JPS63319293A - Furnace for pulling and growing silicon single crystal - Google Patents

Furnace for pulling and growing silicon single crystal

Info

Publication number
JPS63319293A
JPS63319293A JP15575487A JP15575487A JPS63319293A JP S63319293 A JPS63319293 A JP S63319293A JP 15575487 A JP15575487 A JP 15575487A JP 15575487 A JP15575487 A JP 15575487A JP S63319293 A JPS63319293 A JP S63319293A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
pulling
pulled
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15575487A
Other languages
Japanese (ja)
Inventor
Katsu Kanamori
金森 克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15575487A priority Critical patent/JPS63319293A/en
Publication of JPS63319293A publication Critical patent/JPS63319293A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To increase the yield by arranging a cooling part and a heat reflecting plate so as to rapidly cool a part of a pulled single crystal cooled to a prescribed temp. or below and to moderate the temp. distribution of a region near the solid-liq. interface between the single crystal and a melt. CONSTITUTION:This furnace for pulling and growing a silicon single crystal is provided with a cooling part (cooling water) 6a and a heat reflecting plate 6b. A silicon single crystal 5 is pulled from molten silicon 3 in a quartz crucible 2 and a part of the pulled crystal 5 cooled to <=1,000 deg.C is rapidly cooled in the cooling part 6a. The heat reflecting plate 6b moderates the temp. distribution of a region near the solid-liq. interface between the crystal 5 and the molten silicon 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路製造用の単結晶基板を得るため
のシリコン単結晶成長炉に関し、特に、石英ルツボから
引上げるチョクラルスキン法によるシリコン単結晶引上
成長炉の改良に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a silicon single crystal growth furnace for obtaining single crystal substrates for manufacturing semiconductor integrated circuits, and in particular, relates to a silicon single crystal growth furnace for obtaining single crystal substrates for manufacturing semiconductor integrated circuits, and in particular, silicon single crystal growth furnaces for growing silicon by the Czochral skin method, which are pulled from quartz crucibles. Concerning improvements in single crystal pulling growth furnaces.

〔従来の技術〕[Conventional technology]

従来、この種の単結晶成長炉においては、石英ルツボ全
体を囲むカーボンヒーターによって加熱し、ルツボ内の
シリコンを熔融させていた。炉全体にアルゴンガスを流
し、排気ポンプによって減圧しながら、発生する炭酸ガ
スが熔融シリコン(メルト)に混入しないように系外に
除き炭素混入をさけて、引上げを行なっている。ヒータ
ーには、重金属汚染をさけるという点からカーボン以外
は使用されない。 □ 〔発明が解決しようとする問題点〕 上述した従来の引上法は、加熱がルツボに対してのみ加
えられるので、引上げた単結晶(インゴット)内の温度
分布、特に、高温部分の冷却速度が制御しにくいという
欠点がある。この問題は大口径化によって、さらに著る
しくなっている。引上げたインゴット内の温度分布等の
熱履歴は、チョクラルスキ法によって得られる単結晶の
品質に大きな影響を与える事が従来から知られておシ、
この制御は重要な問題である。この温度分布には輻射の
環境、すなわち引上炉の構造、特にメルトより上の部分
の構造が影響を与える。引上時の液面の著るしい変形も
、この問題を複雑にしている。
Conventionally, in this type of single crystal growth furnace, a carbon heater surrounding the entire quartz crucible heats the crucible to melt the silicon inside the crucible. Argon gas is flowed through the entire furnace, and while the pressure is reduced by an exhaust pump, the generated carbon dioxide gas is removed from the system to prevent it from getting mixed in with the molten silicon (melt) and carbon is pulled up. The heater uses only carbon to avoid heavy metal contamination. □ [Problems to be solved by the invention] In the conventional pulling method described above, heating is applied only to the crucible, so the temperature distribution within the pulled single crystal (ingot), especially the cooling rate of the high temperature portion, is affected. The disadvantage is that it is difficult to control. This problem becomes even more serious as the diameter increases. It has long been known that the thermal history, such as the temperature distribution within the pulled ingot, has a large effect on the quality of the single crystal obtained by the Czochralski method.
This control is an important issue. This temperature distribution is influenced by the radiation environment, that is, the structure of the pulling furnace, especially the structure of the area above the melt. The significant deformation of the liquid level during withdrawal also complicates this problem.

