JPS58130194A - Manufacture of silicon single crystal - Google Patents

Manufacture of silicon single crystal

Info

Publication number
JPS58130194A
JPS58130194A JP885082A JP885082A JPS58130194A JP S58130194 A JPS58130194 A JP S58130194A JP 885082 A JP885082 A JP 885082A JP 885082 A JP885082 A JP 885082A JP S58130194 A JPS58130194 A JP S58130194A
Authority
JP
Japan
Prior art keywords
single crystal
heater
crystal
silicon
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP885082A
Other languages
Japanese (ja)
Inventor
Satoyoshi Kuroda
黒田 慧慶
Koji Kozuka
小塚 弘次
Yukio Takano
高野 幸男
Masahiko Kogirima
小切間 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP885082A priority Critical patent/JPS58130194A/en
Publication of JPS58130194A publication Critical patent/JPS58130194A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials

Abstract

PURPOSE:To obtain a silicon single crystal of high quality without growing the deposited corner by growing a silicon single crystal by a pulling method, separating the crystal from the melt at once, and treating under heat it at a high temp. CONSTITUTION:Polycrystalline silicon is filled into a crucible 1 and melted by heating with a heater 2. By pulling up a seed crystal 3, a single crystal ingot 4 is grown while maintaining the relative position of the heater 2 to the surface of the melt. After finishing the crystal growth, the resulting single crystal ingot 4 is positioned just above the surface of the residual melt 5, and the heater 2 is moved upward to the position 2'. The ingot 4 is heated at 1,200 deg.C- the m.p. of silicon for a prescribed time with the heater 2. The power supply is then cut, and the single crystal is pulled up and rapidly cooled. By the heat treatment a silicon single crystal of high quality suitable for a semiconductor integrated circuit, etc. is obtd.

Description

【発明の詳細な説明】 本発明は半導体集積回路等に用いられる高品質シリコン
単結晶の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing high quality silicon single crystals used in semiconductor integrated circuits and the like.

従来、集積回路、大規模集積回路の元板材料として、チ
ョクラルスキー(C″Z)法で石英ルツボ中で溶融させ
たシリコンから成長させたシリコン単結晶が用いられて
いる。このCZ単結晶を使用する上での問題点は1石英
ルツボからシリコン融液中に溶出した酸素が結晶中に溶
は込み、結晶引上翳における冷却、または素子作成プロ
セス、における熱処理により酸素が析出することである
。この析出物はリーク電流の原因となり、好ましくない
Conventionally, a silicon single crystal grown from silicon melted in a quartz crucible by the Czochralski (C''Z) method has been used as a base plate material for integrated circuits and large-scale integrated circuits.This CZ single crystal The problem with using 1 is that the oxygen eluted from the quartz crucible into the silicon melt dissolves into the crystal, and oxygen precipitates during cooling during crystal pulling or heat treatment during the element fabrication process. Yes, this precipitate causes leakage current and is undesirable.

シリコン単結晶の製造方法としては、OZ法の他にフロ
ーティングゾーン(FZ)法もあるが。
In addition to the OZ method, there is also a floating zone (FZ) method as a method for manufacturing silicon single crystals.

この方法で作られた単結晶は、酸素の含有量が少ないた
め、1ooo℃以上の熱処理に対し、ウェーハの反9.
転位の発生が容易に起り、好1しくない。
Since the single crystal made by this method has a low oxygen content, it can withstand heat treatment of 100°C or higher with a wafer diameter of 9.
Dislocations easily occur, which is not desirable.

以上のことは、ヒータを内蔵する結晶成長炉の構成上、
結晶インゴットの長さ方向の熱履歴が異なるためと考え
られる。そこで、このことを確めるため結晶引上時の温
度分布を熱電対を用いて測定した。この結果を第1図に
示す。通常、結晶成長時の引上速度は1 wx/1yr
in程度であるから、成長結晶は析出物の核発生の温度
である600〜800℃の領域、および核成長温度であ
る1000〜1100℃の領域をゆっくり通過すること
が第1図かられかる。
The above is due to the structure of the crystal growth furnace with a built-in heater.
This is thought to be due to the difference in thermal history in the longitudinal direction of the crystal ingot. Therefore, in order to confirm this, the temperature distribution during crystal pulling was measured using a thermocouple. The results are shown in FIG. Normally, the pulling rate during crystal growth is 1 wx/1yr
It can be seen from FIG. 1 that the growing crystal slowly passes through the region of 600 to 800° C., which is the temperature of nucleation of precipitates, and the region of 1,000 to 1,100° C., which is the temperature of nucleus growth.

