WO1995022643A1 - Method of growing single crystal - Google Patents

Method of growing single crystal Download PDF

Info

Publication number
WO1995022643A1
WO1995022643A1 PCT/JP1994/002089 JP9402089W WO9522643A1 WO 1995022643 A1 WO1995022643 A1 WO 1995022643A1 JP 9402089 W JP9402089 W JP 9402089W WO 9522643 A1 WO9522643 A1 WO 9522643A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
temperature
heating means
temperature gradient
crystal
Prior art date
Application number
PCT/JP1994/002089
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiteru Taniguchi
Toshiaki Asahi
Original Assignee
Japan Energy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26359926&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1995022643(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Japan Energy Corporation filed Critical Japan Energy Corporation
Priority to JP52170795A priority Critical patent/JP3232461B2/en
Priority to US08/535,098 priority patent/US5603763A/en
Publication of WO1995022643A1 publication Critical patent/WO1995022643A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te

Definitions

  • the present invention relates to a method for growing a single crystal of a compound semiconductor, and in particular, to grow a single crystal such as CdZnTe or CdTe by melt growth by vertical gradient freezing (VGF) while controlling the vapor pressure.
  • VVF vertical gradient freezing
  • VVF vertical gradient freezing
  • the invention described in Japanese Patent Publication No. 5-59873 filed by the present applicant has been known.
  • the content of the invention is that the temperature distribution in the heating furnace is maintained at 0.1 to 10 while maintaining the temperature distribution such that the center of the surface of the raw material melt is lowest, becomes higher toward the outside in the radial direction, and becomes higher toward the bottom. This is to cool the inside of the heating furnace at a solid-liquid interface temperature gradient of 'CZcin and a cooling rate of 0.01 to 1' CZhr, and grow a single crystal downward from the center of the melt surface.
  • JP-A-3-183682 a method of growing a crystal by using a vertical heating furnace and providing a vertical temperature gradient, such as the VGF method or the vertical Bridgeman method, is disclosed in Japanese Patent Application Laid-Open No.
  • the inventions of JP-A-3-183682 are known.
  • JP 20 -The invention of No. 1 6 7 8 8 2 uses a vertical container having a substantially inverted conical part at the top and a small opening at the top, and fills the container with the raw material melt and melts the raw material.
  • the raw material melt is solidified downward by bringing the seed crystal into contact with the liquid through the upper small opening.
  • 3-186382 is an improved version of the invention of Japanese Patent Application Laid-Open No. 2-168782, which is different from the one used in Japanese Patent Application Laid-Open No. 2-168782.
  • a lower small opening is provided at the lower part of the same vertical container to allow the excess raw material melt to flow out, and the raw material melt flows out from the lower small opening to damage the container due to volume expansion accompanying solidification of the raw material melt, etc. Is to be avoided.
  • the invention described in JP-B-53-56867 is known. This is because the vessel containing the melt and the seed (seed crystal) is placed in a horizontal furnace, and the temperature of the surface of the melt that contacts the bottom of the vessel is always higher than the temperature of the free (ie, upper) surface of the melt. By holding it high, the melt solidifies so that it starts at the top and ends at the bottom of the container.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for growing a single crystal which is superior in quality and which can produce a large-diameter single crystal with high yield. Is to do. Disclosure of the invention
  • the present inventors first put a CdZnTe raw material into a pBN (pyrolytic boron nitride) wrapper, vacuum-enclose it in a quartz ampoule, 3 inch (diameter) crystal of CdZnTe is grown by the The obtained number of rectangular substrates of 25 ⁇ ⁇ 3 ⁇ ⁇ that passed the product standard was evaluated as the average value per single growth (yield of single crystal substrate).
  • pBN pyrolytic boron nitride
  • the present inventors focused on the fact that there were a furnace with a good yield of a single crystal substrate and a furnace with a bad single crystal substrate in the case of a three-stage heating furnace in which such a vapor pressure control was performed, and examined the causes. We found that there was a difference in the temperature distribution inside the furnace between a good furnace and a bad furnace. Then, from the temperature distribution in the furnace of the three-stage heating furnace with good performance, the first temperature gradient in the vertical direction near the outer wall of the quartz sample corresponding to the raw material melt and the upper side of the upper end of the loop. Then, the present inventors have found an appropriate range for the second temperature gradient in the vertical direction in the furnace.
  • the yield of single crystal substrates was 21.6.
  • the present inventors attempted to grow a single crystal by increasing the diameter of the crystal to be grown to 4 inches, and found that the first temperature gradient was larger than that in the case where the diameter of the crystal was 3 inches. Was found to be smaller. Based on this knowledge, the value of the appropriate range of the first temperature gradient was converted into a relational expression using the diameter of the single crystal as a parameter, The present invention has been completed by performing a heat calculation and generalizing the value in the appropriate range of the second temperature gradient.
  • the method for growing a single crystal according to the present invention includes the steps of: adding a simple substance or a compound made of at least one kind of volatile element among the constituent elements of the compound semiconductor into the reservoir part of the quartz ampule having the reservoir part; After placing a pBN crucible containing the compound semiconductor material in the quartz ampoule and vacuum-sealing the quartz sample, the quartz amble is heated in a heating furnace to melt the material.
  • the reservoir is heated to a predetermined temperature, and the vapor pressure of the element, which is easily volatilized in the reservoir, is controlled by applying the vapor pressure in the quartz amble, and the outer wall of the quartz tumbler corresponding to the molten raw material melt is controlled.
  • a first temperature gradient in the vicinity in the vertical direction (a: / cm) is higher than the upper end of the crucible (in this specification, the range from the upper end of the crucible to the upper side of l Ocn is defined as
  • the temperature in the heating furnace is gradually controlled while controlling the temperature distribution in the heating furnace so as to be smaller than the second temperature gradient in the vertical direction at (/ 9 / cm).
  • the first temperature gradient (a ′) (CZcm) is 51 / D2 to 102 / D2'CZcm, more preferably 58 ZD2 to 83ZD2'C / cn.
  • the cooling rate at the furnace temperature is controlled by the thermal conductivity of the R'C / hr crystal.
  • the specific gravity of the crystal is P gZcm 3
  • the latent heat of fusion of the crystal is Lkcal / nol
  • the formula weight of the crystal is ng / nol, the following formula:
  • the second temperature gradient (/ S'CZcn) is 1.06 to 1.72X'C / cm, more preferably 1.19X to 1.46X'C. / cm. Note that there is a transition region between the first temperature gradient (a'C / cni) and the second temperature gradient (/ cm).
  • a first heating means disposed at a position corresponding to the crucible to control the first temperature gradient (a'CZcn);
  • a second heating means arranged above the first heating means for controlling the second temperature gradient (/ S'C / cn); and a second heating means arranged below the first heating means.
  • Third heating means for heating the reservoir portion; and a third heating means above the second heating means and the third heating means.
  • a fourth heating means disposed below the heating means for suppressing the influence of disturbance on the first temperature gradient (a'CZcia) and the second temperature gradient (/ S'C / cn);
  • a sixth heating means disposed between the first heating means and the third heating means for suppressing mutual effects between the first heating means and the third heating means.
  • the single crystal of the compound semiconductor is CdZnTe or CdTe
  • the temperature of the reservoir at that time is preferably 770 to 830'C, more preferably 790 to 820'C. It is.
  • the value of the first temperature gradient (a'CZcm) is within the above range for the following reason. That is, in the method of growing a single crystal from the melt surface, the nuclei generated on the melt surface during the process of lowering the furnace temperature grow into a single crystal, but the first temperature gradient ( ⁇ -C / (cm) is too large, the convection of the melt becomes strong, and nuclei generated on the melt surface are lost due to convection. It becomes impossible to keep the temperature of the side wall lower than the melting point. If nucleation is destabilized or if the temperature of the side wall falls below the melting point, polycrystallization is very likely to occur, which is not preferable for growing a single crystal.
  • the value of the second temperature gradient (/ S'C / cni) is in the above range for the following reason. That is, if the second temperature gradient (/ 9'CZcn) is too small, the amount of heat absorbed from the surface of the melt or the upper part of the crystal becomes smaller than the amount of heat due to the latent heat of fusion of the crystal, and the crystal becomes polycrystalline. This is because the temperature of the inner wall of the crucible on the melt surface becomes lower than the melting point at an early stage of crystal growth, and polycrystallizes from there.
  • the temperature of the reservoir was 770 when the single crystal of CdZnTe or CdTe was grown within the above range.
  • the maximum diameter of the precipitate in the grown crystal is about 1 O ⁇ m, and at 790 ⁇ 820'C, the maximum diameter does not reach 5 m. (See Fig. 4).
  • the single crystal growth method of the present invention since the single crystal is grown while controlling the temperature distribution in the heating furnace so that a ⁇ 8 as described above, the amount of heat radiation from the melt surface is large.
  • the growth of the single crystal starts downward from the melt surface, and the single crystal During the growth, the temperature of the inner circumference of the ruffle is maintained at a temperature equal to or higher than the melting point of the raw material melt, so that the single crystal grown from the melt surface is suspended on the melt. This prevents the growing single crystal from coming into contact with the inner wall of the ruffle to generate new nuclei there and polycrystallize, thereby producing a large-diameter single crystal with a high yield.
  • the reservoir containing a simple substance or a compound containing at least one volatile element (at least one of the constituent elements of the compound semiconductor) is heated to a predetermined temperature.
  • the vapor pressure is controlled by applying the vapor pressure of the volatile element, so that it is applied compared to the case where a predetermined amount of the volatile element is simply put in a quartz gamble without a reservoir.
  • decomposition on the grown single crystal surface and evaporation from the raw material melt are more effectively suppressed, reducing lineage and generating large precipitates. Is prevented, and a higher quality single crystal is obtained.
  • a PBN crucible was used in a quartz ampoule as a growth vessel in a vacuum sealed container.However, a PBN crucible has an anisotropy in which the thermal conductivity on the side walls is high in the vertical direction and low in the horizontal direction. Therefore, the amount of heat applied to the lower part of the crucible is easily transferred to the upper part of the crucible side wall, and the amount of heat dissipated in the horizontal direction is kept small. It is extremely effective in keeping the melting point or higher. Needless to say, the pBN rupple also has an effect of preventing contamination of impurities.
  • the crucible is provided with a draft (taper) for removing the crystal after growth, so that the crystal is easily pulled out.
  • the first temperature gradient (n ⁇ / ⁇ ) in the vertical direction near the outer wall of the stone ampoule corresponding to the raw material melt is 51 / D2 ⁇ . 10 2 / D2'C / cnix, more preferably 58 / D2-83ZZD2'C / ca, so the first temperature gradient (CZCB) is not too large and the surface of the melt
  • the convection of the melt does not become strong enough to eliminate the nuclei generated in the first step, so that the nucleation is stabilized, while the first temperature gradient (a'C / cm) is not too small and Since the amount of heat supplied to the crucible is kept at an appropriate level, the crucible side walls are maintained at a temperature equal to or higher than the melting point during the growth of the single crystal, and a large-diameter single crystal is produced with high yield.
