JPH08301696A - Production of compound semiconductor crystal and device therefor - Google Patents

Production of compound semiconductor crystal and device therefor

Info

Publication number
JPH08301696A
JPH08301696A JP10768795A JP10768795A JPH08301696A JP H08301696 A JPH08301696 A JP H08301696A JP 10768795 A JP10768795 A JP 10768795A JP 10768795 A JP10768795 A JP 10768795A JP H08301696 A JPH08301696 A JP H08301696A
Authority
JP
Japan
Prior art keywords
crucible
vapor pressure
sealed tube
group
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10768795A
Other languages
Japanese (ja)
Inventor
Junichi Nishizawa
潤一 西澤
Takashi Ehata
貴司 江幡
Yutaka Sawafuji
裕 澤藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Tokushuko KK
Tohoku Steel Co Ltd
Semiconductor Research Foundation
Original Assignee
Tohoku Tokushuko KK
Tohoku Steel Co Ltd
Semiconductor Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Tokushuko KK, Tohoku Steel Co Ltd, Semiconductor Research Foundation filed Critical Tohoku Tokushuko KK
Priority to JP10768795A priority Critical patent/JPH08301696A/en
Publication of JPH08301696A publication Critical patent/JPH08301696A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE: To inexpensively obtain a high-purity and high-quality III-V group compound polycrystal by cooling a crucible after the amount of a group V raw material in a vapor pressure control part is decreased in a specific state by an amount to form a compound with a group III raw material in a crucible. CONSTITUTION: A vapor pressure in a sealed tube is gradually raised while heating a melt in a crucible so as not to raise the temperature at the wall of the sealed quartz tube too high more than a temperature for maintaining the vapor pressure of the group V raw material in the sealed tube at a fixed pressure. Then, synthetic reaction is promoted by making the vapor pressure in the sealed tube into a proper pressure higher than the equilibrium vapor pressure of a group V element in a compound. After the melt of the compound is formed, it is solidified from the lower end of the crucible at a proper rate to give the objective semiconductor polycrystal. Since the temperature at the wall of the sealed quartz tube can be reduced to a mush lower temperature than the softening point of crucible in the production method, Si contamination is extremely lessened and the sealed tube will not cause plastic deformation even if difference in pressure between the inside and outside of the sealed tube is generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、化合物半導体結晶の
製造方法とそのための装置に関するものである。さらに
詳しくは、この発明は、化合物半導体デバイス等の基板
に使用する化合物半導体単結晶体の製造に有用な、高純
度で良質の多結晶体を安価に製造することのできる方法
とそのための装置及びその多結晶を用いて単結晶を製造
する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a compound semiconductor crystal and an apparatus therefor. More specifically, the present invention relates to a method for producing a high-purity and high-quality polycrystal, which is useful for the production of a compound semiconductor single crystal used for a substrate of a compound semiconductor device or the like, and an apparatus therefor. The present invention relates to a method for producing a single crystal using the polycrystal.

【0002】[0002]