事実、このような低温熱処理を長時間にわたりCうけた
結、晶(インゴット)の上部から切り出した結晶を使用
して作ったダイオードのリーク電流は大きく、低温熱処
理時間の短かいインゴット下部の結晶で作ったそれのリ
ーク電流は小さい。
In fact, when subjected to such low-temperature heat treatment for a long time, a diode made using a crystal cut from the upper part of the ingot has a large leakage current, whereas a diode made using a crystal cut from the upper part of the ingot, which has been subjected to low-temperature heat treatment for a short time, has a large leakage current. The leakage current of it made is small.

一方、シリコンウェーハは1300℃以上。On the other hand, silicon wafers are heated to over 1300℃.

30分程度の熱処理後、急冷することにより析出核の成
長は抑止され、その後の通常の熱処理では酸素の析出は
ほとんど起らないことが知られている。このような16
00℃もの高温熱処理を、高純度雰囲気を保つために1
石英管内で行なうと。
It is known that the growth of precipitated nuclei is inhibited by rapid cooling after heat treatment for about 30 minutes, and that oxygen precipitation hardly occurs in subsequent normal heat treatment. 16 like this
In order to maintain a high-purity atmosphere during heat treatment at temperatures as high as 00℃,
When done inside a quartz tube.

石英管の失透1曲り、消耗が激しい。Devitrification of quartz tube 1 bent, severe wear and tear.

本発明は1以上の点に鑑み、ヒータを内蔵する単結晶成
長炉内で結晶成長を行なった後、インゴットの状態のま
ま同成長炉内で高温熱処理を行なうようにしたことを特
徴とする。
In view of one or more points, the present invention is characterized in that after crystal growth is performed in a single crystal growth furnace equipped with a built-in heater, high-temperature heat treatment is performed in the same growth furnace while the ingot is in the form of an ingot.

以下に本発明を実施例により詳細に説明する。The present invention will be explained in detail below using examples.

実施例 第2図に示すように、直径606m、高さ50cmの石
英ルツボ1内に多結晶シリコンを充填し、炉内をA[ガ
スで置換した後、ヒータ2により多結晶シリコンを加熱
、溶解する。シリコン融液および種結晶6を回転させな
がら種結晶3を引き上げ通常の条件下°で単結晶インゴ
ット4を成長させる融液面は結Oの成長と共に低下する
が、ヒータ2と融液面との相対位置はほぼ一定に保つ。
Example As shown in FIG. 2, a quartz crucible 1 with a diameter of 606 m and a height of 50 cm was filled with polycrystalline silicon, and after replacing the inside of the furnace with gas A, the polycrystalline silicon was heated and melted with a heater 2. do. While rotating the silicon melt and the seed crystal 6, the seed crystal 3 is pulled up and the single crystal ingot 4 is grown under normal conditions.The melt surface decreases as O precipitates grow, but the relationship between the heater 2 and the melt surface Keep the relative position approximately constant.

結晶成長終了後にヒータ2はほぼ図の点線位置にある。After the crystal growth is completed, the heater 2 is located approximately at the dotted line position in the figure.

この時点で、単結晶インゴット4を残留融液5の液面直
上にあるように設置し、ヒータ2を上方に移動させ1石
英ルツボ1に対してもっとも高い位置、すなわち、実線
で示した位置2′まで上げる。
At this point, the single crystal ingot 4 is placed directly above the liquid level of the residual melt 5, and the heater 2 is moved upward to the highest position relative to the quartz crucible 1, that is, the position 2 indicated by the solid line. ’.

第1図の結果から、インゴット◆の上部では結晶の温度
は雰囲気ガスの温度に等しいことから、インゴット上部
の温度が1300℃になるようにヒータの電力を調節す
る。成長結晶4の長さ等によりヒータ2の電力が不足す
る場合には、第6図に示すように成長炉用のヒータ2の
上部に補助ヒータ6を設け、インゴツト4全体の温度が
1300℃となるように、、する。補助ヒータは、たと
えば。
From the results shown in FIG. 1, the temperature of the crystal in the upper part of the ingot ♦ is equal to the temperature of the atmospheric gas, so the power of the heater is adjusted so that the temperature in the upper part of the ingot becomes 1300°C. If the power of the heater 2 is insufficient due to the length of the growing crystal 4, etc., an auxiliary heater 6 is installed above the heater 2 for the growth furnace as shown in FIG. I will do it so that it becomes true. Auxiliary heaters, for example.

