用いて、V
GF法により3インチφのノンドープGaAs単結晶を
成長させた。成長に当たって、るつぼ20は上部内径が
85mm、下部内径が80mmのPBN製るつぼを使用
した。るつぼ下部を円錐形に形成し、その下端に種結晶
を取付けた。ついでるつぼにGaAs多結晶原料7kg
を収容した。原料を収容したるつぼは、リザーバ63に
固体As50gが収容された石英管25内に載置した。
石英管25を真空封入して、チャンバ55の所定の位置
に載置した。チャンバ55内を真空引きした後、ヒータ
1〜10の出力を調整しながら原料を融解した。成長界
面での温度勾配を2〜3℃/cmに維持しながら、徐々
に温度を降下させ、長さ約250mmの単結晶を成長さ
せた。この発明の装置では、結晶および融液内の温度分
布制御の精度が顕著に改善された。特に転位密度を低く
するため重要な成長界面での温度勾配制御の精度は、従
来±1℃程度であったが、この発明の装置では±0.1
℃以内であった。その結果、フロントからバックまで転
位密度2×103 cm-2以下の転位密度の低い結晶が安
定して得られるようになった。成長界面の制御が向上し
た結果、双晶、リネージなどの欠陥が顕著に減少した。Using the device configured as described above, V
A 3 inchφ non-doped GaAs single crystal was grown by the GF method. In growing the crucible 20, a PBN crucible having an upper inner diameter of 85 mm and a lower inner diameter of 80 mm was used. The lower part of the crucible was formed into a conical shape, and a seed crystal was attached to the lower end thereof. 7 kg of polycrystalline GaAs raw material in the crucible
Housed. The crucible containing the raw material was placed in the quartz tube 25 containing 50 g of solid As in the reservoir 63.
The quartz tube 25 was vacuum-sealed and placed at a predetermined position in the chamber 55. After the inside of the chamber 55 was evacuated, the raw materials were melted while adjusting the outputs of the heaters 1-10. While maintaining the temperature gradient at the growth interface at 2-3 ° C / cm, the temperature was gradually lowered to grow a single crystal having a length of about 250 mm. In the apparatus of the present invention, the accuracy of controlling the temperature distribution in the crystal and melt was significantly improved. The accuracy of the temperature gradient control at the growth interface, which is particularly important for lowering the dislocation density, was about ± 1 ° C. in the past, but is ± 0.1 in the apparatus of the present invention.
It was within ℃. As a result, crystals with a low dislocation density of 2 × 10 3 cm −2 or less from the front to the back can be stably obtained. As a result of improved control of the growth interface, defects such as twins and lineage were significantly reduced.
【0013】2.LEC法への適用例 図2(a)に、この発明をLEC法に適用した具体例を
示す。LEC装置75において、高圧チャンバ27内に
は、回転可能な下軸29に支持されてサセプタ35が設
けられる。サセプタ35内には、るつぼ36が設けられ
る。また、サセプタ35の周囲には、隣接する3個のヒ
ータ30、31および32が配置される。各ヒータは、
断熱筒60に取付けられたPBNコーティングカーボン
製の遮蔽板33および34でそれぞれ仕切られている。
遮蔽板33、34は、図2(b)に示すように、中空円
板形である。るつぼ36内には、原料融液37が収容さ
れるとともに、融液上に液体封止剤38が設けられる。
一方、高圧チャンバ27内において、るつぼ36の中心
上方には回転昇降可能な上軸28が設けられる。以上の
ように構成される装置において、単結晶の成長は、窒素
およびアルゴンなどの不活性ガスの加圧雰囲気下で行な
われ、上軸28の下端に取付けられた種結晶39から単
結晶40が引き上げられる。2. Example of Application to LEC Method FIG. 2A shows a specific example of application of the present invention to the LEC method. In the LEC device 75, a susceptor 35 supported by a rotatable lower shaft 29 is provided in the high pressure chamber 27. A crucible 36 is provided in the susceptor 35. In addition, three adjacent heaters 30, 31, and 32 are arranged around the susceptor 35. Each heater is
It is partitioned by PBN-coated carbon shielding plates 33 and 34 attached to the heat insulating cylinder 60.