単結晶の冷却が早すぎる場合、冷却が不均一な場合には
原子空孔がこの単結晶内に残留し、集積回路製造プロセ
ス中に過剰の酸素析出を誘発し、歩留りを下げる事が知
られてお夛、との空孔量制御が結晶品質上の問題となっ
ている。引上炉に流すガスの圧力、成分を制御して冷却
を制御する方法も提案されている(特公昭6l−547
60)が、いまだ充分ではない。
It is known that if a single crystal is cooled too quickly or if the cooling is uneven, atomic vacancies may remain in the single crystal, inducing excessive oxygen precipitation during the integrated circuit manufacturing process and reducing yield. Controlling the amount of pores in the crystal is a problem in terms of crystal quality. A method of controlling cooling by controlling the pressure and composition of the gas flowing into the pulling furnace has also been proposed (Special Publication No. 6l-547
60) is still not sufficient.

〔問題点を解決する。ための手段〕[Solve the problem. means for

本発明によればルツボ内の熔融シリコンからシリコン単
結晶を引上成長するシリコン単結晶引上炉において、引
上成長されるシリコン単結晶のioo。
According to the present invention, in a silicon single crystal pulling furnace for pulling and growing a silicon single crystal from molten silicon in a crucible, the IOO of a silicon single crystal that is pulled and grown.

℃以下の部分を急冷するための冷却部と、#融りリコン
とシリコン単結晶との固液界面近傍の温度分布を緩和す
るための熱反射板とを設けたシリコン単結晶引上成長炉
が得られる。
A silicon single crystal pulling growth furnace is equipped with a cooling section to rapidly cool the part below ℃ and a heat reflection plate to moderate the temperature distribution near the solid-liquid interface between melted silicon and silicon single crystal. can get.

本発明の成長炉は、引上結晶上部における急冷部と鏡面
反射板を有している。すなわち、石英ルツボ内の熔融シ
リコンからシリコン単結晶を減圧引上成長するチョクラ
ルスキ法において、引上結晶の1000℃以下の部分を
急冷するための粗面化した冷却部と、固液界面近傍の温
度分布を緩和するための鏡面反射板を接続している。
The growth furnace of the present invention has a quenching section and a specular reflector in the upper part of the pulled crystal. In other words, in the Czochralski method, in which a silicon single crystal is grown by pulling under reduced pressure from molten silicon in a quartz crucible, a roughened cooling part is used to rapidly cool the portion of the pulled crystal below 1000°C, and a temperature near the solid-liquid interface is used. A specular reflector is connected to soften the distribution.

〔実施例〕〔Example〕

以下本発明を第1図によってよシ具体的に説明するO 第1図において、減圧引上のための引上容器1は気密構
造になっている。アルゴンガスはこの容器1の上部から
流入し、下部から系外ヘボンブによって排気され内部を
減圧状態にしている。この引上容器1内にはメルトの入
っている石英ルツボ2J融ンリコンメルト32.カーボ
ンヒータ4、引上げられた単結晶が設けられている。さ
らに冷却部6aと鏡面反射板6bが設けられ、冷却部6
aは内側を粗面化した急冷部でIJ)冷却水を流してい
る。鏡面反射板6bはメルト近傍の温度分布を緩和し、
結晶の急冷を防ぐために用いられている。
The present invention will be explained in detail below with reference to FIG. 1. In FIG. 1, a lifting container 1 for lifting under reduced pressure has an airtight structure. Argon gas flows into the container 1 from the upper part and is exhausted from the lower part by an extra-system head bomb, thereby reducing the pressure inside the container. Inside this pulling container 1 is a quartz crucible 2J containing melt 32. A carbon heater 4 and a pulled single crystal are provided. Further, a cooling section 6a and a specular reflection plate 6b are provided, and the cooling section 6
A is a quenching section with a roughened inner surface through which cooling water flows. The specular reflection plate 6b moderates the temperature distribution near the melt,
It is used to prevent rapid cooling of crystals.

この冷却部6aと鏡面反射板6bとを組み合わせる事に
よシ、融点(1420℃)から1100℃付近まが可能
になる。表面の粗面化及び鏡面化はこの効果を増大させ
るための加工である。このような熱制御をすることによ
シ、引上げたシリコン単結晶内の過剰空孔の残留を防止
し、不要な酸素析出核発生を防止できる。
By combining the cooling section 6a and the specular reflection plate 6b, it is possible to heat the melting point from the melting point (1420°C) to around 1100°C. Roughening and mirror-finishing the surface are treatments to increase this effect. By controlling heat in this manner, it is possible to prevent excess vacancies from remaining in the pulled silicon single crystal and to prevent unnecessary oxygen precipitation nuclei from being generated.