  • a multistage having at least the first to sixth heating means described above is used as a heating furnace.
  • the controllability of the first temperature gradient (cr'CZcn) and the second temperature gradient (• CZcn) is extremely improved, and the yield of the single crystal substrate is dramatically improved.
  • the precipitate in the grown crystal has a diameter of at most 10%. If it is as small as about m, and if it is between 790 and 820, the precipitates are extremely small, not exceeding a diameter of 5 #m at the maximum, and therefore a single crystal of extremely excellent quality can be obtained.
  • FIG. 1 is a schematic cross-sectional view schematically showing a three-type heating furnace used in the VGF method.
  • FIG. 2 is a schematic cross-sectional view of a three-stage heating furnace used in the present embodiment.
  • FIG. 4 is a temperature location characteristic diagram showing an example of a raw material melt and a furnace temperature distribution above the raw material melt in the present embodiment.
  • FIG. 4 is a correlation between a reservoir temperature and a precipitate diameter in the present embodiment.
  • FIG. 4 is a characteristic diagram illustrating a relationship.
  • the method for growing a single crystal according to the present invention is characterized in that, while performing vapor pressure control by heating and holding a reservoir portion of a quartz ampule to a predetermined temperature, a vertical Temperature distribution in the furnace so that the first temperature gradient (a'C / cn) is smaller than the second vertical temperature gradient above the top of the crucible (/ 9'C / cm)
  • a single crystal of the compound semiconductor is grown downward from the surface of the raw material melt while controlling, and the first temperature gradient (a'C / cm) and the second temperature gradient (/ S ° C / cni), each of which specifies the appropriate range.
  • the process of defining each of these appropriate ranges will be described, whereby the present invention has been completed based on objective facts. It is a universal one that is not restricted by the diameter or composition of the single crystal to be grown. The basis of it.
  • the present inventors used a plurality of heating furnaces having the same configuration as the three-stage heating furnace 20 shown in FIG. 1 (b) and used a CdZnTe single crystal having a diameter of 8 ODD (3 inches).
  • Example 1 the temperature distribution characteristics of the furnace in a furnace with good yield and a furnace with a poor yield of single crystal substrate A comparison was made. The furnace temperature distribution was examined for the case where the grown crystal was a single crystal and for the case where the crystal was a polycrystal. As a result, the first temperature gradient (a'C / cia) when a single crystal was obtained was obtained.
  • a quartz sample 1 having a reservoir portion 1A was used, and a volatile element Cd simple substance 2 was put in the reservoir portion 1A.
  • the dZnTe raw material 3A was placed in a PBN loop 4 and placed in the quartz sample 1, and then the quartz ampule 1 was vacuum-sealed. Then, the raw material 3A in the heating pipe 4 is melted by the heater 22 and the reservoir 1A is heated to a predetermined temperature, for example, 770 to 83O'C by the heater 23 to control the vapor pressure. At the same time, the lower part of the top 4 of the heater 21 was heated.
  • Thermocouples 5A, 5B, 5C, 5D, and 5E were installed near the outer wall of quartz amble 1, and the temperature near the outer wall of quartz amble 1 was measured.
  • the values of the thermocouples 5 A, 5 B, 5 C, 5 D, and 5 E are the bottom of quartz amble 1, 3 ⁇ ⁇ above the bottom, 6 ⁇ ⁇ above the bottom, 9 ⁇ ⁇ above the bottom, and the quartz amble 1 These are the locations corresponding to the cap 1 ⁇ (22 ⁇ above the bottom). Based on the temperature measured by these five thermocouples 5 ⁇ , 5 ⁇ , 5C, 5D, 5 ⁇ , the first temperature gradient (a'C / cm) and the second temperature gradient (/ S'C / cni) was determined.
  • the present inventors have proposed that the first temperature gradient ( ⁇ / cm) and the second temperature gradient (/ 3 * CZcin) be accurately set within the appropriate range described above.
  • a 7-stage heating furnace 30 having a configuration having 7 stages of heaters 31, 32, 33, 34, 35, 36A, and 36B was prototyped.
  • the temperature distribution in the furnace was examined (Experiment 2).
  • the temperature gradient from the surface of the raw material melt, that is, the first temperature gradient (a'CZcm) is almost constant from the start to the end of growth. It was found that the accuracy of temperature control was improved as compared with the three-stage heating furnace 20.
  • a heater 31 is a first heating means disposed at a position corresponding to the ramp to control the first temperature gradient, and a heater 32 is located above the ramp.
  • This is a second heating means for heating the space above the end to control the second temperature gradient, and a heater 33 is a third heating means for heating the reservoir section 1A.
  • 35 are fourth heating means and fifth heating means for suppressing the influence of disturbance on the furnace temperature distribution, and heaters 36A and 36B suppress mutual influence between the heater 31 and the heater 33.
  • the sixth heating means may have one heater, and the number of heaters is not limited to seven and may be eight or more.
  • the appropriate range of the first temperature gradient (a'C / cn) was Assuming that the diameter is D cm, 51 ZD2 ⁇ 102 / D2'C / c, more preferably 58/83 ZD2, C / cm.
  • FIG. 3 shows a temperature-in-position characteristic diagram of an example of the furnace temperature distribution when a single crystal having a diameter of 4 inches was obtained.
  • each block is a temperature measured by a thermocouple.
  • the present inventors set the preconditions for estimating the temperature gradient at the solid-liquid interface, which can be determined from the temperatures of the single crystal, the raw material melt, and the inner wall of the rupee, which cannot be measured during actual crystal growth. And the following calculation was performed.
  • Cooling rate of furnace temperature 0.1 l KZhr
  • the amount of heat Q1 that transfers heat in the grown and solidified single crystal is expressed by the following equation.
  • the latent heat of fusion Q2 of the raw material melt is given by the following equation.
  • the temperature gradient at the solid-liquid interface is 1.51 K / ca.From the above, it can be seen that the quartz ampoule, like the growth of the 4-inch diameter CdZnTe single crystal described above, Even if the temperature gradient (a'CZcm) measured near the outer wall is smaller than 1. O KZcm, the temperature gradient at the actual single crystal or solid-liquid interface is larger than that. It can be seen that the temperature is slightly lower than the temperature gradient (1.83K / cn) in the space above the upper end.
  • the second temperature gradient (/ 9'C / cni) can be generalized.
  • the growth rate of the single crystal is estimated to be 0.66 inin hr by the following formula.
  • the actual growth time of a single crystal having a length of 6 mm is 91 hours according to the following formula.
  • the temperature of the outer wall of the quartz sample at the position corresponding to the surface of the raw material melt at the start of growth is 1117, and from that temperature, the quartz ampoule is cooled at a cooling rate of 0.1 Khr.
  • the temperature of the outer wall reaches the melting point of the raw material melt (1098), single crystal growth has been completely completed.
  • the temperature difference between the inner wall of the crucible and the outer wall of the quartz ampoule is estimated to be 5 K (a value obtained from a preliminary experiment conducted by inserting a thermocouple into the raw material melt)
  • the temperature of the outer wall of the quartz amble becomes As of 1 103, single crystal growth has already been completed.
  • the actual growth time is 91 hours out of 140 hours from 111 to 113'C, and the temperature of the quartz ampoule outer wall is 1 1 1 2 after 49 hours from the start of growth.
  • the temperature distribution in the furnace is controlled with good accuracy until several tens of hours or about 100 hours after the start of growth.
  • the present inventors can apply the present invention also to single crystal growth of other compound semiconductors such as InP, GaAs, ZnSe, and ZnTe other than CdTe.
  • the numerical values of the preconditions such as the cooling rate of the furnace temperature are symbolized as follows.
  • the amount of heat Q1 transferred in the grown and solidified single crystal is expressed by the following equation.
  • the latent heat of fusion Q2 of the raw material melt is given by the following equation.
  • the appropriate range of the second temperature gradient (S'C / cn) is 1.06 X to 1.72 X ° CZcm, It is preferably 1.19 X ⁇ 1.46 X'C / cn.
  • the electric conduction type of the crystal becomes a P-type and n-type inversion region.
  • the precipitate was the smallest.
  • the reservoir section 1A was heated to 780 ° C, about 813 ° C, and 850 ° C at 750 ° C. A crystal was grown. Then, the size of the precipitate in the obtained single crystal was measured by an infrared microscope.
  • a single crystal having a larger diameter and a larger diameter can be produced with higher quality. Can be manufactured well.
  • the present invention is not at all limited by the above-described embodiment, and examples thereof include, for example, InP, GaAs, 2nSe, and ZnTe other than CdTe and CdZnTe. It is also applicable to single crystal growth of other compound semiconductors, and the diameter of the single crystal to be grown is not limited to 3 inches or 4 inches. Not limited to 7 steps.
  • single crystal growth was performed while always measuring the temperature near the outer wall of quartz amble 1 using thermocouples 5A, 5B, 5C, 5D, and 5E installed near the outer wall of quartz ampoule 1. Instead, a temperature measurement point was set at a location other than the vicinity of the outer wall of the quartz ampule 1, and preliminary experiments were conducted to determine the relationship between the newly provided temperature measurement point and the temperature near the outer wall of the quartz ampoule 1.
  • the first temperature gradient (a'C / cm) and the second temperature gradient (te / cm) are controlled while measuring the temperature at that temperature measurement point.
  • the single crystal growth may be performed by controlling.
  • the second vertical temperature gradient (/ 3′C / cn) above the upper end of the ruffle causes the outer wall of the quartz ampule to correspond to the raw material melt.
  • the single crystal grown from the melt surface was floated on the melt so that it did not contact the inner wall of the melt because it was larger than the first temperature gradient (cr'C / cin) in the vertical direction in the vicinity. As a result, the generation of new nuclei on the inner wall of the crucible is prevented, and a single crystal is easily obtained.
  • the applied vapor pressure can be maintained at an appropriate level without dispersing, and decomposition and raw materials on the surface of the grown single crystal can be maintained. Since evaporation from the melt is more effectively suppressed, lineage is reduced, large precipitates are prevented from being generated, and the quality of the single crystal is improved.
  • the amount of heat applied to the lower portion of the crucible can easily be transferred to the upper portion of the side wall of the crucible, and the amount of heat dissipated in the horizontal direction can be reduced. It is extremely effective in keeping the inside wall above the melting point during crystal growth.
  • the first temperature gradient (a'C / cm) is 5 1 / D2 ⁇ 102 / D2'C / CB, more preferably 58 / D 2 - 83 / D 2' if CZCB, melt
  • the heat supply to the lower side of the crucible is maintained at an appropriate level. Is maintained above the melting point, so that a single crystal is easily obtained.
  • a heating furnace at least a first heating means for controlling the first temperature gradient (a'C / cn) and a second heating means for controlling the second temperature gradient (/ S'CZcni)
  • the first temperature gradient (a'CZciii) and the second temperature gradient (/ S ' The controllability of CZcia) is extremely improved, and the effect of dramatically improving the yield of single crystal substrates can be obtained.
  • the temperature of the reservoir If it is 770-830 ° C, the precipitate in the grown crystal is a small one with a diameter of at most about 10m, and if it is 790-820 ° C, The precipitates are very small, not exceeding a diameter of 5 m at the maximum, so that single crystals of very good quality are obtained.
  • the present invention has an effect that a single crystal having a larger diameter and a larger diameter can be manufactured with higher yield.
  • the present invention is most effective when used for producing a compound semiconductor single crystal, particularly for producing a compound semiconductor single crystal by the VGF method while controlling the vapor pressure.