As shown in FIG. 2B, the shield plates 33 and 34 have a hollow disk shape. A raw material melt 37 is accommodated in the crucible 36, and a liquid sealant 38 is provided on the melt.
On the other hand, in the high pressure chamber 27, above the center of the crucible 36, an upper shaft 28 capable of rotating and elevating is provided. In the apparatus configured as described above, the growth of a single crystal is performed under a pressurized atmosphere of an inert gas such as nitrogen and argon, and the single crystal 40 to the single crystal 40 attached to the lower end of the upper shaft 28 are separated. Be lifted.
【0014】図2(a)に示された装置を用い、LEC
法に従って3インチφノンドープGaAs単結晶の成長
を行なった。るつぼ36には、8インチφのPBN製る
つぼを使用した。GaAs多結晶原料約9kgおよびB
2 O3 約1kgをるつぼ36内に投入した。ヒータ30
〜32の加熱によって、原料を融解した後、目的の温度
勾配になるようヒータ出力の調整を行なった。ついで、
Arガス20atmの雰囲気下で、るつぼ回転速度30
rpm、種結晶回転速度2rpm、引上げ速度10mm
/hの条件で成長を行なった。その結果、直径約82m
m、長さ約35cmの単結晶が得られた。Using the device shown in FIG. 2 (a), LEC
According to the method, a 3 inch φ non-doped GaAs single crystal was grown. As the crucible 36, a PBN crucible having an 8 inch diameter was used. GaAs polycrystal raw material about 9kg and B
About 1 kg of 2 O 3 was put into the crucible 36. Heater 30
After the raw materials were melted by the heating of ~ 32, the heater output was adjusted so as to obtain the desired temperature gradient. Then,
Crucible rotation speed of 30 in an atmosphere of Ar gas of 20 atm
rpm, seed crystal rotation speed 2 rpm, pulling speed 10 mm
Growth was performed under the condition of / h. As a result, the diameter is about 82m
A single crystal having a length of m and a length of about 35 cm was obtained.
【0015】従来の遮蔽板を用いない装置で成長した結
晶では、直径の変動が±2〜3mmと大きく、結晶のフ
ロントからバックにかけて転位密度も2〜4×104 c
m-2の範囲でばらついていた。これに対して、この発明
の装置では温度分布の安定した制御が可能となった結
果、結晶の直径変動を±1mm以内に制御できた。ま
た、フロントからバックまで転位密度を2×104 cm
-2以下とすることができた。さらには、双晶、リネージ
およびフリーズアウトの発生が顕著に減少した。In the crystal grown by the conventional apparatus which does not use the shielding plate, the diameter variation is as large as ± 2 to 3 mm, and the dislocation density is 2 to 4 × 10 4 c from the front to the back of the crystal.
It varied in the range of m -2 . On the other hand, with the apparatus of the present invention, stable temperature distribution control was possible, and as a result, the crystal diameter fluctuation could be controlled within ± 1 mm. Also, the dislocation density from the front to the back is 2 × 10 4 cm.
It could be -2 or less. Furthermore, the occurrence of twins, lineage and freezeouts was significantly reduced.
