JPS5957992A - Manufacture of single crystal of semiconductor of compound - Google Patents

Manufacture of single crystal of semiconductor of compound

Info

Publication number
JPS5957992A
JPS5957992A JP16764782A JP16764782A JPS5957992A JP S5957992 A JPS5957992 A JP S5957992A JP 16764782 A JP16764782 A JP 16764782A JP 16764782 A JP16764782 A JP 16764782A JP S5957992 A JPS5957992 A JP S5957992A
Authority
JP
Japan
Prior art keywords
crucible
crystal
single crystal
heater
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16764782A
Other languages
Japanese (ja)
Other versions
JPS606916B2 (en
Inventor
Kazutaka Terajima
一高 寺嶋
Tsuguo Fukuda
承生 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP16764782A priority Critical patent/JPS606916B2/en
Publication of JPS5957992A publication Critical patent/JPS5957992A/en
Publication of JPS606916B2 publication Critical patent/JPS606916B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a high quality single crystal of a semiconductor of a compound, by placing a reflecting plte made of pyrolytic boron nitride over the opening of a crucible to inhibit the radiation of heat from the crucible and a heater and to grow a crystal at a gentle temp. gradient. CONSTITUTION:Starting materials for a crystal and starting materials for a liq. sealant are charged into a crucible 3, and the crucible 3 is put in a pressure vessel 1. An inert gas is introduced under pressure at 30-70 deg.C from an introducing pipe 9, and the crucible 3 is heated with a heater 2 to melt the starting materials in the crucible 3. A reflecting plate 12 made of pyrolytic boron nitride placed over the opening of the crucible 3 inhibits the radiation of heat from the crucible 3 and the heater 2, so the temp. gradient of a part close to the interface between the liq. sealant 7 and the melt 8 is regulated to <=70 deg.C/cm. This gentle temp. gradient is suitable for crystal growth.

Description

【発明の詳細な説明】 この発明は液体封止引き上げ法による■−v族化合物半
導体単結晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a single-crystalline compound semiconductor of the 1-V group by a liquid-sealed pulling method.

tiI−v族化合物半導体の中でもガリウム砒素(Ga
A3 )  は電、子移動゛度が大きく、高速集積回路
、光・電子素子用材料に広く用いられつつある。
Among the tiI-v group compound semiconductors, gallium arsenide (Ga
A3) has a large electron and electron mobility and is being widely used as a material for high-speed integrated circuits and opto-electronic devices.

このようにGaAs  が集積回路用結晶基板に用いら
れるには、比抵抗が1070・師恩上と高絶縁性である
こと、素子特性均一化のため結晶内に欠陥が少く分布が
均一であること、大型ウェハーの製造が容易であること
等が挙げられる。このような要求を実現するGaps結
晶の成長法としては、液体封止引き上げ法(LEC法)
が注目を浴びている。
In order for GaAs to be used as a crystal substrate for integrated circuits, it must have high insulating properties with a resistivity of 1070, and must have a uniform distribution with few defects in the crystal to ensure uniform device characteristics. , it is easy to manufacture large wafers, etc. A method for growing Gaps crystals that meets these requirements is the liquid confinement pulling method (LEC method).
is attracting attention.

この液体封止引き上げ法は低圧封止引き上げ法と高圧封
止引き上げ法とが知られている。低圧封止引き上げ法は
ボート成長法で作成したGaAII  多結晶を原料と
するため、原料純度が低く、半絶縁性とするためのクロ
ムの添加を必要として好ましくない。
The liquid sealing pulling method is known as a low pressure sealing pulling method and a high pressure sealing pulling method. The low-pressure sealed pulling method uses GaAII polycrystals produced by the boat growth method as a raw material, so the purity of the raw material is low and chromium needs to be added to make it semi-insulating, which is not preferable.

また直接合成を行う高圧封止引き上げ法はクロムの添加
は不要であるが、高圧下で結晶を作成するため、単結晶
の歩留りは高く々るが、結晶材料融液と封止剤との界面
の湿度勾配が大きいため、形成した結晶内に応力が生じ
、これが結晶欠陥の一種である転句の発生の原因となっ
ていた。
In addition, the high-pressure sealing pulling method, which involves direct synthesis, does not require the addition of chromium, but since the crystal is created under high pressure, the yield of single crystals is high, but the interface between the crystal material melt and the sealant is Because of the large humidity gradient, stress was generated within the formed crystals, which caused the occurrence of inversions, a type of crystal defect.