Abstract

A method of growing a single crystal for producing a compound semiconductor single crystal having a high quality and a large diameter in a high yield. An easily volatile element (2) is put into a reservoir portion (1A) of a quartz ampule (1) and a crucible (4) made of pBN, into which a compound semiconductor starting material (3A) is charged, is vacuum-sealed into the quartz ampule (1). While vapor pressure control is being made, cooling is gradually made by conducting temperature distribution control so that a first temperature gradient (α°C/cm) in a vertical direction at that portion in the proximity of the outer wall of the quartz ampule (1) corresponding to a molten solution (3B) of the starting material is smaller than a second temperature gradient (β°C/cm) in the vertical direction at a portion above the upper end of the crucible (4). Here, α is 51/D2 to 102/D2 and preferably, 58/D2 to 83/D2°C/cm (D (cm): diameter of single crystal), and β is 1.06X to 1.72X and preferably, 1.19X to 1.46X°C/cm (X = X(Rς/μnL) where cooling rate of furnace internal temperature is R°C/hr, and heat transfer rate, specific gravity, molten latent heat and formula weight of crystal are μkcal/cm.hr.K, ςg/cm3, L.kcal/mol and ng/mol, respectively.

Description

, 明 細 書 単結晶の成長方法 技術分野  Single crystal growth method Technical field
本発明は、 化合物半導体の単結晶の成長方法に関し、 特に蒸気圧制御を行いな がら垂直グラジ ン トフ リージング (VGF) 法により C d Z nT eや C dT e などの単結晶を融液成長させる方法に関する。 背景技術  The present invention relates to a method for growing a single crystal of a compound semiconductor, and in particular, to grow a single crystal such as CdZnTe or CdTe by melt growth by vertical gradient freezing (VGF) while controlling the vapor pressure. About the method. Background art
従来より、 化合物半導体の単結晶を成長させる方法として、 垂直グラジ ン ト フリージング (VGF) 法や垂直プリ ッジマン法などが知られている。 そして、 転位等の少ない良質な単結晶を成長させるために種々の成長条件の制御方法につ いての出願がされている。  Conventionally, as a method for growing a single crystal of a compound semiconductor, a vertical gradient freezing (VGF) method, a vertical prism man method, and the like have been known. An application has been filed for a method for controlling various growth conditions in order to grow a high-quality single crystal having few dislocations and the like.
例えば、 VGF法については先に本出願人の出願した特公平 5— 59873号 公報に記載の発明が公知である。 その発明の内容は、 加熱炉内の温度分布を、 原 料融液の表面中心が最も低く、 半径方向外側に向かうほど高く、 且つ下方ほど高 くなるように保持しつつ、 0. 1 ~ 10 'CZcinの固液界面温度勾配及び 0. 01 〜 1 'CZhrの冷却速度にて加熱炉内を冷却して、 融液表面中心より下方へ向かつ て単結晶を成長させるというものである。  For example, regarding the VGF method, the invention described in Japanese Patent Publication No. 5-59873 filed by the present applicant has been known. The content of the invention is that the temperature distribution in the heating furnace is maintained at 0.1 to 10 while maintaining the temperature distribution such that the center of the surface of the raw material melt is lowest, becomes higher toward the outside in the radial direction, and becomes higher toward the bottom. This is to cool the inside of the heating furnace at a solid-liquid interface temperature gradient of 'CZcin and a cooling rate of 0.01 to 1' CZhr, and grow a single crystal downward from the center of the melt surface.
また、 垂直ブリ ッジマン法については、 結晶に沿った炉壁温度勾配及び融液に 沿った炉壁温度勾配を、 結晶と融液の熱伝導率に基づいて調節する方法 (特開 2- 239 181号公報に記載) や、 るっぽ外周の複数箇所の温度を検出し、 そ れに基いて一定時間毎にるつぼ内部の温度分布や成長界面の位置 ·形状を計算推 定して制御する方法 (特開平 1一 2 12291号公報に記載) などが出願されて いる。  In the vertical Bridgeman method, a method of adjusting a furnace wall temperature gradient along a crystal and a furnace wall temperature gradient along a melt based on the thermal conductivity between the crystal and the melt (Japanese Patent Laid-Open No. 2-239181). And the method of detecting and controlling the temperature at multiple locations on the outer periphery of the crucible and calculating and estimating the temperature distribution inside the crucible and the position and shape of the growth interface at regular intervals based on the temperature. (Described in Japanese Patent Application Laid-Open No. Hei 1-212291).
さらに、 上記先願以外にも、 VGF法や垂直ブリ ッジマン法のように縦型の加 熱炉を用い、 垂直方向の温度勾配を設けて結晶成長させる方法として、 特開平 2 一 1 67882号、 特開平 3— 1 83682号の各発明が公知である。 特開平 2 十 - 1 6 7 8 8 2号の発明は、 上部に略逆円錐形部とその先端に上部小開口を有す る縦型容器を用い、 その容器内に原料融液を満たし、 かつその原料融液に上部小 開口を介して種結晶を接触させることにより下方に向かって原料融液を固化させ るものである。 特開平 3— 1 8 3 6 8 2号の発明は、 特開平 2— 1 6 7 8 8 2号 の発明を改良したもので、 特開平 2 - 1 6 7 8 8 2号で用いたものと同様の縦型 容器の下部に、 過剰の原料融液を流出させる下部小開口を設け、 その下部小開口 から原料融液を流出させることにより原料融液の固化に伴う体積膨張による容器 の破損等を回避するようにしたものである。 In addition to the above-mentioned prior application, a method of growing a crystal by using a vertical heating furnace and providing a vertical temperature gradient, such as the VGF method or the vertical Bridgeman method, is disclosed in Japanese Patent Application Laid-Open No. The inventions of JP-A-3-183682 are known. JP 20 -The invention of No. 1 6 7 8 8 2 uses a vertical container having a substantially inverted conical part at the top and a small opening at the top, and fills the container with the raw material melt and melts the raw material. The raw material melt is solidified downward by bringing the seed crystal into contact with the liquid through the upper small opening. The invention of Japanese Patent Application Laid-Open No. 3-186382 is an improved version of the invention of Japanese Patent Application Laid-Open No. 2-168782, which is different from the one used in Japanese Patent Application Laid-Open No. 2-168782. A lower small opening is provided at the lower part of the same vertical container to allow the excess raw material melt to flow out, and the raw material melt flows out from the lower small opening to damage the container due to volume expansion accompanying solidification of the raw material melt, etc. Is to be avoided.
また、 水平プリ ッジマン法や水平グラジ -ン トフリージング法のように、 横型 の加熱炉を用いる方法では、 特公昭 5 3— 5 8 6 7号公報に記載された発明が公 知である。 これは、 溶融物とシード (種結晶) を収容した容器を横型炉内に装入 し、 溶融物の容器底部に接する面の温度を常に溶融物の自由面 (即ち、 上面) の 温度よりも高く保持することにより溶融物をその上面から始まって容器の底面で 終わるように固化させるようにしたものである。  Also, in a method using a horizontal heating furnace such as a horizontal bridgeman method or a horizontal gradient freezing method, the invention described in JP-B-53-56867 is known. This is because the vessel containing the melt and the seed (seed crystal) is placed in a horizontal furnace, and the temperature of the surface of the melt that contacts the bottom of the vessel is always higher than the temperature of the free (ie, upper) surface of the melt. By holding it high, the melt solidifies so that it starts at the top and ends at the bottom of the container.
しかしながら、 上記特公平 5— 5 9 8 7 3号公報に記載された制御方法によれ ば、 垂直プリ ッジマン法よりも良質の単結晶が得られるが、 成長させた全ての結 晶 (イ ンゴッ ト) が常に単結晶になっているとは限らず、 多結晶化してしまうも のもあって歩留りはそれほど高くないという問題点があつた。  However, according to the control method described in Japanese Patent Publication No. 5-589873, a single crystal of higher quality than the vertical Pledgeman method can be obtained, but all the grown crystals (ingots) can be obtained. ) Is not always a single crystal, and there is a problem that the yield is not so high due to polycrystallization.
また、 近年では、 転位等の結晶欠陥のより少ない良質で旦っ大口径 (例えば、 直径 4イ ンチ) の単結晶が望まれているが、 そのような単結晶を歩留り良く製造 する方法は未だ確立されるに至っていない。  In recent years, a single crystal having a small diameter and good quality (for example, 4 inches in diameter) with less crystal defects such as dislocations has been desired. However, a method for producing such a single crystal with a high yield is still required. Has not been established.
本発明は、 かかる事情に鑑みてなされたもので、 その目的とするところは、 よ り品質の優れ、 さらには大口径の単結晶を歩留り良く製造することのできる単結 晶の成長方法を提供することにある。 発明の開示  The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for growing a single crystal which is superior in quality and which can produce a large-diameter single crystal with high yield. Is to do. Disclosure of the invention
上記目的を達成するために、 本発明者等は、 先ず C d Z n T e原料を p B N ( 熱分解窒化ホウ素) 製るっぽ内に入れ、 それを石英アンプル内に真空封入し、 V G F法で C d Z n T eの 3インチ (直径) 結晶の成長を行い、 その結晶 1個から 製品規格に,合格する 2 5 ππι Χ 3 Ο ππの矩形基板の得られた枚数を 1回の成長回数 当たりの平均値 (単結晶基板の収率) として評価した。 In order to achieve the above object, the present inventors first put a CdZnTe raw material into a pBN (pyrolytic boron nitride) wrapper, vacuum-enclose it in a quartz ampoule, 3 inch (diameter) crystal of CdZnTe is grown by the The obtained number of rectangular substrates of 25 ππι Χ 3 π ππ that passed the product standard was evaluated as the average value per single growth (yield of single crystal substrate).
その結果、 蒸気圧制御を行わずに (ただし、 上記原料とともに石英アンプル内 にその内容積に応じた量の C dの単体を入れてある。 ) 、 第 1図 ( a ) に示すよ うな 2段のヒータ 1 1 , 1 2を有する 2段型加熱炉 1 0を用いた場合には単結晶 基板の収率が 4 . 6 - 4 . 8枚であったのに対し、 リザーバ部付きの石英アンプ ルを用い、 C dの単体を入れたリザ一バ部を均一に加熱保持する蒸気圧制御を行 ないながら、 第 1図 ( b ) に示すような 3段のヒータ 2 1, 2 2, 2 3を有する 3段型加熱炉 2 0を用いた場合にはその収率が 1 0 . 9枚に向上した。  As a result, without controlling the vapor pressure (however, a simple substance of Cd in an amount corresponding to the internal volume was placed in the quartz ampoule together with the above-mentioned raw materials), as shown in Fig. 1 (a). When a two-stage heating furnace 10 having two-stage heaters 11 and 12 was used, the yield of single crystal substrates was 4.6 to 4.8, whereas quartz with a reservoir part was used. Using an ampoule, the three-stage heater 21, 22, 22, as shown in Fig. 1 (b), while performing vapor pressure control to uniformly heat and hold the reservoir containing the Cd alone When a three-stage heating furnace 20 having 23 was used, the yield was improved to 10.9 sheets.
本発明者等は、 そのように蒸気圧制御を行った 3段型加熱炉の場合に単結晶基 板の収率の良い炉と悪い炉があることに着目し、 その原因を調べたところ、 良い 炉と悪い炉では炉内の温度分布特性に違いのあることを見い出した。 そして、 成 績の良い 3段型加熱炉における炉内の温度分布より、 原料融液に対応する石英ァ ンプルの外壁近傍における垂直方向の第 1 の温度勾配及びるっぽの上端よりも上 方における垂直方向の第 2の温度勾配のそれぞれの適正範囲を見い出すに至った 続いて、 本発明者等は、 それら第 1の温度勾配及び第 2の温度勾配が夫々適正 範囲内に納まるよう炉内の温度分布の制御を行なうべく第 1図 ( c ) に示すよう な 7段のヒータ 3 1, 3 2, 3 3 , 3 4, 3 5 , 3 6 A , 3 6 Bを有する構成の 7段型加熱炉 3 0を用いて単結晶成長を行ったところ、 単結晶基板の収率が 2 1 . 6枚という優れた結果を得た。 そして、 7段型加熱炉 3 0における炉内温度分 布に基いて 3段型加熱炉 2 0の炉内温度分布を改善したり、 改善不能な炉を使用 しないことにより、 3段型加熱炉でも単結晶基板の収率を 2 0枚に改善すること ができた。 従って、 単結晶基板の収率をあげるには第 1の温度勾配及び第 2の温 度勾配を夫々適正範囲内に納めることが重要であることが確認された。  The present inventors focused on the fact that there were a furnace with a good yield of a single crystal substrate and a furnace with a bad single crystal substrate in the case of a three-stage heating furnace in which such a vapor pressure control was performed, and examined the causes. We found that there was a difference in the temperature distribution inside the furnace between a good furnace and a bad furnace. Then, from the temperature distribution in the furnace of the three-stage heating furnace with good performance, the first temperature gradient in the vertical direction near the outer wall of the quartz sample corresponding to the raw material melt and the upper side of the upper end of the loop. Then, the present inventors have found an appropriate range for the second temperature gradient in the vertical direction in the furnace. In order to control the temperature distribution, a 7-stage heater with a 7-stage heater 31, 32, 33, 34, 35, 36 A, 36 B as shown in Fig. 1 (c) When a single crystal was grown using the mold heating furnace 30, an excellent result was obtained in which the yield of single crystal substrates was 21.6. By improving the furnace temperature distribution of the three-stage heating furnace 20 based on the furnace temperature distribution in the seven-stage heating furnace 30 and by avoiding the use of a furnace that cannot be improved, the three-stage heating furnace However, the yield of single crystal substrates could be improved to 20 substrates. Therefore, it was confirmed that it is important to keep the first temperature gradient and the second temperature gradient within appropriate ranges, respectively, in order to increase the yield of the single crystal substrate.