グラファイト製で、3oV、500Aの容量を有すやも
のである。この温度で約30分間熱処I理した後ヒータ
の電源を切り、結晶を5〜106m/winの速度で引
き上げ、急冷する。この熱処理はシ1ノコン中の酸素に
起因する欠陥核消滅温度である1200℃以上、シリコ
ンの融点を越えない温度範囲で行なうことが必要である
It is made of graphite and has a capacity of 3oV and 500A. After heat treatment at this temperature for about 30 minutes, the power to the heater is turned off, and the crystal is pulled up at a speed of 5 to 106 m/win and rapidly cooled. This heat treatment must be carried out at a temperature of 1,200° C. or higher, which is the extinction temperature of defect nuclei caused by oxygen in the silicone, and within a temperature range that does not exceed the melting point of silicon.

以上のようにして得た単結晶から切り出したウェーハか
ら作製したダイオードのリーク電流は極めて小さかった
The leakage current of the diode manufactured from the wafer cut from the single crystal obtained as described above was extremely small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はヒータを内蔵する引上げ法単結晶成長炉中の結
晶引上げ時の温度分布を示す図、第2図第3図はそれぞ
れ本発明による単結晶成長法の讃。 四回である。 図において。 1 ルツボ     2・・ヒータ 6 種結晶     4・・・単結晶インゴット5・・
残留融液    6・・・補助ヒータ代理人弁理士 中
村純之助
FIG. 1 is a diagram showing the temperature distribution during crystal pulling in a pulling method single crystal growth furnace equipped with a built-in heater, and FIG. 2, FIG. 3, and FIG. Four times. In fig. 1 Crucible 2... Heater 6 Seed crystal 4... Single crystal ingot 5...
Residual melt 6... Junnosuke Nakamura, patent attorney representing the auxiliary heater

Claims (1)

【特許請求の範囲】[Claims] 1 ヒータを内蔵する引上げ法単結晶成長炉を用いたシ
リコン単結晶の製造方法において、単結晶成長後直ちに
得られた前記単結晶を融液から引離して、1200℃以
上、シリコメ丞点以下の温度範囲で所定時間熱処理する
ことを特徴とするシリコン単結晶の製造方法。
1. In a method for producing a silicon single crystal using a pulling single crystal growth furnace with a built-in heater, the single crystal obtained immediately after single crystal growth is separated from the melt and heated to a temperature of 1200°C or higher and lower than the silicone point. A method for producing a silicon single crystal, characterized by heat treatment at a temperature range for a predetermined period of time.
JP885082A 1982-01-25 1982-01-25 Manufacture of silicon single crystal Pending JPS58130194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP885082A JPS58130194A (en) 1982-01-25 1982-01-25 Manufacture of silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP885082A JPS58130194A (en) 1982-01-25 1982-01-25 Manufacture of silicon single crystal

Publications (1)

Publication Number Publication Date
JPS58130194A true JPS58130194A (en) 1983-08-03

Family

ID=11704211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP885082A Pending JPS58130194A (en) 1982-01-25 1982-01-25 Manufacture of silicon single crystal

Country Status (1)

Country Link
JP (1) JPS58130194A (en)

Similar Documents

Publication Publication Date Title
US4840699A (en) Gallium arsenide crystal growth
US20080282968A1 (en) Method of Growing Single Crystals from Melt
WO1995022643A1 (en) Method of growing single crystal
CN100385046C (en) Method for producing silicon wafer
KR100331552B1 (en) Czochralski Pullers and Pulling Methods for Manufacturing Monocrystalline Silicon Ingots by Controlling Temperature Gradients at the Center and Edge of an Ingot-Melt Interface
WO2023051616A1 (en) Crystal pulling furnace for pulling monocrystalline silicon rod
US3261722A (en) Process for preparing semiconductor ingots within a depression
JPH1087392A (en) Production of compound semiconductor single crystal
JPH05294782A (en) Silicon single crystal producing device
JPS58130194A (en) Manufacture of silicon single crystal
US10844513B2 (en) Method for producing a semiconductor wafer of monocrystalline silicon, device for producing a semiconductor wafer of monocrystalline silicon and semiconductor wafer of monocrystalline
JPH0367994B2 (en)
JP2004175620A (en) Manufacturing method of single crystal
JPS63319293A (en) Furnace for pulling and growing silicon single crystal
JPS6344720B2 (en)
JPH09309791A (en) Method for producing semiconducting single crystal
JP2645491B2 (en) Method for growing compound semiconductor single crystal
JPH05319973A (en) Single crystal production unit
JPH0316988A (en) Production device of single crystal of compound semiconductor
JPH0692781A (en) Production of single crystal and apparatus therefor
JPH0570282A (en) Single crystal pulling up device
JPH09175892A (en) Production of single crystal
JPH08333189A (en) Apparatus for pulling up crystal
JPH0725533B2 (en) Method for producing silicon polycrystalline ingot
JPS63319286A (en) Method for growing single crystal