これ咬で、GaAs  結晶作成時に低温度勾配とする
ため、高圧容器内の雰囲気圧力を下げるとか・容器内の
ルツボの位置を低くするとかの提案幻:吃られたが、結
晶欠陥の少ない高品質のGaAs  結晶作成に適する
温度分布及び雰囲気圧力を再現性よく設定することは困
輪なことである。特に、低湿度勾配とする目的で高圧容
器内の雰囲気圧力を下げる場合、圧力を下げ過ぎると溶
融液中のAsが飛散し、所定の組成比の高品質結晶が得
られなくなる。
On this note, a proposal to lower the atmospheric pressure in the high-pressure container or lower the position of the crucible in the container in order to create a low temperature gradient when creating GaAs crystals: Although it was criticized, it is a high-quality crystal with fewer defects. It is difficult to set the temperature distribution and atmospheric pressure suitable for the production of GaAs crystals with good reproducibility. In particular, when lowering the atmospheric pressure in the high-pressure container for the purpose of creating a low humidity gradient, if the pressure is lowered too much, As in the melt will scatter, making it impossible to obtain high-quality crystals with a predetermined composition ratio.

この発明の目的は■−■族化膨化半導体結晶作成工程中
において、高圧容器内の雰囲気圧力を低下することなく
低温度勾配下で結晶を成長させる 高品質化合物半導体
単結晶の製造法を提供することにある。
The purpose of the present invention is to provide a method for producing high-quality compound semiconductor single crystals in which crystals are grown under a low temperature gradient without reducing the atmospheric pressure in a high-pressure container during the process of producing expanded semiconductor crystals. There is a particular thing.

以下、添付図面に基いて本発明を説、明すると、不活性
ガス導入管デと排気管10を備えた高圧容器/内には石
英、窒化ボロン等のルツボ3を炭素材料で作られた支持
部材q内に設け、支持軸乙により回転できるように支持
し、ルツボ3の周囲にはヒーターを設はルツボを所定の
温度に加熱保持すると共にヒーターコの周囲には更に断
熱壁/lIを設け、ヒーターよりの外方への放熱を防止
する。ルツボの上部には下端に種結晶//を取付けた引
き上げ軸5を設け、この引き上は軸は支持軸6と同様に
回転すると共に上下IJするように構成されている。
Hereinafter, the present invention will be described and explained based on the attached drawings. A high-pressure vessel equipped with an inert gas inlet pipe and an exhaust pipe 10 has a crucible 3 made of quartz, boron nitride, etc. supported by a carbon material. A heater is installed around the crucible 3 to heat and maintain the crucible at a predetermined temperature, and an insulating wall is further provided around the heater. Prevents heat radiation from the heater to the outside. A pulling shaft 5 with a seed crystal attached to the lower end is provided at the upper part of the crucible, and during pulling up, the shaft is configured to rotate in the same manner as the support shaft 6 and to move up and down IJ.

上述の如@構成の単結晶製造装置において、ルツボの開
口面上部にはバイロリテツク窒化ボロン製の反射板/、
2を設ける。この反射板/2はルツボ3、ヒーターコよ
りの熱の放熱を防ぐと共に、それらの熱を必要に応じて
ルツボに向って反射させる働きを持たせる。
In the single-crystal manufacturing apparatus configured as described above, a reflector plate made of Vyrolithic boron nitride is placed above the opening surface of the crucible.
2 will be provided. This reflector plate/2 has the function of preventing heat radiation from the crucible 3 and the heater heater, and also of reflecting the heat toward the crucible as necessary.

このため、反射板の形状はルツボの開口部を覆うような
形状とし、その端部は断熱@iaの上部才で延びている
ような大きさであると、ヒーターよりの熱の外方への発
散を有効に抑制することができる。具体−な反射板の形
状としては、円板状、円錐型状、壁面がルツボに向って
集中的に反射するような曲面を有しているもの、釣鐘′
の如き形状でヒーター、断熱壁の側面まで覆うようなも
の等が挙げられる。これらの反射板は引き上げ軸Sに固
定させてもよく、又、第2図に示すように、引き上げ軸
Sの適当な位1kに突起/3を設けて反射板/コを内部
より支持するようにし、原料の合成工程中は引き上げ軸
5を上昇させて、反射板を上部に持ち上けておき、結晶
引き上げ工程中は引き上げ軸の下降に伴って反射板を下
降させ、ルツボ開口面を覆うようにして結晶成長を行う
ような構造としてもよい。
For this reason, the shape of the reflector should be such that it covers the opening of the crucible, and the end of the reflector should be of such a size that it extends above the insulation @ia, thereby preventing the heat from the heater from going outward. Divergence can be effectively suppressed. Specific shapes of the reflector include disc-shaped, conical-shaped, curved walls that intensively reflect toward the crucible, and bell-shaped.
Examples include a heater with a shape like this, and one that covers the sides of an insulating wall. These reflectors may be fixed to the pulling shaft S, or, as shown in FIG. During the raw material synthesis process, the pulling shaft 5 is raised to lift the reflecting plate upward, and during the crystal pulling process, the reflecting plate is lowered as the pulling shaft descends to cover the opening surface of the crucible. A structure may be adopted in which crystal growth is performed in this manner.