【0016】3.高解離圧成分ガス雰囲気下での引上げ
法への適用例 図3に、この発明を高解離圧成分ガス雰囲気下でのチョ
クラルスキー法に適用した例を示す。図に示す装置にお
いて、高圧チャンバ27内には、断熱筒61が設けら
れ、その中に単結晶を引上げるための気密容器41が設
けられる。気密容器41には、容器内の分圧を制御する
ためのリザーバ56が形成されている。リザーバ56の
周囲にはヒータ57が設けられるとともに、気密容器4
1の周囲には、上から下に5個のヒータ46、47、4
8、49および50が設けられる。ヒータ57と46の
間には、中空円板形でPBNコーティングカーボン製の
遮蔽板59が設けられる一方、ヒータ46〜50の間に
も中空円板形でPBNコーティングカーボン製の遮蔽板
51、52、53および54がそれぞれ設けられる。3. Example of Application to Pulling Method under High Dissociation Pressure Component Gas Atmosphere FIG. 3 shows an example of applying the present invention to the Czochralski method under a high dissociation pressure component gas atmosphere. In the apparatus shown in the figure, a heat insulating cylinder 61 is provided in the high pressure chamber 27, and an airtight container 41 for pulling a single crystal therein is provided therein. The airtight container 41 is formed with a reservoir 56 for controlling the partial pressure in the container. A heater 57 is provided around the reservoir 56, and the airtight container 4 is provided.
Surrounding 1 is five heaters 46, 47, 4 from top to bottom.
8, 49 and 50 are provided. A hollow disk-shaped shield plate 59 made of PBN coated carbon is provided between the heaters 57 and 46, and a hollow disk-shaped shield plate 51, 52 made of PBN coated carbon is also provided between the heaters 46 to 50. , 53 and 54 are provided respectively.
【0017】気密容器41内には、回転昇降可能な下軸
29に支持されたサセプタ35が設けられる。サセプタ
35内にはるつぼ36が設けられ、るつぼ36内には原
料融液37および液体封止剤38が収容される。るつぼ
36の中心上方には、回転昇降可能な上軸28が設けら
れ、その下段には種結晶39が取付けられている。上軸
28および下軸29が気密容器41を貫通する部分に
は、封止剤溜42および43がそれぞれ設けられ、液体
封止剤44および45がそれぞれ収容されることで気密
が保持されている。以上のように構成される装置におい
て、気密容器41内には、N2 およびArなどの不活性
ガスとともに高解離圧成分元素の蒸気が充満され、その
雰囲気下で、上軸28により原料融液から単結晶40が
引上げられる。Inside the airtight container 41, a susceptor 35 supported by a lower shaft 29 which can be rotated and moved up and down is provided. A crucible 36 is provided in the susceptor 35, and a raw material melt 37 and a liquid sealant 38 are contained in the crucible 36. Above the center of the crucible 36, an upper shaft 28 that can be rotated and raised and lowered is provided, and a seed crystal 39 is attached to the lower stage thereof. Sealing agent reservoirs 42 and 43 are provided at the portions where the upper shaft 28 and the lower shaft 29 penetrate the airtight container 41, and the airtightness is maintained by containing the liquid sealing agents 44 and 45, respectively. .. In the apparatus configured as described above, the airtight container 41 is filled with the vapor of the high dissociation pressure component element together with the inert gas such as N 2 and Ar, and the raw material melt is set by the upper shaft 28 in the atmosphere. The single crystal 40 is pulled from.
【0018】図3に示した装置を用い、3インチφのノ
ンドープGaAs単結晶の成長を行なった。気密容器4
1はPBNをコーティングしたカーボンで作成した。る
つぼ36には、6インチφのPBNるつぼを使用した。
GaAs多結晶原料約6kgおよびB2 O3 約500g
をるつぼ36に投入した。一方リザーバ56には、固体
のAsを投入した。ヒータ46および50の加熱によっ
て封止剤溜42および43の液体封止剤44および45
をそれぞれ融解し、気密容器41を密閉した後、気密容
器41内にAsガスを充満させた。ヒータ47〜49の
加熱によって原料を融解した後、目的の温度勾配となる
よう各ヒータ出力の調整を行なった。Asガス分圧1a
tm、Arガス分圧4atmの雰囲気下で、るつぼの回
転速度10rpm、結晶の回転速度2rpm、引上げ速
度6mm/hで成長を行ない、直径約82mm、長さ約
27cmの単結晶が得られた。Using the apparatus shown in FIG. 3, a 3 inch φ non-doped GaAs single crystal was grown. Airtight container 4
1 was made of carbon coated with PBN. As the crucible 36, a 6-inch φ PBN crucible was used.