さらに、 本発明者等は、 成長させる結晶の直径を大口径化して 4イ ンチに設定 して単結晶成長を試みたところ、 結晶の直径が 3ィンチの場合に比べて第 1の温 度勾配はより小さな値でよいという知見を得た。 その知見に基づき、 第 1の温度 勾配の適正範囲の値を単結晶の口径をバラメータとして関係式化するとともに、 熱計算を行って第 2の温度勾配の適正範囲の値を一般化することにより、 本発明 が完成されるに至った。 Furthermore, the present inventors attempted to grow a single crystal by increasing the diameter of the crystal to be grown to 4 inches, and found that the first temperature gradient was larger than that in the case where the diameter of the crystal was 3 inches. Was found to be smaller. Based on this knowledge, the value of the appropriate range of the first temperature gradient was converted into a relational expression using the diameter of the single crystal as a parameter, The present invention has been completed by performing a heat calculation and generalizing the value in the appropriate range of the second temperature gradient.
即ち、 本発明に係る単結晶の成長方法は、 リザーパ部を有する石英アンプルの 該リザーバ部に化合物半導体の構成元素のうちの少なく とも 1種の揮発し易い元 素よりなる単体または化合物を入れるとともに、 前記石英アンプル内に前記化合 物半導体の原料を入れた p BN製のるつぼを設置して同石英ァンプルを真空封止 した後、 該石英アンブルを加熱炉内で加熱して前記原料を融解し、 前記リザーバ 部を所定温度に加熱して同リザーバ部内の揮発し易い前記元素の蒸気圧を上記石 英アンブル内にかけて蒸気圧制御を行うとともに、 融解した原料融液に対応する 前記石英ァンブルの外壁近傍における垂直方向の第 1の温度勾配 (a :/cmとす る。 ) が前記るつぼの上端よりも上方 (本明細書では、 るっぽの上端から l Ocn 上方までの範囲を意味する。 ) における垂直方向の第 2の温度勾配 (/9て/ cmと する。 ) よりも小さ くなるように、 前記加熱炉内の温度分布制御を行いながら同 加熱炉内の温度を徐々に下げて、 前記原料融液の表面から下方に向かって前記化 合物半導体の単結晶を成長させるとともに、 成長させる単結晶の直径を Dcmとす る時、 上記第 1の温度勾配 (a'CZcm) は、 51 /D2〜 1 02/D2'CZcm、 よ り好ましくは 58 ZD2~83ZD2'C/cnであり、 一方、 炉内温度の冷却速度を R'C/hr 結晶の熱伝導率を
Figure imgf000006_0001
結晶の比重を P gZcm3、 結晶の 溶融潜熱を Lkcal/nol、 結晶の式量を n g/nolとする時、 次式:
That is, the method for growing a single crystal according to the present invention includes the steps of: adding a simple substance or a compound made of at least one kind of volatile element among the constituent elements of the compound semiconductor into the reservoir part of the quartz ampule having the reservoir part; After placing a pBN crucible containing the compound semiconductor material in the quartz ampoule and vacuum-sealing the quartz sample, the quartz amble is heated in a heating furnace to melt the material. The reservoir is heated to a predetermined temperature, and the vapor pressure of the element, which is easily volatilized in the reservoir, is controlled by applying the vapor pressure in the quartz amble, and the outer wall of the quartz tumbler corresponding to the molten raw material melt is controlled. A first temperature gradient in the vicinity in the vertical direction (a: / cm) is higher than the upper end of the crucible (in this specification, the range from the upper end of the crucible to the upper side of l Ocn is defined as The temperature in the heating furnace is gradually controlled while controlling the temperature distribution in the heating furnace so as to be smaller than the second temperature gradient in the vertical direction at (/ 9 / cm). When the single crystal of the compound semiconductor is grown downward from the surface of the raw material melt and the diameter of the single crystal to be grown is Dcm, the first temperature gradient (a ′) (CZcm) is 51 / D2 to 102 / D2'CZcm, more preferably 58 ZD2 to 83ZD2'C / cn.On the other hand, the cooling rate at the furnace temperature is controlled by the thermal conductivity of the R'C / hr crystal.
Figure imgf000006_0001
When the specific gravity of the crystal is P gZcm 3 , the latent heat of fusion of the crystal is Lkcal / nol, and the formula weight of the crystal is ng / nol, the following formula:
X = (R / λ n L) X = (R / λ n L)
で求まる Xを用い T、 上記第 2の温度勾配 (/S'CZcn) は、 1. 06X〜1. 7 2X'C/cm、 より好まし くは 1. 1 9X~ 1. 46 X 'C/cmとする方法である。 なお、 第 1の温度勾配 (a'C/cni) と第 2の温度勾配 ( / cm) との間には 遷移領域が存在する。 The second temperature gradient (/ S'CZcn) is 1.06 to 1.72X'C / cm, more preferably 1.19X to 1.46X'C. / cm. Note that there is a transition region between the first temperature gradient (a'C / cni) and the second temperature gradient (/ cm).
具体的には、 例えば上記加熱炉として、 少なく とも、 上記るつぼに対応する位 置に配設されて上記第 1の温度勾配 (a'CZcn) の制御を行なう第 1の加熱手段 と、 該第 1の加熱手段の上方に配設されて上記第 2の温度勾配 ( /S'C/cn) の制 御を行なう第 2の加熱手段と、 前記第 1の加熱手段の下方に配設されて上記リザ 一バ部を加熱する第 3の加熱手段と、 前記第 2の加熱手段の上方及び前記第 3の 加熱手段の下方にそれぞれ配設されて上記第 1の温度勾配 (a'CZcia) 及び上記 第 2の温度勾配 (/S'C/cn) に対する外乱の影響を抑制する第 4の加熱手段及び 第 5の加熱手段と、 前記第 1の加熱手段と前記第 3の加熱手段との間に配設され て同第 1の加熱手段と同第 3の加熱手段との相互の影響を抑制する第 6の加熱手 段を有する加熱炉を用いる。 そして、 例えば上記化合物半導体の単結晶は、 C d Z n T eまたは C d T eであり、 その時のリザーバ部の温度は、 好ましくは 77 0〜830'C、 より好ましくは 790~820'Cである。 Specifically, for example, as the heating furnace, at least a first heating means disposed at a position corresponding to the crucible to control the first temperature gradient (a'CZcn); A second heating means arranged above the first heating means for controlling the second temperature gradient (/ S'C / cn); and a second heating means arranged below the first heating means. Third heating means for heating the reservoir portion; and a third heating means above the second heating means and the third heating means. A fourth heating means disposed below the heating means for suppressing the influence of disturbance on the first temperature gradient (a'CZcia) and the second temperature gradient (/ S'C / cn); And a sixth heating means disposed between the first heating means and the third heating means for suppressing mutual effects between the first heating means and the third heating means. Use a heating furnace with a heating means of And, for example, the single crystal of the compound semiconductor is CdZnTe or CdTe, and the temperature of the reservoir at that time is preferably 770 to 830'C, more preferably 790 to 820'C. It is.
ここで、 上記第 1の温度勾配 (a'CZcm) の値が上記範囲であるのは、 以下の 理由による。 即ち、 融液表面から単結晶を成長させる方法では、 炉内温度を下げ ていく過程で融液表面に発生した核が単結晶に成長していくが、 第 1の温度勾配 (α-C/cm) が大き過ぎると融液の対流が強くなつて、 融液表面に発生した核が 対流により消失するなど核発生が安定しなくなってしまい、 一方、 小さ過ぎると るつぼ下側への供給熱量が少なくなってるっぽ側壁の温度を融点以上に保持でき なくなってしまう。 そして、 核発生が不安定化した場合やるっぽ側壁の温度が融 点よりも下がった場合には多結晶化が非常に起こり易くなるため、 単結晶を成長 させるにあたっては好ましくないからである。  Here, the value of the first temperature gradient (a'CZcm) is within the above range for the following reason. That is, in the method of growing a single crystal from the melt surface, the nuclei generated on the melt surface during the process of lowering the furnace temperature grow into a single crystal, but the first temperature gradient (α-C / (cm) is too large, the convection of the melt becomes strong, and nuclei generated on the melt surface are lost due to convection. It becomes impossible to keep the temperature of the side wall lower than the melting point. If nucleation is destabilized or if the temperature of the side wall falls below the melting point, polycrystallization is very likely to occur, which is not preferable for growing a single crystal.
また、 上記第 2の温度勾配 (/S'C/cni) の値が上記範囲であるのは、 以下の理 由による。 即ち、 第 2の温度勾配 (/9'CZcn) が小さ過ぎると融液表面または結 晶上部からの吸熱量が結晶の溶融潜熱による熱量より小さ くなって多結晶化して しまい、 一方、 大き過ぎる'と融液表面のるつぼ内壁の温度が結晶成長の早い時期 に融点以下となってそこから多結晶化してしまうからである。  The value of the second temperature gradient (/ S'C / cni) is in the above range for the following reason. That is, if the second temperature gradient (/ 9'CZcn) is too small, the amount of heat absorbed from the surface of the melt or the upper part of the crystal becomes smaller than the amount of heat due to the latent heat of fusion of the crystal, and the crystal becomes polycrystalline. This is because the temperature of the inner wall of the crucible on the melt surface becomes lower than the melting point at an early stage of crystal growth, and polycrystallizes from there.
さらに、 C d Z nT eまたは C d T eの単結晶を成長させる際のリザーパ部の 温度が上記範囲であるのは、 本発明者等の行なった実験によれば、 リザーバ部の 温度が 770~83 O'Cであれば、 成長させた結晶中の析出物の最大直径値は 1 O ^m程度であり、 790~820 'Cであれば、 最大直径値は 5 mに達しなか つたからである (第 4図参照) 。  Furthermore, according to the experiments performed by the present inventors, the temperature of the reservoir was 770 when the single crystal of CdZnTe or CdTe was grown within the above range. At ~ 83 O'C, the maximum diameter of the precipitate in the grown crystal is about 1 O ^ m, and at 790 ~ 820'C, the maximum diameter does not reach 5 m. (See Fig. 4).
本発明に係る単結晶の成長方法によれば、 加熱炉内の温度分布を上述の如く a < 8となるように制御して単結晶の成長を行うため、 融液表面からの放熱量が大 きくなって融液表面から下方に向かって単結晶の成長が始まるが、 その際単結晶 成長中はるっぽ内周の温度が原料融液の融点以上に保持されているので、 融液表 面から成長した単結畕は融液上に浮遊させられた状態となる。 それによつて、 成 長の進んだ単結晶がるっぽ内壁に接触してそこに新たな核が発生し多結晶化して しまうのが防止され、 大口径の単結晶が歩留り良く製造される。 According to the single crystal growth method of the present invention, since the single crystal is grown while controlling the temperature distribution in the heating furnace so that a <8 as described above, the amount of heat radiation from the melt surface is large. The growth of the single crystal starts downward from the melt surface, and the single crystal During the growth, the temperature of the inner circumference of the ruffle is maintained at a temperature equal to or higher than the melting point of the raw material melt, so that the single crystal grown from the melt surface is suspended on the melt. This prevents the growing single crystal from coming into contact with the inner wall of the ruffle to generate new nuclei there and polycrystallize, thereby producing a large-diameter single crystal with a high yield.
また、 リザーバ部を有する石英アンプルを用い、 化合物半導体の構成元素のう ちの少なく とも 1種の揮発し易い元素 (易揮発性元素) よりなる単体または化合 物を入れたリザーバ部を所定温度に加熱してその易揮発性元素の蒸気圧を印加す る蒸気圧制御を行うようにしたため、 リザーバ部のない石英ァンブル内に単に易 揮発性元素を所定量入れておく場合に比較して、 印加する蒸気圧のばらつきが抑 制されるとともに、 成長した単結晶表面での分解や原料融液からの蒸発がより効 果的に抑制されるので、 リネージが減少し、 また大きな析出物が発生するのが防 止され、 より優れた品質の単結晶が得られる。  In addition, using a quartz ampoule with a reservoir, the reservoir containing a simple substance or a compound containing at least one volatile element (at least one of the constituent elements of the compound semiconductor) is heated to a predetermined temperature. The vapor pressure is controlled by applying the vapor pressure of the volatile element, so that it is applied compared to the case where a predetermined amount of the volatile element is simply put in a quartz gamble without a reservoir. In addition to suppressing variations in vapor pressure, decomposition on the grown single crystal surface and evaporation from the raw material melt are more effectively suppressed, reducing lineage and generating large precipitates. Is prevented, and a higher quality single crystal is obtained.