上述の如き構成の単結晶製造装置において、ルツボ3の
中に結晶材料原料及び液体封止剤原料を入れ、高圧容器
内l内に設置し、不活性ガスを圧入して!IO〜70気
圧とし、ルツボを原料溶融湯度以上に加熱して結晶材r
1及び封止剤を溶融させる。この時の結晶材料溶融液g
と液体封止剤7との界面附近の湿度勾配は、反射板が存
在しないときは100 tym或はそわ以上であるが、
反射板−を設けることによりルツボ内よりの熱或はヒー
ターよりの熱の放散ケ抑制するばかシでなく、ルツボに
対して反射するので、液体封止剤と溶融液との界面附近
の温[Sf勾配は70 c/猜以下に下がシ、結晶成長
に好適な湿度勾配となる。
In the single crystal manufacturing apparatus configured as described above, the crystal material raw material and the liquid sealant raw material are placed in the crucible 3, placed inside the high pressure container 1, and an inert gas is pressurized into the crucible 3. The temperature is IO ~ 70 atm, and the crucible is heated to a temperature higher than the melting temperature of the raw material.
1 and the sealant are melted. At this time, the crystal material melt g
The humidity gradient near the interface between the liquid sealant 7 and the liquid sealant 7 is more than 100 tym or stiff when there is no reflector, but
Providing a reflective plate does not only suppress the dissipation of heat from within the crucible or from the heater, but also reflects the heat toward the crucible, reducing the temperature near the interface between the liquid sealant and the melt. The Sf gradient should be below 70 c/o, resulting in a humidity gradient suitable for crystal growth.

このように、ルツボ内の結晶材料原料と封II・剤原料
が完全に溶融したら、低湿度勾配下で梱結晶//を溶融
液gに接触させ、回転、引き上げ操作により単結晶の製
造を行う。
In this way, when the crystal material raw material and the sealing II/agent raw material in the crucible are completely melted, the packed crystal // is brought into contact with the molten liquid g under a low humidity gradient, and a single crystal is manufactured by rotation and pulling operations. .

この時高圧容器内は高圧状態としても良いので、結晶表
面よシ成分元素の揮散は抑制され、高品質の化合物半導
体重結晶が得られる。
At this time, the inside of the high-pressure container may be kept in a high-pressure state, so that volatilization of the component elements from the crystal surface is suppressed, and a high-quality compound semiconductor heavy crystal can be obtained.

この発明の製造方法の対象となる[1− V膨化   
 ゛合物半導体としてはG(2As、 GaP、 In
P、 InAl+等が挙けられ、反射板はパイロリテツ
ク窒化ボロン製のものを用いるので、不純物の溶出はな
く、無添加(アンドープ)半部1縁性の単結晶が得られ
ることになる。
Target of the production method of this invention [1-V expansion
゛G (2As, GaP, In
Examples include P, InAl+, etc., and since the reflector is made of pyrolytic boron nitride, there is no elution of impurities, and an undoped (undoped) half-unilateral single crystal is obtained.

この光1!IJは上述の説明で明らかなように、これ訃
での高圧液体封正引き上げ法では高湿度勾配下で結晶成
長を行っていたため生成した結晶には転位が多く発生し
、結晶内の分布は不均一となシ易かつだが、この発明で
は反射板を設けて液体封止剤を昇温させ、封止剤と結晶
原料溶融液との界面附近の温度勾配を低くして結晶成長
操作を行うので、形成した結晶表面よシの成分元紫の揮
散も少く、高品質の■−■族化合物半導体単結晶が再現
性よく得られることになる。
This light 1! As is clear from the above explanation, in the high-pressure liquid confinement pulling method using IJ, the crystals were grown under a high humidity gradient, so the resulting crystals had many dislocations, and the distribution within the crystals was uneven. Although it is easy to achieve uniform growth, in this invention, a reflective plate is provided to raise the temperature of the liquid sealant, and the crystal growth operation is performed by lowering the temperature gradient near the interface between the sealant and the crystal raw material melt. There is little volatilization of the component purple from the surface of the formed crystal, and a high quality ■-■ group compound semiconductor single crystal can be obtained with good reproducibility.