About 6 kg of GaAs polycrystalline raw material and about 500 g of B 2 O 3
Was put into the crucible 36. On the other hand, solid As was put into the reservoir 56. The liquid sealants 44 and 45 in the sealant reservoirs 42 and 43 are heated by the heaters 46 and 50.
Were melted and the airtight container 41 was sealed, and then the airtight container 41 was filled with As gas. After the raw materials were melted by heating the heaters 47 to 49, the output of each heater was adjusted so as to obtain a desired temperature gradient. As gas partial pressure 1a
Growth was carried out in an atmosphere of tm and Ar gas partial pressure of 4 atm at a crucible rotation speed of 10 rpm, a crystal rotation speed of 2 rpm, and a pulling speed of 6 mm / h to obtain a single crystal having a diameter of about 82 mm and a length of about 27 cm.
【0019】遮蔽板を用いない従来の装置で成長した結
晶では、直径の変動が±3〜4mmと大きく、結晶のフ
ロントからバックにかけて、転位密度も2〜5×103
cm -2の範囲でばらついていた。これに対して本発明の
装置では、温度分布の安定した制御が可能となった結
果、結晶の直径変動を±1mm以内に制御でき、フロン
トからバックまで転位密度を1〜2×103 cm-2に制
御できた。さらには、双晶、リネージおよびフリーズア
ウト等の発生が顕著に減少された。[0019] The results obtained by the conventional device without using the shield plate
In the crystal, the fluctuation of the diameter is as large as ± 3 to 4 mm, and
The dislocation density is 2 to 5 × 10 from the front to the back.3
cm -2It varied in the range. On the other hand, according to the present invention
The device enables stable control of temperature distribution.
As a result, the diameter fluctuation of the crystal can be controlled within ± 1 mm,
Dislocation density from 1 to 2 × 10 from top to back3cm-2Control
I was able to do it. In addition, twins, lineage and freezers
Outbreaks such as plumage were significantly reduced.
【0020】なお、上記実施例では、VGF法および引
上げ法について具体例を示したが、HB法、VB法およ
びHGF法においても、ヒータを仕切る遮蔽部材を用い
ることによって同様の効果が得られる。In the above embodiments, the VGF method and the pulling method are shown as concrete examples, but the same effect can be obtained in the HB method, the VB method and the HGF method by using the shielding member for partitioning the heater.
【0021】[0021]
【発明の効果】以上説明したように、この発明によれ
ば、個々のヒータについて温度制御の精度を上げること
によって、結晶成長の制御がより改善される。この発明
により、結晶成長における双晶、リネージおよびフリー
ズアウト等の発生を抑制することができる。また、成長
する結晶全体にわたって、転位密度を低く抑えることが
できる。特にこの発明は、チョクラルスキー法、LEC
法、HB法、VB法、HGF法およびVGF法による単
結晶の製造において、結晶の品質向上と生産性向上に寄
与する。As described above, according to the present invention, the control of crystal growth is further improved by increasing the accuracy of temperature control for each heater. According to the present invention, it is possible to suppress the generation of twin crystals, lineage, freeze-out and the like in crystal growth. In addition, the dislocation density can be suppressed low throughout the growing crystal. In particular, the present invention relates to the Czochralski method, LEC
Method, the HB method, the VB method, the HGF method, and the VGF method contribute to the improvement of crystal quality and productivity in the production of a single crystal.
【図1】この発明をVGF法の装置に適用した一具体例
を示す模式図。FIG. 1 is a schematic view showing a specific example in which the present invention is applied to a VGF method apparatus.
【図2】この発明をLEC法の装置に適用した一具体例
を示す模式図。FIG. 2 is a schematic diagram showing a specific example in which the present invention is applied to an apparatus for LEC method.