さらに、 成長容器として石英アンプル内に P B N製るつぼを真空封人して用い るようにしたが、 P B N製るっぽにはその側壁における熱伝導率が垂直方向では 高く水平方向では低いという異方性があるため、 るっぽ下部に加えられた熱量が るっぽ側壁の上部へ伝熱し易く、 且つ水平方向への放熱量が小さ く抑えられるの で、 単結晶の成長中、 るつぼ内壁を融点以上に保つのに極めて有効である。 なお 、 いうまでもないが、 p B N製るっぽには不純物の汚染防止効果もある。 また、 るつぼには成長の終了した結晶を抜く際の抜き勾配 (テーパー) が設けられてお り、 結晶が抜け易いように配慮されている。  In addition, a PBN crucible was used in a quartz ampoule as a growth vessel in a vacuum sealed container.However, a PBN crucible has an anisotropy in which the thermal conductivity on the side walls is high in the vertical direction and low in the horizontal direction. Therefore, the amount of heat applied to the lower part of the crucible is easily transferred to the upper part of the crucible side wall, and the amount of heat dissipated in the horizontal direction is kept small. It is extremely effective in keeping the melting point or higher. Needless to say, the pBN rupple also has an effect of preventing contamination of impurities. In addition, the crucible is provided with a draft (taper) for removing the crystal after growth, so that the crystal is easily pulled out.
さらにまた、 成長させる単結晶の直径を D enとする時、 原料融液に対応する石 英アンプルの外壁近傍における垂直方向の第 1の温度勾配 (な ^ /οπι) が 5 1 / D 2~ 1 0 2 / D2'C /cnix より好ましくは 5 8 / D2- 8 3 Z D2'C / caであるた め、 その第 1の温度勾配 ( な 'C Z CB) が大き過ぎず、 融液表面に発生した核が消 失してしまうほど融液の対流は強くならないので、 核発生が安定化し、 一方、 第 1の温度勾配 (a 'C /cm) が小さ過ぎず、 るっぽ下側への供給熱量が適度に保た れるので、 単結晶の成長中、 るつぼ側壁が融点以上に保持されることとなり、 大 口径の単結晶が歩留り良く製造される。  Furthermore, assuming that the diameter of the single crystal to be grown is Den, the first temperature gradient (n ^ / οπι) in the vertical direction near the outer wall of the stone ampoule corresponding to the raw material melt is 51 / D2 ~. 10 2 / D2'C / cnix, more preferably 58 / D2-83ZZD2'C / ca, so the first temperature gradient (CZCB) is not too large and the surface of the melt The convection of the melt does not become strong enough to eliminate the nuclei generated in the first step, so that the nucleation is stabilized, while the first temperature gradient (a'C / cm) is not too small and Since the amount of heat supplied to the crucible is kept at an appropriate level, the crucible side walls are maintained at a temperature equal to or higher than the melting point during the growth of the single crystal, and a large-diameter single crystal is produced with high yield.
特に、 加熱炉として、 上述した少なく とも第 1〜第 6の加熱手段を有する多段 型の炉を用 ることにより、 第 1の温度勾配 (cr 'CZcn) と第 2の温度勾配 ( •CZcn) の制御性が極めて良くなり、 単結晶基板の収率が飛躍的に向上する。 また、 C d Z n T eや C d T eの単結晶を成長させる際に、 リザーバ部の温度 が 7 70〜 830てであれば、 成長させた結晶中の析出物は最大でも直径 1 0 m程度の小さいものであり、 また 7 90〜82 0てであれば、 析出物は最大でも 直径 5 #mに達しない極めて小さいものであり、 従って極めて優れた品質の単結 晶が得られる。 図面の簡単な説明 In particular, as a heating furnace, a multistage having at least the first to sixth heating means described above is used. By using a mold furnace, the controllability of the first temperature gradient (cr'CZcn) and the second temperature gradient (• CZcn) is extremely improved, and the yield of the single crystal substrate is dramatically improved. Further, when growing a single crystal of CdZnTe or CdTe, if the temperature of the reservoir is 770 to 830, the precipitate in the grown crystal has a diameter of at most 10%. If it is as small as about m, and if it is between 790 and 820, the precipitates are extremely small, not exceeding a diameter of 5 #m at the maximum, and therefore a single crystal of extremely excellent quality can be obtained. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 V G F法において使用される 3タイ ブの加熱炉の概略を示す模式断 面図、 第 2図は、 本実施例において用いた 3段型加熱炉の模式断面図、 第 3図は 、 本実施例における原料融液及びその上方の炉内温度分布の一例を示す温度一位 置特性図、 第 4図は、 本実施例におけるリザーバ部の温度と析出物の直径との相 関関係を示す特性図である。 発明を実施するための最良の形態  FIG. 1 is a schematic cross-sectional view schematically showing a three-type heating furnace used in the VGF method. FIG. 2 is a schematic cross-sectional view of a three-stage heating furnace used in the present embodiment. FIG. 4 is a temperature location characteristic diagram showing an example of a raw material melt and a furnace temperature distribution above the raw material melt in the present embodiment. FIG. 4 is a correlation between a reservoir temperature and a precipitate diameter in the present embodiment. FIG. 4 is a characteristic diagram illustrating a relationship. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る単結晶の成長方法は、 石英アンプルのリザ一バ部を所定温度に加 熱保持して行なう蒸気圧制御を行いながら、 原料融液に対応する石英アンプルの 外壁近傍における垂直方向の第 1の温度勾配 (a 'C/cn) がるつぼの上端よりも 上方における垂直方向の第 2の温度勾配 ( /9'C/cm) よりも小さ くなるように、 加熱炉内の温度分布制御を行いつつ原料融液の表面から下方に向かって化合物半 導体の単結晶を成長させるものであり、 それら第 1の温度勾配 (a'C/cm) 及び 第 2の温度勾配 ( /S°C/cni) の適正範囲を夫々規定してなるものであるが、 先ず 、 それらの各適正範囲を規定した経緯を説明し、 それによつて本発明が客観的事 実に基づき完成されたもので、 成長させる単結晶の口径や組成等による制限を受 けない普遍的なものであることの根拠とする。  The method for growing a single crystal according to the present invention is characterized in that, while performing vapor pressure control by heating and holding a reservoir portion of a quartz ampule to a predetermined temperature, a vertical Temperature distribution in the furnace so that the first temperature gradient (a'C / cn) is smaller than the second vertical temperature gradient above the top of the crucible (/ 9'C / cm) A single crystal of the compound semiconductor is grown downward from the surface of the raw material melt while controlling, and the first temperature gradient (a'C / cm) and the second temperature gradient (/ S ° C / cni), each of which specifies the appropriate range.First, the process of defining each of these appropriate ranges will be described, whereby the present invention has been completed based on objective facts. It is a universal one that is not restricted by the diameter or composition of the single crystal to be grown. The basis of it.
先ず、 本発明者等は、 第 1図 ( b ) に示す 3段型加熱炉 20と同じ構成の加熱 炉を複数用いて直径 8 O DD (3イ ンチ) の C d Z n T e単結晶の成長実験を行い (実験 1 ) 、 単結晶基板の収率の良い炉と悪い炉における炉内の温度分布特性の 比較を行った。 そして、 成長させた結晶が単結晶である場合と多結晶である場合 とについて炉内温度分布を調べた結果、 単結晶が得られる時の上記第 1の温度勾 配 ( a'C/cia) の値は、 0. 8〜 1 . 6 'C/CBK より好ましくは 0. 9〜1. 3 •C/CBであり、 一方、 上記第 2の温度勾配 (/S'CZcm) は 1. 6~2. 6 "C/cm 、 より好ましくは 1. 8~2. 2て /cmであることがわかった。 First, the present inventors used a plurality of heating furnaces having the same configuration as the three-stage heating furnace 20 shown in FIG. 1 (b) and used a CdZnTe single crystal having a diameter of 8 ODD (3 inches). (Experiment 1), the temperature distribution characteristics of the furnace in a furnace with good yield and a furnace with a poor yield of single crystal substrate A comparison was made. The furnace temperature distribution was examined for the case where the grown crystal was a single crystal and for the case where the crystal was a polycrystal. As a result, the first temperature gradient (a'C / cia) when a single crystal was obtained was obtained. Is in the range of 0.8 to 1.6'C / CBK, more preferably 0.9 to 1.3C / CB, while the second temperature gradient (/ S'CZcm) is 1.6. It was found to be ~ 2.6 "C / cm, more preferably 1.8-2.2cm / cm.
この実験 1においては、 第 2図に示すように、 リザーバ部 1 Aを有する石英ァ ンプル 1を用い、 その、)ザーバ部 1 Aに易揮発性元素である C d単体 2を入れる とともに、 C d Z n T e原料 3 Aを P B N製るっぽ 4に入れて石英ァンプル 1内 に設置し、 その後石英アンプル 1を真空封止した。 そして、 ヒータ 2 2で加熱し てるっぽ 4内の原料 3 Aを融解し、 ヒータ 23でリザーバ部 1 Aを所定温度、 例 えば 770〜8 3 O 'Cに加熱して蒸気圧制御を行なうとともに、 ヒータ 2 1でる っぽ 4の下方を加熱した。 加熱炉 2 0内に所望の温度分布が生じるようにそれら ヒータ 2 1 , 22 , 23への供給電力量を図示しない制御装置で制御しながら、 加熱炉 20内の温度を徐々に下げて原料融液 3 Bの表面から下方に向かって結晶 化させた。  In this experiment 1, as shown in FIG. 2, a quartz sample 1 having a reservoir portion 1A was used, and a volatile element Cd simple substance 2 was put in the reservoir portion 1A. The dZnTe raw material 3A was placed in a PBN loop 4 and placed in the quartz sample 1, and then the quartz ampule 1 was vacuum-sealed. Then, the raw material 3A in the heating pipe 4 is melted by the heater 22 and the reservoir 1A is heated to a predetermined temperature, for example, 770 to 83O'C by the heater 23 to control the vapor pressure. At the same time, the lower part of the top 4 of the heater 21 was heated. While controlling the amount of electric power supplied to the heaters 21, 22, and 23 by a control device (not shown) so that a desired temperature distribution is generated in the heating furnace 20, the temperature in the heating furnace 20 is gradually lowered to melt the raw material. Liquid 3B was crystallized downward from the surface.
また、 石英アンブル 1の外壁近傍に熱電対 5 A, 5 B , 5 C , 5 D, 5 Eを設 置して、 石英アンブル 1の外壁近傍における温度を測定した。 熱電対 5 A, 5 B , 5 C, 5 D, 5 Eの各位値は、 石英アンブル 1 の底、 底から 3 Οππ上方、 底か ら 6 Οηπ上方、 底から 9 Οηπ上方、 石英アンブル 1のキャ ップ 1 Β (底から 22 Οηιπ上方) に夫々対応する位置である。 これら 5つの熱電対 5 Α, 5 Β , 5 C , 5 D , 5 Εによる温度測定値に基いて、 上記第 1の温度勾配 (a'C/cm) 及び上 記第 2の温度勾配 (/S'C/cni) の値を求めた。  Thermocouples 5A, 5B, 5C, 5D, and 5E were installed near the outer wall of quartz amble 1, and the temperature near the outer wall of quartz amble 1 was measured. The values of the thermocouples 5 A, 5 B, 5 C, 5 D, and 5 E are the bottom of quartz amble 1, 3 Οπ π above the bottom, 6 Οη π above the bottom, 9 Οη π above the bottom, and the quartz amble 1 These are the locations corresponding to the cap 1 Β (22 Οηιπ above the bottom). Based on the temperature measured by these five thermocouples 5Α, 5Β, 5C, 5D, 5Ε, the first temperature gradient (a'C / cm) and the second temperature gradient (/ S'C / cni) was determined.
ところで、 本発明者等は、 上記第 1の温度勾配 (αて/ cm) 及び上記第 2の温 度勾配 ( /3 *CZcin) の各値を上述した適正範囲内に精度良く納めるために、 第 1 図 ( c ) に示すような 7段のヒータ 3 1 , 32, 33, 34, 35, 36 A, 3 6 Bを有する構成の 7段型加熱炉 3 0を試作した。 その 7段型加熱炉 3 0におい て単結晶成長時に上記 3段型加熱炉 20と同様にして複数の熱電対を用いて炉内 温度分布を調べたところ (実験 2 ) 、 るつぼ底と初期の原料融液表面との間の温 度勾配、 即ち第 1の温度勾配 ( a'CZcm) は成長開始から終了に至るまで略一定 であり、 3段型加熱炉 20に比べて温度制御の精度が向上していることがわかつ た。 By the way, the present inventors have proposed that the first temperature gradient (α / cm) and the second temperature gradient (/ 3 * CZcin) be accurately set within the appropriate range described above. As shown in Fig. 1 (c), a 7-stage heating furnace 30 having a configuration having 7 stages of heaters 31, 32, 33, 34, 35, 36A, and 36B was prototyped. When the single-crystal growth was performed in the seven-stage heating furnace 30 using a plurality of thermocouples in the same manner as in the three-stage heating furnace 20, the temperature distribution in the furnace was examined (Experiment 2). The temperature gradient from the surface of the raw material melt, that is, the first temperature gradient (a'CZcm) is almost constant from the start to the end of growth. It was found that the accuracy of temperature control was improved as compared with the three-stage heating furnace 20.