次に本発明を実旋例により具体的に説明する。Next, the present invention will be specifically explained using a practical example.

第2図に示すようが構造の羊結晶製造装置を用い、ルツ
ボにGaとAsを5001宛入れ、次いで封止剤として
B206を1601入れた。このルツボは高圧容器の中
に入れ、反射板を上部に引き上げておき、アルゴンガス
を圧入して約50気圧とし、加熱器により約1300t
11′に加熱した。上記加熱によpルツボ内には、上層
にB2O3溶融液が、下層にGaAl  溶融液が形成
した。この時の液体封止剤とG(IA 11  溶融液
との界面の温度勾配は約1[15tT/鰻であった。
Using a sheep crystal production apparatus having the structure shown in FIG. 2, 5001 parts of Ga and As were put into a crucible, and then 1601 parts of B206 was put therein as a sealant. This crucible is placed in a high-pressure container, the reflector is raised to the top, argon gas is pressurized to create a pressure of approximately 50 atmospheres, and a heater is used to heat the crucible to approximately 1,300 tons.
It was heated to 11'. As a result of the above heating, a B2O3 melt was formed in the upper layer and a GaAl melt was formed in the lower layer in the P crucible. At this time, the temperature gradient at the interface between the liquid sealant and the G(IA 11 melt) was approximately 1 [15 tT/eel.

このように原料の合當が完了したら、湿度ケ1238G
に下げ、圧力も10気圧に下げ、しかる後に引き上げ軸
を下降させて反射板をルツボ開[」上に設定し、種結晶
をGaAs+  溶融液に接触さぜ、15711i1/
時の速度で引き上げた。この引き上げ操作の際、種結晶
は時計方向に1分間5回、ルツボは反時計方向に1分t
tJJ 20回の割合で回転させた。結晶引き上げ操作
中は反射板はルツボの開口部分を覆っていた。このため
、界面の温度勾配は約50Cであった。
Once the raw materials have been combined in this way, the humidity can be adjusted to 1238G.
The pressure was lowered to 10 atm, and then the pulling shaft was lowered, the reflector was set above the crucible open position, and the seed crystal was brought into contact with the GaAs+ melt.
pulled up at the speed of time. During this pulling operation, the seed crystal is moved clockwise 5 times for 1 minute, and the crucible is moved counterclockwise for 1 minute.
It was rotated at a rate of tJJ 20 times. During the crystal pulling operation, the reflector plate covered the opening of the crucible. Therefore, the temperature gradient at the interface was about 50C.

上記の結晶成長操作を約8時間継続して行った結果、直
径約50鰭、長さ約1001.1凰約960 ffの円
筒状GaAs単結晶が得られた。この円筒状GαAsキ
結晶の真中の部分を切υ出し、半径方向の転位密度分布
を測定した第3P1に示すように結晶中心部は幅広<1
0c1n  以下であり、比抵抗は107Ω・(Mk以
上の高品質GaAs  単結晶であった。
As a result of continuing the above crystal growth operation for about 8 hours, a cylindrical GaAs single crystal having a diameter of about 50 fins and a length of about 1001.1 mm and about 960 ff was obtained. The middle part of this cylindrical GαAs crystal was cut out and the dislocation density distribution in the radial direction was measured. As shown in P1, the center of the crystal was wide <1
It was a high quality GaAs single crystal with a specific resistance of 107Ω·(Mk or more).

【図面の簡単な説明】[Brief explanation of drawings]

201図は本発明を実施するための単結晶製造装−の一
例を示す概略断面図、第2図は要部の概略断aii図、
第6図は本発明の方法によシ得られた単結晶の転位密度
分布図である。 図中、/は高圧容器、コはヒーター・3けルツボ、Sは
引き上げ軸、7は液体封ll−1剤、gll−i結晶原
料溶融液、//は種結晶、7.2は反則Giを示す。 特許用1順人 工業技術院長 46
FIG. 201 is a schematic sectional view showing an example of a single crystal manufacturing apparatus for carrying out the present invention, FIG. 2 is a schematic sectional view of the main part,
FIG. 6 is a dislocation density distribution diagram of a single crystal obtained by the method of the present invention. In the figure, / is a high-pressure container, C is a heater/3-keel crucible, S is a pulling axis, 7 is a liquid sealing agent, gll-i crystal raw material melt, // is a seed crystal, and 7.2 is a foul Gi shows. Patent 1 Junnin Director of the Agency of Industrial Science and Technology 46