【図3】この発明を高解離圧成分ガス雰囲気下でチョク
ラルスキー法により単結晶を製造する装置に適用した一
具体例を示す模式図。FIG. 3 is a schematic diagram showing a specific example in which the present invention is applied to an apparatus for producing a single crystal by the Czochralski method in a high dissociation pressure component gas atmosphere.
【図4】従来の単結晶製造装置の一具体例を示す模式
図。FIG. 4 is a schematic view showing a specific example of a conventional single crystal manufacturing apparatus.
1〜10、30〜32、46〜50、57 ヒータ 11〜19、33、34、51〜54、59 遮蔽板 1-10, 30-32, 46-50, 57 Heater 11-19, 33, 34, 51-54, 59 Shielding plate
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/208 P 7353−4M 21/368 Z 7353−4M Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location H01L 21/208 P 7353-4M 21/368 Z 7353-4M
Claims (4)
製造装置において、各ヒータを仕切る遮蔽部材をさらに
設けたことを特徴とする単結晶の製造装置。1. A single crystal manufacturing apparatus having a plurality of heaters adjacent to each other, further comprising a shielding member for partitioning each heater.
ロリティックボロンナイトライド、ボロンナイトライ
ド、SiC、Si3 N4 およびAlNの少なくともいず
れかで形成される、請求項1の単結晶の製造装置。2. The apparatus for producing a single crystal according to claim 1, wherein the shielding member is formed of at least one of carbon, quartz, pyrolytic boron nitride, boron nitride, SiC, Si 3 N 4 and AlN. ..
体単結晶およびII−VI属化合物半導体単結晶のいず
れかである、請求項1の単結晶の製造装置。3. The single crystal manufacturing apparatus according to claim 1, wherein the single crystal is one of a III-V group compound semiconductor single crystal and a II-VI group compound semiconductor single crystal.
体カプセル引上げ法、水平ブリッジマン法、垂直ブリッ
ジマン法、水平温度勾配付固化法、および垂直温度勾配
付固化法のいずれかに従って製造される、請求項1の単
結晶の製造装置。4. The single crystal is produced according to any one of the Czochralski method, the liquid capsule pulling method, the horizontal Bridgman method, the vertical Bridgman method, the horizontal temperature gradient solidification method, and the vertical temperature gradient solidification method. The single crystal manufacturing apparatus according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3231920A JP2979770B2 (en) | 1991-09-11 | 1991-09-11 | Single crystal manufacturing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3231920A JP2979770B2 (en) | 1991-09-11 | 1991-09-11 | Single crystal manufacturing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0570276A true JPH0570276A (en) | 1993-03-23 |
JP2979770B2 JP2979770B2 (en) | 1999-11-15 |
Family
ID=16931135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3231920A Expired - Lifetime JP2979770B2 (en) | 1991-09-11 | 1991-09-11 | Single crystal manufacturing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2979770B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995022643A1 (en) * | 1994-02-21 | 1995-08-24 | Japan Energy Corporation | Method of growing single crystal |
US5685907A (en) * | 1994-06-02 | 1997-11-11 | Kabushiki Kaisha Kobe Seiko Sho | Apparatus for preparing compound single crystals |
WO2005095680A1 (en) * | 2004-03-31 | 2005-10-13 | Komatsu Denshi Kinzoku Kabushiki Kaisha | Semiconductor single crystal manufacturing equipment and graphite crucible |
US7214269B2 (en) | 2004-10-15 | 2007-05-08 | Hitachi Cable, Ltd. | Si-doped GaAs single crystal substrate |
JPWO2005106083A1 (en) * | 2004-04-28 | 2008-07-31 | 日鉱金属株式会社 | InP single crystal wafer and method of manufacturing InP single crystal |
JP2011026161A (en) * | 2009-07-23 | 2011-02-10 | Fujikura Ltd | Nitride single crystal and apparatus for producing the same |
CN108570708A (en) * | 2018-07-25 | 2018-09-25 | 汉能新材料科技有限公司 | A kind of gallium arsenide polycrystal synthesizer |
CN108866630A (en) * | 2018-07-25 | 2018-11-23 | 汉能新材料科技有限公司 | A kind of gallium arsenide polycrystal synthetic method |