すでに説明した第1図に示す本発明の引上炉によって引
上げた直径4インチのP型単結晶(5)と、冷却部6a
と鏡面反射板6bを用いない従来の方法により引上げた
直径4インチのP型単結晶(Blを比較した。これらの
結晶内、(B)から切シ出したウェーハに対し、100
0℃、16Hの熱処理を加え、内部欠陥密度9表面欠陥
密度、格子間酸素析出量を評価した。その結果特に結晶
の下部から切出したウェハについて下表に示す著るしい
差が生じた。
The P-type single crystal (5) with a diameter of 4 inches pulled by the pulling furnace of the present invention shown in FIG. 1 already explained and the cooling section 6a
and a P-type single crystal (Bl) with a diameter of 4 inches pulled by a conventional method that does not use a specular reflector 6b.
A heat treatment was applied at 0° C. for 16 hours, and the internal defect density, surface defect density, and interstitial oxygen precipitation amount were evaluated. As a result, there were significant differences as shown in the table below, especially for wafers cut from the lower part of the crystal.

明らかに本発明による結晶Aは従来の方法による結晶B
に比べて結晶品質が優れておシ、素子の歩留シにおいて
も30%以上の良品率の向上が認められた。
Clearly, crystal A according to the invention is crystal B according to the conventional method.
It was found that the crystal quality was superior to that of the conventional method, and the yield rate of devices was improved by more than 30%.

次に引上装置は第1図と全く同じであるが、リンをドー
プしてN型チョクラルスキー(CZ)結晶を引上げた。
Next, although the pulling apparatus was exactly the same as that shown in FIG. 1, an N-type Czochralski (CZ) crystal was pulled by doping it with phosphorus.

冷却部6aの表面加工は前述した実施例と全く同一であ
るが、焼面反射板6bの角度を調整し、直径6インチの
単結晶を引上げた。
The surface treatment of the cooling section 6a was exactly the same as in the previous example, but the angle of the burnt surface reflector 6b was adjusted and a single crystal with a diameter of 6 inches was pulled.

前述した実施例と同じ熱処理によって内部欠陥を評価し
、同様の結果が得られ、これを下表に示す。
Internal defects were evaluated using the same heat treatment as in the previous example, and similar results were obtained, which are shown in the table below.

Aは本発明による、Bは従来法による結晶である。A is a crystal obtained by the present invention, and B is a crystal obtained by a conventional method.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、保温と冷却を最適化する
ことによフ、最も好ましい熱履歴を経たチョクラルスキ
シリコン単結晶を製造する上で、極めて有効である。さ
らに副次的な効果として、アルゴンガスの流れを均一に
して発生するSi0粒子がメルトまたは結晶へ再混入す
るのを防ぐ事ができる。
As explained above, the present invention is extremely effective in producing Czochralski silicon single crystals that have undergone the most favorable thermal history by optimizing heat retention and cooling. Furthermore, as a secondary effect, it is possible to prevent the generated Si0 particles from re-mixing into the melt or crystal by making the flow of argon gas uniform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のシリコン単結晶引上成長炉の一実施例
を示す断面図である。 1・・・・・・引上容器、2・・・・・・石英ルツボ、
3・・・・・・熔融シリコン、4・・・・・・ヒース、
5・・・・・・引上結晶、6a・・・・・・冷却部、6
b・・・・・・鏡面反射板。
FIG. 1 is a sectional view showing an embodiment of the silicon single crystal pulling growth furnace of the present invention. 1... Pulling container, 2... Quartz crucible,
3...Melted silicon, 4...Heath,
5... Pulled crystal, 6a... Cooling section, 6
b...Specular reflector.