Claims (1)

【特許請求の範囲】[Claims] (1)液体封11−引き上げ法にてIll −V族化合
物半導体単結晶のt+!遣方法において、ルツボの開口
[111上1年にバイロリテツク窒化ボロン製の反射板
を設け、ルツボよりの熱及びヒータよシの熱の放熱を抑
制して、ルツボ内の液体封止剤と結晶原料溶融液との界
面附近を低温度勾配下として結晶成長を行うことを特徴
とする化合物半導体単結晶の製造方法。 (2+111−V族化合物半導体単結晶は無添加半絶縁
性ガリウム砒素即結晶である特許請求の範囲第1項に記
載の化合物半導体単結晶の製造方法。
(1) t+ of Ill-V group compound semiconductor single crystal by liquid seal 11-pulling method! In the method, a reflective plate made of Bairolitech boron nitride is installed at the opening of the crucible [111] to suppress heat radiation from the crucible and heat from the heater, and to prevent the liquid sealant and crystal raw material in the crucible from dissipating. A method for producing a compound semiconductor single crystal, characterized in that crystal growth is performed near the interface with a melt under a low temperature gradient. (The method for manufacturing a compound semiconductor single crystal according to claim 1, wherein the 2+111-V group compound semiconductor single crystal is an additive-free semi-insulating gallium arsenide ready crystal.
JP16764782A 1982-09-28 1982-09-28 Method for manufacturing compound semiconductor single crystal Expired JPS606916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16764782A JPS606916B2 (en) 1982-09-28 1982-09-28 Method for manufacturing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16764782A JPS606916B2 (en) 1982-09-28 1982-09-28 Method for manufacturing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPS5957992A true JPS5957992A (en) 1984-04-03
JPS606916B2 JPS606916B2 (en) 1985-02-21

Family

ID=15853639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16764782A Expired JPS606916B2 (en) 1982-09-28 1982-09-28 Method for manufacturing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS606916B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0177132A2 (en) * 1984-09-05 1986-04-09 Kabushiki Kaisha Toshiba Apparatus for manufacturing compound semiconductor single crystal
JPH02180794A (en) * 1988-12-29 1990-07-13 Toshiba Corp Apparatus for producing iii-v compound semiconductor single crystal
US6015460A (en) * 1995-12-15 2000-01-18 Wacker Siltronic Gesellschaft Fur Halbleitermaterialien Ag Method and apparatus for pulling a monocrystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0177132A2 (en) * 1984-09-05 1986-04-09 Kabushiki Kaisha Toshiba Apparatus for manufacturing compound semiconductor single crystal
JPH02180794A (en) * 1988-12-29 1990-07-13 Toshiba Corp Apparatus for producing iii-v compound semiconductor single crystal
US6015460A (en) * 1995-12-15 2000-01-18 Wacker Siltronic Gesellschaft Fur Halbleitermaterialien Ag Method and apparatus for pulling a monocrystal

Also Published As

Publication number Publication date
JPS606916B2 (en) 1985-02-21

Similar Documents

Publication Publication Date Title
US4645560A (en) Liquid encapsulation method for growing single semiconductor crystals
US5064497A (en) Crystal growth method and apparatus
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
US20030172870A1 (en) Apparatus for growing monocrystalline group II-VI and III-V compounds
US4664742A (en) Method for growing single crystals of dissociative compounds
JP2943430B2 (en) Method and apparatus for producing single crystal
JPS5957992A (en) Manufacture of single crystal of semiconductor of compound
JP3018738B2 (en) Single crystal manufacturing equipment
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JPS6339558B2 (en)
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JPH06271395A (en) Production of compound semiconductor crystal
JP2637210B2 (en) Single crystal growth method and apparatus
JPH03271186A (en) Method and apparatus for pulling up single crystal
JPH01145395A (en) Production of compound semiconductor single crystal
JPS59116194A (en) Manufacture of compound semiconductor single crystal
JPH01290587A (en) Production of single crystal of compound semiconductor
JPH0867593A (en) Method for growing single crystal
JPH11322489A (en) Production of semiconductor single crystal
JPH0597567A (en) Apparatus for producing single crystal
JPS58199796A (en) Pulling device of crystal under sealing with liquid
JPS61132599A (en) Method for producing group iii-v single crystal, and part therefor
JPS59116195A (en) Manufacture of compound semiconductor single crystal