-
1991
- 1991-09-11 JP JP3231920A patent/JP2979770B2/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1995022643A1 (en) * | 1994-02-21 | 1995-08-24 | Japan Energy Corporation | Method of growing single crystal |
US5603763A (en) * | 1994-02-21 | 1997-02-18 | Japan Energy Corporation | Method for growing single crystal |
US5685907A (en) * | 1994-06-02 | 1997-11-11 | Kabushiki Kaisha Kobe Seiko Sho | Apparatus for preparing compound single crystals |
DE19580737C2 (en) * | 1994-06-02 | 2002-02-21 | Kobe Steel Ltd | Method and device for producing connecting single crystals |
WO2005095680A1 (en) * | 2004-03-31 | 2005-10-13 | Komatsu Denshi Kinzoku Kabushiki Kaisha | Semiconductor single crystal manufacturing equipment and graphite crucible |
US7390361B2 (en) | 2004-03-31 | 2008-06-24 | Sumco Techxiv Corporation | Semiconductor single crystal manufacturing apparatus and graphite crucible |
JPWO2005106083A1 (en) * | 2004-04-28 | 2008-07-31 | 日鉱金属株式会社 | InP single crystal wafer and method of manufacturing InP single crystal |
US8815010B2 (en) | 2004-04-28 | 2014-08-26 | Nippon Mining & Metals Co., Ltd. | InP single crystal wafer and method for producing InP single crystal |
US7214269B2 (en) | 2004-10-15 | 2007-05-08 | Hitachi Cable, Ltd. | Si-doped GaAs single crystal substrate |
JP2011026161A (en) * | 2009-07-23 | 2011-02-10 | Fujikura Ltd | Nitride single crystal and apparatus for producing the same |
CN108570708A (en) * | 2018-07-25 | 2018-09-25 | 汉能新材料科技有限公司 | A kind of gallium arsenide polycrystal synthesizer |
CN108866630A (en) * | 2018-07-25 | 2018-11-23 | 汉能新材料科技有限公司 | A kind of gallium arsenide polycrystal synthetic method |
Also Published As
Publication number | Publication date |
---|---|
JP2979770B2 (en) | 1999-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2979770B2 (en) | Single crystal manufacturing equipment | |
JP2690420B2 (en) | Single crystal manufacturing equipment | |
JPH11147785A (en) | Production of single crystal | |
JPH08119784A (en) | Production of compound single crystal and production device therefor | |
JPH05262596A (en) | Production of single crystal of lithium tetraborate | |
JP2677859B2 (en) | Crystal growth method of mixed crystal type compound semiconductor | |
JP2830307B2 (en) | Method for producing high dissociation pressure single crystal | |
JPS6090897A (en) | Method and apparatus for manufacturing compound semiconductor single crystal | |
JP3158661B2 (en) | Method and apparatus for producing high dissociation pressure single crystal | |
JPS60122791A (en) | Pulling up method of crystal under liquid sealing | |
JP3154351B2 (en) | Single crystal growth method | |
JPH10212192A (en) | Method for growing bulk crystal | |
JPH0380180A (en) | Device for producing single crystal | |
JP2700145B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JPS58176194A (en) | Vessel for growing single crystal | |
JPS5957992A (en) | Manufacture of single crystal of semiconductor of compound | |
JP2773441B2 (en) | Method for producing GaAs single crystal | |
JPH0867593A (en) | Method for growing single crystal | |
JPS6065794A (en) | Production of high-quality gallium arsenide single crystal | |
JPH0524964A (en) | Production of compound semiconductor single crystal | |
JP2726887B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JP2000327496A (en) | Production of inp single crystal | |
JPH0710674A (en) | Method for growing inorganic compound signal crystal | |
JPH0764671B2 (en) | Method for growing compound semiconductor single crystal | |
JPH0559873B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990817 |