Claims (1)

【特許請求の範囲】[Claims] ルツボ内の熔融シリコンからシリコン単結晶を引上成長
するシリコン単結晶引上成長炉において、前記引上げ成
長されるシリコン単結晶の1000℃以下の部分を急冷
するための冷却部と前記熔融シリコンと前記シリコン単
結晶との固液界面近傍の温度分布を緩和するための熱反
射板とを設けたことを特徴とするシリコン単結晶引上成
長炉。
A silicon single crystal pulling growth furnace for pulling and growing a silicon single crystal from molten silicon in a crucible includes a cooling section for rapidly cooling a portion of the silicon single crystal to be pulled and grown below 1000°C; A silicon single crystal pulling growth furnace characterized by being provided with a heat reflecting plate for relaxing the temperature distribution near the solid-liquid interface with the silicon single crystal.
JP15575487A 1987-06-22 1987-06-22 Furnace for pulling and growing silicon single crystal Pending JPS63319293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15575487A JPS63319293A (en) 1987-06-22 1987-06-22 Furnace for pulling and growing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15575487A JPS63319293A (en) 1987-06-22 1987-06-22 Furnace for pulling and growing silicon single crystal

Publications (1)

Publication Number Publication Date
JPS63319293A true JPS63319293A (en) 1988-12-27

Family

ID=15612685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15575487A Pending JPS63319293A (en) 1987-06-22 1987-06-22 Furnace for pulling and growing silicon single crystal

Country Status (1)

Country Link
JP (1) JPS63319293A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103092A1 (en) * 2001-06-14 2002-12-27 Shin-Etsu Handotai Co., Ltd. Production device for semiconductor single crystal and production method for semiconductor single crystal using it
WO2009081523A1 (en) * 2007-12-25 2009-07-02 Shin-Etsu Handotai Co., Ltd. Single-crystal manufacturing apparatus and manufacturing method
US10145024B2 (en) 2013-09-11 2018-12-04 Sk Siltron Co., Ltd. Cooling rate control apparatus and ingot growing apparatus including same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002103092A1 (en) * 2001-06-14 2002-12-27 Shin-Etsu Handotai Co., Ltd. Production device for semiconductor single crystal and production method for semiconductor single crystal using it
WO2009081523A1 (en) * 2007-12-25 2009-07-02 Shin-Etsu Handotai Co., Ltd. Single-crystal manufacturing apparatus and manufacturing method
JP2009155131A (en) * 2007-12-25 2009-07-16 Shin Etsu Handotai Co Ltd Single-crystal manufacturing apparatus and manufacturing method
US8337616B2 (en) 2007-12-25 2012-12-25 Shin-Etsu Handotai Co., Ltd. Apparatus and method for producing single crystal
US10145024B2 (en) 2013-09-11 2018-12-04 Sk Siltron Co., Ltd. Cooling rate control apparatus and ingot growing apparatus including same
DE112014000786B4 (en) * 2013-09-11 2021-02-18 Sk Siltron Inc. Ingot growing device

Similar Documents

Publication Publication Date Title
US8753445B2 (en) Apparatus for growing high quality silicon single crystal ingot and growing method using the same
US4010064A (en) Controlling the oxygen content of Czochralski process of silicon crystals by sandblasting silica vessel
KR20010101045A (en) Production method for silicon single crystal and production device for single crystal ingot, and heat treating method for silicon single crystal wafer
CN102148155A (en) Silicon wafer and production method therefor
JP2008508187A (en) Method for growing a single crystal from a melt
EP1199387B1 (en) Method for growing single crystal of semiconductor
US3870472A (en) Method and apparatus for growing crystals by annealing the crystal after formation
JP3533812B2 (en) Crystal manufacturing apparatus by Czochralski method, crystal manufacturing method, and crystal manufactured by this method
US20060191468A1 (en) Process for producing single crystal
US5840120A (en) Apparatus for controlling nucleation of oxygen precipitates in silicon crystals
JPS63319293A (en) Furnace for pulling and growing silicon single crystal
JP6825728B1 (en) Single crystal manufacturing equipment
JPH05294782A (en) Silicon single crystal producing device
JPH06211591A (en) Method for producing single crystalline body and apparatus therefor
JP2001261482A (en) Method for growing single crystal
JP7115592B1 (en) Single crystal manufacturing equipment
JPH0367994B2 (en)
CN110129884A (en) Crystal pulling furnace, the preparation method of monocrystal silicon, monocrystal silicon and silicon wafer
JPH09278581A (en) Apparatus for producing single crystal and production of single crystal
JP2020138887A (en) Single crystal growth device and single crystal growth method
JP3498330B2 (en) Single crystal growth equipment
JPS6344720B2 (en)
JPS58120591A (en) Production of single crystal
JPS58130194A (en) Manufacture of silicon single crystal
JPH03218994A (en) Single crystal pulling up device