第 1図 ( c ) において、 ヒータ 3 1はるっぽに対応する位置に配設されて上記 第 1の温度勾配の制御を行なう第 1の加熱手段であり、 ヒータ 32はるっぽの上 端よりも上方の空間を加熱して上記第 2の温度勾配の制御を行なう第 2の加熱手 段であり、 ヒータ 33は上記リザーバ部 1 Aを加熱する第 3の加熱手段であり、 ヒータ 34, 35は炉内温度分布に対する外乱の影響を抑制する第 4の加熱手段 及び第 5の加熱手段であり、 ヒータ 36A, 36 Bは前記ヒータ 3 1 と前記ヒー タ 33との相互の影響を抑制する第 6の加熱手段である。 なお、 第 6の加熱手段 のヒータは一つでもよいし、 またヒータの段数は 7段に限らず 8段以上でもよい  In FIG. 1 (c), a heater 31 is a first heating means disposed at a position corresponding to the ramp to control the first temperature gradient, and a heater 32 is located above the ramp. This is a second heating means for heating the space above the end to control the second temperature gradient, and a heater 33 is a third heating means for heating the reservoir section 1A. , 35 are fourth heating means and fifth heating means for suppressing the influence of disturbance on the furnace temperature distribution, and heaters 36A and 36B suppress mutual influence between the heater 31 and the heater 33. This is the sixth heating means. The sixth heating means may have one heater, and the number of heaters is not limited to seven and may be eight or more.
続いて、 本発明者等は、 上述した 7段型加熱炉 30を用い、 上記実験 1 と同様 にして、 直径 4ィ ンチの C d Z n T e単結晶の成長を試みたところ (実験 3) 、 第 1 の温度勾配 ( (X 'CZCB) が 0. 53 'C CBで第 2の温度勾配 (/S'CZcm) が 1. 83eC/cmの条件下において単結晶が得られた。 これより、 成長させる結晶 の口径が大きくなると第 1の温度勾配 (a'C/cm) の適正値は小さくなることが わかり、 第 1の温度勾配 (a'CZcm) は結晶の断面積 (即ち、 直径の 2乗) に逆 比例させると良いとの知見を得た。 この実験においても、 ヒータ 33でリザーパ 部 1 Aを所定温度、 例えば 770〜830てに加熱して蒸気圧制御を行なった。 上記知見に基いて、 種々の要因等による温度変動の許容範囲を考慮した結果、 第 1の温度勾配 ( a'C/cn) の適正範囲は、 成長させる単結晶の直径を D cmとす ると、 5 1 ZD2~ 1 02/D2'C/c 、 より好ましくは 58 / 83 ZD2。C /cmとなる。 Next, the present inventors tried to grow a 4-inch diameter CdZnTe single crystal using the above-described seven-stage heating furnace 30 in the same manner as in Experiment 1 (Experiment 3). ), a first temperature gradient ((X 'CZCB) is 0.53' second temperature gradient C CB (/ S'CZcm) were single crystals were obtained under the conditions of 1. 83 e C / cm From this, it can be seen that as the diameter of the crystal to be grown becomes larger, the appropriate value of the first temperature gradient (a'C / cm) becomes smaller, and the first temperature gradient (a'CZcm) becomes the cross-sectional area of the crystal ( In other words, in this experiment, the vapor pressure was controlled by heating the reservoir 1A by the heater 33 to a predetermined temperature, for example, 770 to 830. Based on the above findings, considering the allowable range of temperature fluctuation due to various factors, etc., the appropriate range of the first temperature gradient (a'C / cn) was Assuming that the diameter is D cm, 51 ZD2 ~ 102 / D2'C / c, more preferably 58/83 ZD2, C / cm.
なお、 第 3図に、 4イ ンチの口径の単結晶が得られた時の炉内温度分布の一例 の温度一位置特性図を示す。 なお、 第 3図において、 各ブロッ トは熱電対により 測定した温度である。  FIG. 3 shows a temperature-in-position characteristic diagram of an example of the furnace temperature distribution when a single crystal having a diameter of 4 inches was obtained. In FIG. 3, each block is a temperature measured by a thermocouple.
次に、 本発明者等は、 実際の結晶成長時には測定することのできない単結晶や 原料融液やるっぽ内壁の各温度から求められる固液界面の温度勾配を推測するた めに、 前提条件を設けて以下のような計算を行った。 その前提条件とは、 成長固 化した単結晶内を伝熱する熱量 Qlと原料融液の溶融潜熱 Q 2とが等しい (Ql = Q2) ということであり、 計算にあたっては以下の各数値及び記号を用いた。 Next, the present inventors set the preconditions for estimating the temperature gradient at the solid-liquid interface, which can be determined from the temperatures of the single crystal, the raw material melt, and the inner wall of the rupee, which cannot be measured during actual crystal growth. And the following calculation was performed. The precondition is that The amount of heat Q1 that transfers heat in the crystallized single crystal is equal to the latent heat of fusion Q2 of the raw material melt (Ql = Q2), and the following numerical values and symbols were used in the calculation.
炉内温度の冷却速度: 0. l KZhr  Cooling rate of furnace temperature: 0.1 l KZhr
単結晶の直径: 1 0 0BB ( 4イ ンチ)  Single crystal diameter: 100BB (4 inches)
C d T eの熱伝導率 (融点近傍での値) : 1 .
Figure imgf000012_0001
1. 2 9kcal/«- hr-K
Thermal conductivity of C d Te (value near melting point): 1.
Figure imgf000012_0001
1.2 kcal / «-hr-K
C d T eの比重: 5. 86 /«iol  Specific gravity of C d Te: 5.86 / «iol
C d T eの溶融潜熱: 1 2kcal/inol  Latent heat of fusion of C d Te: 12 kcal / inol
固液界面の温度勾配: XK/CB  Temperature gradient at solid-liquid interface: XK / CB
成長固化した単結晶内を伝熱する熱量 Q 1は次式で表される。  The amount of heat Q1 that transfers heat in the grown and solidified single crystal is expressed by the following equation.
Ql= ^ X 52 (cm2) X X (K/cni) X I . 2 9 (kcal/n-hr ·Κ)  Ql = ^ X 52 (cm2) X X (K / cni) X I. 29 (kcal / n-hr
= 1. 0 1 3 Χ (kcal/hr)  = 1. 0 1 3 Χ (kcal / hr)
また、 原料融液の溶融潜熱 Q2は次式で表される。  The latent heat of fusion Q2 of the raw material melt is given by the following equation.
Q2= 0. 1 (K/hr) ÷X (K/CB) Χ π Χ 5^ (cm2) X 5. 8 6 (g/cn3 Q2 = 0.1 (K / hr) ÷ X (K / CB) π π Χ5 ^ (cm2) X5.86 (g / cn3
) )
÷ 240 (g/nol) X 1 2 (kcal/nol)  ÷ 240 (g / nol) X 1 2 (kcal / nol)
= 2. 3 0 1 /X (kcal/hr)  = 2.301 / X (kcal / hr)
Q 1= Q2であるから、  Since Q 1 = Q2,
1. 0 1 3 X = 2. 30 1 /X  1.01 3 X = 2.30 1 / X
となり、 この方程式を解いて、And solving this equation,
Figure imgf000012_0002
Figure imgf000012_0002
が得られる。 つまり、 固液界面の温度勾配は 1 . 5 1 K/caであると推測される 以上のことから、 例えば上述した直径 4ィンチの C d Z n T e単結晶の成長の ように石英アンプルの外壁近傍で測定した温度勾配 (a 'CZcm) が 1 . O KZcm よりも小さ くなつていても、 実際の単結晶や固液界面での温度勾配はそれよりも 大き くなつており、 るつぼの上端よりも上方の空間の温度勾配 ( 1. 8 3K/cn ) より若干低い値になっていることがわかる。 従って、 成長固化した単結晶内を 伝熱する熱量 Q1と原料融液の溶融潜熱 Q2とが等しいという前提条件に基いて、 後述するように第 2の温度勾配 ( /9'C/cni) の一般化を図ることができる。 また、 実際の単結晶や固液界面での温度勾配が 1. 5 1 K/CBであることから 、 単結晶の成長速度は次の計算式より 0. 66inin hrと見積もられる。 Is obtained. In other words, it is estimated that the temperature gradient at the solid-liquid interface is 1.51 K / ca.From the above, it can be seen that the quartz ampoule, like the growth of the 4-inch diameter CdZnTe single crystal described above, Even if the temperature gradient (a'CZcm) measured near the outer wall is smaller than 1. O KZcm, the temperature gradient at the actual single crystal or solid-liquid interface is larger than that. It can be seen that the temperature is slightly lower than the temperature gradient (1.83K / cn) in the space above the upper end. Therefore, based on the precondition that the amount of heat Q1 that transfers heat in the grown and solidified single crystal is equal to the latent heat of fusion Q2 of the raw material melt, As will be described later, the second temperature gradient (/ 9'C / cni) can be generalized. In addition, since the temperature gradient at the actual single crystal or solid-liquid interface is 1.51 K / CB, the growth rate of the single crystal is estimated to be 0.66 inin hr by the following formula.
0. 1 (K/hr) ÷ 1. 5 1 (K/cn) = 0. 66 (nm/hr)  0.1 (K / hr) ÷ 1.5 1 (K / cn) = 0.66 (nm / hr)
従って、 例えば長さ 6 ΟΒΙΠの単結晶の実質成長時間は次の計算式より 9 1時間 となる。  Therefore, for example, the actual growth time of a single crystal having a length of 6 mm is 91 hours according to the following formula.
60 (ππ) ÷ 0. 66 (nnZhr) = 9 1 (hr)  60 (ππ) ÷ 0.66 (nnZhr) = 9 1 (hr)
そして、 通常、 成長開始時点での原料融液表面に対応する位置における石英ァ ンプル外壁の温度は 1 1 1 7 であり、 その温度から 0. l K hrの冷却速度で 冷却して、 石英アンプル外壁の温度が原料融液の融点 ( 1 098て) に達した時 点で完全に単結晶成長は完了している。 ここで、 るつぼ内壁と石英アンプル外壁 との温度差を 5 K (原料融液内に熱電対を入れて行った予備実験より得られた値 である。 ) と見積もると、 石英アンブル外壁の温度が 1 1 03ての時点で単結晶 成長は既に完了していることになる。 従って、 1 1 1 7 から 1 1 03'Cに至る 1 40時間のうち実質成長時間は上記 9 1時間であるため、 成長開始後 49時間 が経過して石英アンプル外壁の温度が 1 1 1 2てとなった時に原料融液の表面に 成長核が発生したことになる。 これより、 成長開始後数十時間、 或は百時間程度 経過するまでの炉内温度分布の制御を精度良行えば単結晶が得られることがわか る。  Usually, the temperature of the outer wall of the quartz sample at the position corresponding to the surface of the raw material melt at the start of growth is 1117, and from that temperature, the quartz ampoule is cooled at a cooling rate of 0.1 Khr. When the temperature of the outer wall reaches the melting point of the raw material melt (1098), single crystal growth has been completely completed. Here, if the temperature difference between the inner wall of the crucible and the outer wall of the quartz ampoule is estimated to be 5 K (a value obtained from a preliminary experiment conducted by inserting a thermocouple into the raw material melt), the temperature of the outer wall of the quartz amble becomes As of 1 103, single crystal growth has already been completed. Therefore, the actual growth time is 91 hours out of 140 hours from 111 to 113'C, and the temperature of the quartz ampoule outer wall is 1 1 1 2 after 49 hours from the start of growth. When this happens, growth nuclei are generated on the surface of the raw material melt. From this, it can be seen that a single crystal can be obtained if the temperature distribution in the furnace is controlled with good accuracy until several tens of hours or about 100 hours after the start of growth.
次に、 本発明者等は、 C d T e以外の I n P, G a A s , Z n S e , Z nT e などの他の化合物半導体の単結晶成長についても本発明の適用を可能ならしめる ために、 上述した具体例において行った熱計算の結果を踏まえて、 第 2の温度勾 配 ( /S'CZcn) を一般化することを行った。 その際の前提条件は、 上記具体例の 場合と同じで、 成長固化した単結晶内を伝熱する熱量 Q1と原料融液の溶融潜熱 Q2とが等しい (Q1 = Q2) ということである。 なお、 炉内温度の冷却速度等の 前提条件の数値を次のように記号化する。  Next, the present inventors can apply the present invention also to single crystal growth of other compound semiconductors such as InP, GaAs, ZnSe, and ZnTe other than CdTe. To make it easier, the second temperature gradient (/ S'CZcn) was generalized based on the results of the thermal calculations performed in the specific example described above. The prerequisite at this time is the same as in the above specific example, and the heat quantity Q1 for transferring heat in the grown and solidified single crystal is equal to the latent heat of fusion Q2 of the raw material melt (Q1 = Q2). The numerical values of the preconditions such as the cooling rate of the furnace temperature are symbolized as follows.
炉内温度の冷却速度 (KZhr) : R  Cooling rate of furnace temperature (KZhr): R
単結晶の断面積 (cni2) : S  Cross section of single crystal (cni2): S
結晶の熱伝導率 (kcalZcurhr'K) : λ 結晶の比重 (gZcB3) : P Thermal conductivity of crystal (kcalZcurhr'K): λ Specific gravity of crystal (gZcB 3 ): P
結晶の溶融潜熱 (kcalZno!) : L  Latent heat of fusion of crystal (kcalZno!): L
固液界面の温度勾配 (KZCB) : X  Temperature gradient at solid-liquid interface (KZCB): X
結晶の式量 (gZBol) : n  Formula weight of crystal (gZBol): n
成長固化した単結晶内を伝熱する熱量 Q1は次式で表される。  The amount of heat Q1 transferred in the grown and solidified single crystal is expressed by the following equation.
Q1=S XXX λ  Q1 = S XXX λ
また、 原料融液の溶融潜熱 Q2は次式で表される。  The latent heat of fusion Q2 of the raw material melt is given by the following equation.
Q2=R÷XX S X p÷ n XL  Q2 = R ÷ XX S X p ÷ n XL
Q 1= Q2であるから、  Since Q 1 = Q2,
SXXX A =R÷XX SX ÷ n X L  SXXX A = R ÷ XX SX ÷ n X L
となり、 この式を Xについて解く と And solving this equation for X gives
X = (R Ρ/λ n L)  X = (R Ρ / λ n L)
が得られる。 Is obtained.
これに基いて、 種々の要因等による温度変動の許容範囲を考慮した結果、 第 2 の温度勾配 ( S'C/cn) の適正範囲は、 1. 06 X~ 1. 72 X°CZcm、 より好 ましくは 1. 1 9 X~ 1. 46 X'C/cnとなる。  Based on this, considering the allowable range of temperature fluctuation due to various factors, the appropriate range of the second temperature gradient (S'C / cn) is 1.06 X to 1.72 X ° CZcm, It is preferably 1.19 X ~ 1.46 X'C / cn.
以上説明しだようにして第 1の温度勾配 (αて/ cm) 及び第 2の温度勾配 ( β •C/cn) を一般化したことの正当性を検証するために、 第 1の温度勾配 ( a'C cm) 及び第 2の温度勾配 ( S 'C/CB) を、 それぞれ一般化された適正範囲から選 択された値に設定して、 上記実験 1 と同様にして、 C d Z n T e単結晶の成長を 複数回行った (実験 4) 。 得られた単結晶の面方位は常に優先成長方向である ( 1 1 1 ) 面であった。 また、 その単結晶から切り出した基板を HF系のエツチ ヤ ン トでエッチングしてエッチピッ ト密度 (E PD) を測定したところ、 E PDは 4 X 1 04~6 X 1 04Cin-2であった。 この値は、 転位密度に相当する値である ( K. N a k a sr awa e t a l . , A p p l . P h y s . L e t t . , 34 ( 1 979) 574) 。 さらに、 四結晶 X線回折測定の (333) 面による回折 線の半値幅は 20秒以下 (7~20秒) であった。 これらの測定結果より、 得ら れた C d Z n T e単結晶の結晶性は良好であることがわかり、 本発明の正当性が 確認された。 続いて、 本発明者等は、 蒸気圧制御の対象となる易揮発性元素の蒸気圧の大き さを決める因子となるリザーバ部 1 Aの温度について、 その最適範囲を規定すベ く実験を行なった (実験 5) 。 その結果を第 4図に示すが、 同図より、 リザーパ 部 1 Aの温度が 770~830 、 即ち C dの蒸気圧が略 1. 0〜2. 0気圧で あれば、 成長させた結晶中の析出物は最大でも直径 1 0; m程度の小さいもので あり、 また 790~820て、 即ち C dの蒸気圧が略 1. 3~ 1. 8気圧であれ ば、 析出物は最大でも直径 5 に達しない極めて小さいものであると推測され るので、 リザーバ部 1 Aの温度は好ましくは 770~830 、 より好ましくは 790〜820 であるとよいことがわかった。 なお、 リザーバ部 1 Aの温度が 約 813 (81 5〜 825°C程度) で C dの蒸気圧が 1. 7気圧の時に、 結晶 の電気伝導型は P型と n型の反転領域となり、 析出物は最も小さかった。 As described above, in order to verify the validity of generalizing the first temperature gradient (α / cm) and the second temperature gradient (β • C / cn), (A'C cm) and the second temperature gradient (S'C / CB) were set to values selected from the generalized appropriate range, respectively, and C d Z The nTe single crystal was grown several times (Experiment 4). The plane orientation of the obtained single crystal was always the (111) plane which was the preferred growth direction. When the substrate cut out of the single crystal was etched with an HF-based etchant and the etch-pit density (EPD) was measured, the EPD was found to be 4 X 104 to 6 X 104 C in-2. there were. This value is equivalent to the dislocation density (K. Nakasawa et al., Appl. Phys. Lett., 34 (1 979) 574). Furthermore, the half value width of the diffraction line by the (333) plane in the four crystal X-ray diffraction measurement was 20 seconds or less (7 to 20 seconds). From these measurement results, it was found that the obtained CdZnTe single crystal had good crystallinity, and the validity of the present invention was confirmed. Subsequently, the present inventors conducted experiments to define the optimum range of the temperature of the reservoir 1 A, which is a factor that determines the magnitude of the vapor pressure of the volatile element to be subjected to vapor pressure control. (Experiment 5). The results are shown in Fig. 4, which shows that if the temperature of the reservoir 1A is 770 to 830, that is, the vapor pressure of Cd is approximately 1.0 to 2.0 atm, The precipitate has a diameter of at most 10; m at the maximum, and if the vapor pressure of Cd is 790 to 820, that is, if the vapor pressure of Cd is approximately 1.3 to 1.8 atm, the precipitate is at most a diameter. Since it is estimated that the temperature is extremely small, not reaching 5, it was found that the temperature of the reservoir section 1A is preferably 770 to 830, more preferably 790 to 820. When the temperature of the reservoir 1A is about 813 (approximately 815 to 825 ° C) and the vapor pressure of Cd is 1.7 atm, the electric conduction type of the crystal becomes a P-type and n-type inversion region. The precipitate was the smallest.
この実験 5では、 リザーバ部 1 Aを 750て、 780°C、 約 8 13°C及び 85 0 の各温度に加熱し、 それぞれの温度について、 上記実験 1 と同様にして、 C d T e単結晶を成長させた。 そして、 得られた単結晶中の析出物の大きさを赤外 顕微鏡により測定した。  In Experiment 5, the reservoir section 1A was heated to 780 ° C, about 813 ° C, and 850 ° C at 750 ° C. A crystal was grown. Then, the size of the precipitate in the obtained single crystal was measured by an infrared microscope.
従って、 本発明によれば、 加熱炉として上述したような 7段型加熱炉を用いた 場合は勿論、 3段型加熱炉を用いた場合でも、 より優れた品質で大口径の単結晶 を歩留り良く製造することができる。  Therefore, according to the present invention, even when a seven-stage heating furnace as described above is used as the heating furnace, and even when a three-stage heating furnace is used, a single crystal having a larger diameter and a larger diameter can be produced with higher quality. Can be manufactured well.
なお、 本発明は上記実施例により何等制限を受けるものではなく、 例えば C d T eや C d Z n T e以外の I n P, G a A s , 2 n S e, Z n T eなどの他の化 合物半導体の単結晶成長にも適用可能であり、 成長させる単結晶の口径も 3イン チ及び 4イ ンチに限らないし、 その際に用いる加熱炉のヒータの段数も 3段や 7 段に限らない。  It should be noted that the present invention is not at all limited by the above-described embodiment, and examples thereof include, for example, InP, GaAs, 2nSe, and ZnTe other than CdTe and CdZnTe. It is also applicable to single crystal growth of other compound semiconductors, and the diameter of the single crystal to be grown is not limited to 3 inches or 4 inches. Not limited to 7 steps.
また、 上記実施例のように石英アンプル 1の外壁近傍に設置した熱電対 5 A, 5B, 5 C , 5 D , 5 Eにより常に石英アンブル 1の外壁近傍における温度を測 定しながら単結晶成長を行なう代わりに、 石英アンプル 1の外壁近傍以外の箇所 に温度の測定点を設け、 予備実験等を行ってその新たに設けた温度測定点と石英 アンプル 1の外壁近傍での温度との関係を求めておき、 その温度測定点の温度を 測定しながら第 1の温度勾配 (a'C/cm) 及び第 2の温度勾配 ( て/ cm) を制 御して単結晶成長を行なうようにしてもよい。 In addition, as in the above embodiment, single crystal growth was performed while always measuring the temperature near the outer wall of quartz amble 1 using thermocouples 5A, 5B, 5C, 5D, and 5E installed near the outer wall of quartz ampoule 1. Instead, a temperature measurement point was set at a location other than the vicinity of the outer wall of the quartz ampule 1, and preliminary experiments were conducted to determine the relationship between the newly provided temperature measurement point and the temperature near the outer wall of the quartz ampoule 1. The first temperature gradient (a'C / cm) and the second temperature gradient (te / cm) are controlled while measuring the temperature at that temperature measurement point. The single crystal growth may be performed by controlling.
本発明に係る単結晶の成長方法によれば、 るっぽの上端よりも上方における垂 直方向の第 2の温度勾配 (/3'C/cn) が原料融液に対応する石英アンプルの外壁 近傍における垂直方向の第 1の温度勾配 (cr'C/cin) よりも大き くなるようにし たため、 融液表面から成長した単結晶はるっぽ内壁に接触しないように融液上に 浮遊させられた状態となるので、 るつぼ内壁に新たな核が発生するのが防止され 、 単結晶が得られ易くなる。  According to the method for growing a single crystal according to the present invention, the second vertical temperature gradient (/ 3′C / cn) above the upper end of the ruffle causes the outer wall of the quartz ampule to correspond to the raw material melt. The single crystal grown from the melt surface was floated on the melt so that it did not contact the inner wall of the melt because it was larger than the first temperature gradient (cr'C / cin) in the vertical direction in the vicinity. As a result, the generation of new nuclei on the inner wall of the crucible is prevented, and a single crystal is easily obtained.
また、 リザーバ部に易揮発性元素を入れて蒸気圧制御を行うことにより、 印加 する蒸気圧をばらっかずに適当な大きさに保つことができるとともに、 成長した 単結晶表面での分解や原料融液からの蒸発がより効果的に抑制されるので、 リネ ージが減少し、 また大きな析出物が発生するのが防止され、 単結晶の品質が向上 する。  In addition, by controlling the vapor pressure by putting a volatile element in the reservoir, the applied vapor pressure can be maintained at an appropriate level without dispersing, and decomposition and raw materials on the surface of the grown single crystal can be maintained. Since evaporation from the melt is more effectively suppressed, lineage is reduced, large precipitates are prevented from being generated, and the quality of the single crystal is improved.
さらに、 熱伝導率異方性を有する PBN製るつぼを用いることにより、 るつぼ 下部に加えられた熱量がるつぼ側壁の上部へ伝熱し易く、 且つ水平方向への放熱 量が小さ く抑えられるので、 単結晶の成長中、 るっぽ内壁を融点以上に保つのに 極めて有効である。  Furthermore, by using a PBN crucible having thermal conductivity anisotropy, the amount of heat applied to the lower portion of the crucible can easily be transferred to the upper portion of the side wall of the crucible, and the amount of heat dissipated in the horizontal direction can be reduced. It is extremely effective in keeping the inside wall above the melting point during crystal growth.
さらにまた、 '第 1の温度勾配 (a'C/cm) が 5 1 / D2〜 102/D2'C/CB、 より好ましくは 58/D2— 83/D2'CZCBであれば、 融液の対流による核の消 失が起こらず、 核発生が安定化するだけでなく、 るつぼ下側への供給熱量が適度 に保たれることとなって、 単結晶の成莨中、 るっぽ側壁が融点以上に保持される ので、 単結晶が得られ易くなる。 Furthermore, 'the first temperature gradient (a'C / cm) is 5 1 / D2~ 102 / D2'C / CB, more preferably 58 / D 2 - 83 / D 2' if CZCB, melt In addition to stabilizing nucleation and preventing the nucleus from disappearing due to convection, the heat supply to the lower side of the crucible is maintained at an appropriate level. Is maintained above the melting point, so that a single crystal is easily obtained.
特に、 加熱炉として、 少なく とも、 第 1の温度勾配 ( a'C/cn) の制御を行な う第 1の加熱手段と、 第 2の温度勾配 (/S'CZcni) の制御を行なう第 2の加熱手 段と、 リザーバ部を加熱する第 3の加熱手段と、 外乱の影響を受けるのを抑制す る第 4の加熱手段及び第 5の加熱手段と、 第 1の加熱手段と第 3の加熱手段との 相互の影響を抑制する第 6の加熱手段を有する多段型の加熱炉を用いることによ り、 第 1の温度勾配 (a'CZciii) と第 2の温度勾配 (/S'CZcia) の制御性が極め て良くなり、 単結晶基板の収率が飛躍的に向上するという効果が得られる。 また、 C d Z n T eや C d T eの単結晶を成長させる際に、 リザーバ部の温度 が 7 7 0〜8 3 0 'Cであれば、 成長させた結晶中の析出物は最大でも直径 1 0 m程度の小さいものであり、 また 7 9 0 ~ 8 2 0 'Cであれば、 析出物は最大でも 直径 5 mに達しない極めて小さいものであり、 従って極めて優れた品質の単結 晶が得られる。 In particular, as a heating furnace, at least a first heating means for controlling the first temperature gradient (a'C / cn) and a second heating means for controlling the second temperature gradient (/ S'CZcni) A second heating means, a third heating means for heating the reservoir, a fourth heating means and a fifth heating means for suppressing the influence of disturbance, a first heating means and a third heating means. By using a multi-stage heating furnace having a sixth heating means for suppressing mutual influence with the second heating means, the first temperature gradient (a'CZciii) and the second temperature gradient (/ S ' The controllability of CZcia) is extremely improved, and the effect of dramatically improving the yield of single crystal substrates can be obtained. When growing a single crystal of CdZnTe or CdTe, the temperature of the reservoir If it is 770-830 ° C, the precipitate in the grown crystal is a small one with a diameter of at most about 10m, and if it is 790-820 ° C, The precipitates are very small, not exceeding a diameter of 5 m at the maximum, so that single crystals of very good quality are obtained.
以上述べたように、 本発明は、 より優れた品質で大口径の単結晶を歩留り良く 製造することができるという効果を有する。 産業上の利用可能性  As described above, the present invention has an effect that a single crystal having a larger diameter and a larger diameter can be manufactured with higher yield. Industrial applicability
以上説明したように、 本発明は化合物半導体の単結晶の製造、 特に蒸気圧制御 を行いながら V G F法により化合物半導体の単結晶を製造するのに利用して最も 効果的である。  As described above, the present invention is most effective when used for producing a compound semiconductor single crystal, particularly for producing a compound semiconductor single crystal by the VGF method while controlling the vapor pressure.

Claims

. 請 求 の 範 囲 . The scope of the claims
1. リザーパ部を有する石英アンブルの該リザーバ部に化合物半導体の構成元素 のうちの少なくとも 1種の揮発し易い元素よりなる単体または化合物を入れると ともに、 前記石英アンブル内に前記化合物半導体の原料を入れた PB N製のるつ ぽを設置して同石英アンプルを真空封止した後、 該石英アンブルを加熱炉内で加 熱して前記原料を融解し、 前記リザ一パ部を所定温度に加熱して同リザーバ部内 の揮発し易い前記元素の蒸気圧を上記石英アンブル内にかけて蒸気圧制御を行う とともに、 融解した原料融液に対応する前記石英アンプルの外壁近傍における垂 直方向の第 1の温度勾配が前記るっぽの上端よりも上方における垂直方向の第 2 の温度勾配よりも小さくなるように、 前記加熱炉内の温度分布制御を行いながら 同加熱炉内の温度を徐々に下げて、 前記原料融液の表面から下方に向かって前記 化合物半導体の単結晶を成長させるとともに、 成長させる単結晶の直径を Denと する時、 上記第 1の温度勾配は、 5 1 / D2〜 102/D2'CZcm、 より好ましく は 58/D2~8 であり、 一方、 炉内温度の冷却速度を R 'C /hr、 結晶の熱伝導率を; lkcal/cin'hr'K、 結晶の比重を/ o g cn3、 結晶の溶融潜熱を Lkcal/noK '結晶の式量を n gZno 1とする時、 次式: 1. A single substance or a compound made of at least one kind of volatile element among the constituent elements of the compound semiconductor is put into the reservoir part of the quartz amble having a reservoir part, and the raw material of the compound semiconductor is put in the quartz amble. After placing the crucible made of PBN and vacuum-sealing the quartz ampule, the quartz amble is heated in a heating furnace to melt the raw material, and the reservoir is heated to a predetermined temperature. Then, the vapor pressure of the element, which is easily volatilized in the reservoir portion, is applied to the quartz amble to control the vapor pressure, and the first temperature in the vertical direction near the outer wall of the quartz ampule corresponding to the melted raw material melt. While controlling the temperature distribution in the heating furnace, the temperature in the heating furnace is controlled so that the gradient is smaller than the second temperature gradient in the vertical direction above the upper end of the loop. When the compound semiconductor single crystal is grown downward from the surface of the raw material melt and the diameter of the single crystal to be grown is Den, the first temperature gradient is 51 / D2 ~ 102 / D2'CZcm, more preferably 58 / D2 ~ 8, while the cooling rate of the furnace temperature is R'C / hr, the thermal conductivity of the crystal is lkcal / cin'hr'K, When the specific gravity of the crystal is / og cn 3 and the latent heat of fusion of the crystal is Lkcal / noK ', the formula quantity of the crystal is n gZno 1, the following formula:
X = " (R /λ n L)  X = "(R / λ n L)
で求まる Xを用いて、 上記第 2の温度勾配は、 1. 06X〜1. 72Xて/ cffl、 より好ましくは 1 . 1 9 X~ 1 . 4 6X*C/CBであることを特徴とする単結晶の 成長方法。 Wherein the second temperature gradient is 1.06 to 1.72X / cffl, more preferably 1.19X to 1.46X * C / CB. Single crystal growth method.
2. 上記加熱炉として、 少なく とも、 上記るつぼに対応する位置に配設されて上 記第 1の温度勾配の制御を行なう第 1の加熱手段と、 該第 1の加熱手段の上方に 配設されて上記第 2の温度勾配の制御を行なう第 2の加熱手段と、 前記第 1の加 熱手段の下方に配設されて上記リザーバ部を加熱する第 3の加熱手段と、 前記第 2の加熱手段の上方及び前記第 3の加熱手段の下方にそれぞれ配設されて上記第 1の温度勾配及び上記第 2の温度勾配に対する外乱の影響を抑制する第 4の加熱 手段及び第 5の加熱手段と、 前記第 1の加熱手段と前記第 3の加熱手段との間に 配設されて同第 1の加熱手段と同第 3の加熱手段との相互の影響を抑制する第 6 の加熱手段を有する加熱炉を用いることを特徴とする請求の範囲第 1項記載の単 結晶の成長方法。 2. As the heating furnace, at least a first heating means disposed at a position corresponding to the crucible and controlling the first temperature gradient, and disposed above the first heating means. A second heating means for controlling the second temperature gradient, a third heating means disposed below the first heating means for heating the reservoir, and a second heating means for controlling the second temperature gradient. Fourth heating means and fifth heating means which are respectively disposed above the heating means and below the third heating means to suppress the influence of disturbance on the first temperature gradient and the second temperature gradient. Between the first heating means and the third heating means The unit according to claim 1, wherein a heating furnace provided with a sixth heating means disposed to suppress mutual influence between the first heating means and the third heating means is used. Crystal growth method.
3. 上記化合物半導体の単結晶は、 C d Z n T eまたは C d T eであることを特 徵とする請求の範囲第 1項または第 2項記載の単結晶の成長方法。 3. The method for growing a single crystal according to claim 1, wherein the single crystal of the compound semiconductor is CdZnTe or CdTe.
4. 上記リザーバ部の温度は、 好ましくは 770~830て、 より好ましくは 7 90~820'Cであることを特徴とする請求の範囲第 3項記載の単結晶の成長方 法。 4. The method of growing a single crystal according to claim 3, wherein the temperature of the reservoir is preferably 770 to 830, and more preferably 790 to 820'C.
PCT/JP1994/002089 1994-02-21 1994-12-14 Method of growing single crystal WO1995022643A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP52170795A JP3232461B2 (en) 1994-02-21 1994-12-14 Single crystal growth method
US08/535,098 US5603763A (en) 1994-02-21 1994-12-14 Method for growing single crystal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2265994 1994-02-21
JP6/022659 1994-02-21
JP6/161539 1994-07-13
JP16153994 1994-07-13

Publications (1)

Publication Number Publication Date
WO1995022643A1 true WO1995022643A1 (en) 1995-08-24

Family

ID=26359926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/002089 WO1995022643A1 (en) 1994-02-21 1994-12-14 Method of growing single crystal

Country Status (3)

Country Link
US (1) US5603763A (en)
JP (1) JP3232461B2 (en)
WO (1) WO1995022643A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6299680B1 (en) 1998-05-11 2001-10-09 Japan Energy Corporation CdTe crystal or CdZnTe crystal and method for preparing the same
EP1143040A1 (en) * 1999-10-15 2001-10-10 Nikko Materials Company, Limited Crystal growing device and method of manufacturing single crystal
CN103194790A (en) * 2013-04-03 2013-07-10 中山大学 Growth device and method for phosphorus-germanium-zinc single crystal
US11552174B2 (en) * 2018-02-09 2023-01-10 Jx Nippon Mining & Metals Corporation Compound semiconductor and method for producing the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698029A (en) * 1995-06-06 1997-12-16 Kabushiki Kaisha Kobe Sekio Sho Vertical furnace for the growth of single crystals
KR0176328B1 (en) * 1995-12-19 1999-03-20 김은영 A vertical gradient free applied by an axial magnetic field and a vertical bridgman compound semiconductor single crystal growth apparatus
JP3648703B2 (en) * 2000-01-07 2005-05-18 株式会社日鉱マテリアルズ Method for producing compound semiconductor single crystal
FR2816755B1 (en) * 2000-11-13 2002-12-20 Commissariat Energie Atomique METHOD FOR GROWING A TYPE II-VI SOLID SEMICONDUCTOR MATERIAL
ES2329217B1 (en) * 2008-05-22 2010-09-17 Universidad Autonoma De Madrid APPARATUS AND PROCEDURE FOR OBTAINING SEMI-CONDUCTOR MONOCRISTALS THROUGH THE BRIDGMAN METHOD.
CA2649322C (en) * 2008-09-30 2011-02-01 5N Plus Inc. Cadmium telluride production process
KR100945668B1 (en) 2008-12-11 2010-03-05 (주)포티조 A method of growth for gaas single crystal by vgf
FR2956670B1 (en) 2010-02-19 2012-03-30 Soc Fr De Detecteurs Infrarouges Sofradir PROCESS FOR PRODUCING A CRYSTALLIZED SEMICONDUCTOR MATERIAL
CN103726100A (en) * 2013-11-25 2014-04-16 青岛盛嘉信息科技有限公司 Polycrystalline gallium arsenide synthetic method without liquid encapsulation
JP6448789B2 (en) 2015-07-03 2019-01-09 Jx金属株式会社 CdTe-based compound single crystal and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437488A (en) * 1987-08-03 1989-02-08 Katsumi Mochizuki Production of single crystal of compound semiconductor and device therefor
JPH01246199A (en) * 1988-03-25 1989-10-02 Fujitsu Ltd Production of single crystal of compound semiconductor
JPH0570276A (en) * 1991-09-11 1993-03-23 Sumitomo Electric Ind Ltd Device for producing single crystals
JPH0559873B2 (en) * 1987-06-22 1993-09-01 Nikko Kyoseki Kk

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2175595B1 (en) * 1972-03-15 1974-09-13 Radiotechnique Compelec
US4190486A (en) * 1973-10-04 1980-02-26 Hughes Aircraft Company Method for obtaining optically clear, high resistivity II-VI, III-V, and IV-VI compounds by heat treatment
JPS535867A (en) * 1976-07-06 1978-01-19 Masakuni Murakami Washer
JP2649052B2 (en) * 1988-02-17 1997-09-03 日本電信電話株式会社 Crystal growing method and crystal growing device
JPH02167882A (en) * 1988-12-22 1990-06-28 Sumitomo Electric Ind Ltd Growth of single crystal and apparatus therefor
JPH02239181A (en) * 1989-03-10 1990-09-21 Sumitomo Metal Mining Co Ltd Device and method for crystal growth
JPH0340987A (en) * 1989-07-10 1991-02-21 Nippon Telegr & Teleph Corp <Ntt> Growing method for single crystal
US5037621A (en) * 1989-11-09 1991-08-06 The United States Of America As Represented By The Secretary Of The Army System for the in-situ visualization of a solid liquid interface during crystal growth
JPH03183682A (en) * 1989-12-08 1991-08-09 Sumitomo Electric Ind Ltd Method and device for growing single crystal
US5169486A (en) * 1991-03-06 1992-12-08 Bestal Corporation Crystal growth apparatus and process
JP3166229B2 (en) * 1991-08-30 2001-05-14 文化シヤッター株式会社 Multiple panel shutter
JPH06239691A (en) * 1993-02-12 1994-08-30 Japan Energy Corp Method for growing single crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559873B2 (en) * 1987-06-22 1993-09-01 Nikko Kyoseki Kk
JPS6437488A (en) * 1987-08-03 1989-02-08 Katsumi Mochizuki Production of single crystal of compound semiconductor and device therefor
JPH01246199A (en) * 1988-03-25 1989-10-02 Fujitsu Ltd Production of single crystal of compound semiconductor
JPH0570276A (en) * 1991-09-11 1993-03-23 Sumitomo Electric Ind Ltd Device for producing single crystals

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6299680B1 (en) 1998-05-11 2001-10-09 Japan Energy Corporation CdTe crystal or CdZnTe crystal and method for preparing the same
EP1143040A1 (en) * 1999-10-15 2001-10-10 Nikko Materials Company, Limited Crystal growing device and method of manufacturing single crystal
US6562134B1 (en) 1999-10-15 2003-05-13 Nikko Materials Co., Ltd. Crystal growing device and method of manufacturing single crystal
EP1143040A4 (en) * 1999-10-15 2004-05-12 Nikko Materials Co Ltd Crystal growing device and method of manufacturing single crystal
CN103194790A (en) * 2013-04-03 2013-07-10 中山大学 Growth device and method for phosphorus-germanium-zinc single crystal
CN103194790B (en) * 2013-04-03 2016-08-03 中山大学 The grower of a kind of phosphorus germanium zinc monocrystal and method
US11552174B2 (en) * 2018-02-09 2023-01-10 Jx Nippon Mining & Metals Corporation Compound semiconductor and method for producing the same

Also Published As

Publication number Publication date
US5603763A (en) 1997-02-18
JP3232461B2 (en) 2001-11-26

Similar Documents

Publication Publication Date Title
WO1995022643A1 (en) Method of growing single crystal
JP4830312B2 (en) Compound semiconductor single crystal and manufacturing method thereof
US7972439B2 (en) Method of growing single crystals from melt
US20060191468A1 (en) Process for producing single crystal
JP2011148694A (en) Compound semiconductor single crystal substrate
JP3648703B2 (en) Method for producing compound semiconductor single crystal
JP2704032B2 (en) Method for manufacturing compound semiconductor single crystal
JP3831913B2 (en) Method for producing compound semiconductor single crystal
JP2543449B2 (en) Crystal growth method and apparatus
JPH09175892A (en) Production of single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP2009190914A (en) Method for producing semiconductor crystal
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP2009023867A (en) Manufacturing method of semiconductor crystal and its manufacturing apparatus
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
RU1809847C (en) Method of crystalline gallium arsenide preparing
JPH03228893A (en) Method for growing crystal
JPH03193689A (en) Production of compound semiconductor crystal
JPH10212192A (en) Method for growing bulk crystal
JPH0316989A (en) Production device of silicon single crystal
JP2004026577A (en) Apparatus for growing compound semiconductor single crystal and method of growing compound semiconductor single crystal
JP2004018319A (en) Compound semiconducting crystal growth apparatus
JPH07300386A (en) Method for growing semiconductor crystal
JPS58130194A (en) Manufacture of silicon single crystal
JPH0559873B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

WWE Wipo information: entry into national phase

Ref document number: 08535098

Country of ref document: US