【従来の技術】III−V族化合物半導体は、LED,L
D,その他の電子デバイス等に使用されており、近年そ
の進歩には著しいものがある。これらのデバイスに使用
されている基板結晶は、GaAs,GaP,InP等の
III−V族化合物単結晶体であるが、通常、これらの単
結晶体の製造にあたっては、まず化合物組成の融液を生
成した後に単結晶として固化−成長させる。化合物組成
の融液を生成させる方法としては、単結晶成長を行なう
装置と同じ装置に於いて単結晶成長の前段階で化合物構
成元素の原料から化合物融液を生成した後そのまま単結
晶成長に移行する直接合成法と、予め別の装置或いは工
程で合成した多結晶体原料を融解して化合物融液を生成
して単結晶成長を行なう間接法とがある。後者の単結晶
成長法の原料として用いるバルクの多結晶体の従来の製
造法の主なものを整理すると: <1>坩堝等の容器中に一緒に装入した III,V族原料
を合成する方法 III,V族原料を一緒に坩堝等の容器に装入し加熱融解
して合成する方法で、V族原料の蒸発による損失を制御
する為に、原料を押しつける密閉蓋やB2 3等のシー
ル液で封止しその上から不活性ガスで加圧する方法や、
原料を不活性ガスで直接加圧する方法、高周波加熱によ
り原料を局部的に順次急速加熱−冷却を繰り返す方法等
がある。
2. Description of the Related Art III-V compound semiconductors are LEDs, L
It is used in D, other electronic devices, etc., and its progress has been remarkable in recent years. Substrate crystals used in these devices are GaAs, GaP, InP, etc.
Although it is a III-V group compound single crystal, normally, in the production of these single crystals, a melt having a compound composition is first generated and then solidified and grown as a single crystal. As a method of producing a melt having a compound composition, in the same apparatus as the apparatus for performing single crystal growth, the compound melt is produced from the raw materials of the compound constituent elements in the previous stage of the single crystal growth, and then the single crystal growth is directly performed. There is a direct synthesis method, and an indirect method in which a polycrystalline raw material previously synthesized by another device or process is melted to generate a compound melt and single crystal growth is performed. The main production methods of conventional bulk polycrystals used as raw materials for the latter single crystal growth method are summarized as follows: <1> Synthesis of Group III and V raw materials charged together in a container such as a crucible Method III and V are raw materials that are put together in a container such as a crucible and heated and melted to synthesize them. In order to control the loss due to evaporation of the raw materials of Group V, a closed lid for pressing the raw materials and B 2 O 3 etc. A method of sealing with the sealing liquid of and pressurizing with an inert gas from above,
There are a method of directly pressurizing the raw material with an inert gas, a method of locally repeating rapid heating-cooling of the raw material locally by high-frequency heating, and the like.

【0003】<2>シール液下の III族原料融液中にV
族原料気体を吹き込む方法 坩堝中の III族融液をB2 3 等のシール液で封止して
その上から不活性ガスで加圧し、V族原料を収容した容
器から吹き込み管を通してシール液下の III族融液中に
気体として送り込んで合成するもので、吹き込み管の形
状や機能が工夫されたものが種々あり、また化合物融液
合成後の固化方法にも、坩堝中で冷却するものやそのま
ま単結晶育成に移行させるものもある。
<2> V in the Group III raw material melt under the sealing liquid
Method for blowing Group III raw material gas The Group III melt in the crucible is sealed with a sealing liquid such as B 2 O 3 and pressurized with an inert gas, and the sealing liquid is passed from a container containing the Group V raw material through a blowing pipe. There are various compounds that are fed as a gas into the Group III melt below and have been devised, and the shape and function of the blowing tube have been devised, and the solidification method after compound melt synthesis is that of cooling in a crucible. There is also a method of directly shifting to single crystal growth.

【0004】<3>密封容器中のV族蒸気と坩堝やボー
ト中の III族原料と反応させる方法 III族原料を坩堝やボート等の容器に装入して密封され
た容器中に収容し、合わせてV族原料も坩堝等の容器中
或いはこの密封容器中の適当な場所に収容して、密封容
器全体を昇温して、V族蒸気と III族融液と反応させて
化合物融液をつくり、冷却して化合物多結晶体とする方
法である。
<3> Method of reacting group V vapor in a sealed container with a group III raw material in a crucible or a boat A group III raw material is charged into a container such as a crucible or a boat and accommodated in a sealed container, In addition, the group V raw material is also contained in a container such as a crucible or in an appropriate place in this sealed container, and the temperature of the entire sealed container is raised to react with the group V vapor and the group III melt to form a compound melt. This is a method in which a compound polycrystal is prepared by cooling.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
坩堝中の III,V族原料をシール液等で封止して合成す
る方法<1>では、封止が不完全なために化合物組成の
安定化が難しく、また高圧雰囲気中で行なうために熱環
境の安定化も面倒なものとなる。これと比較してシール
液下の坩堝中融液にV族気体を吹き込む方法<2>で
は、加圧容器の耐圧能力はより小さいもので済み、組成
制御もし易く、合成後に同一装置で単結晶育成に移行出
来るという長所はあるものの、化合物多結晶合成の観点
からは装置が複雑過ぎるうえに封止材からの汚染も問題
となる。
However, in the conventional method <1> of synthesizing the III and V raw materials in the crucible by sealing with a sealing liquid or the like, the compound composition is stable because the sealing is incomplete. It is difficult to achieve this, and it is difficult to stabilize the thermal environment because it is performed in a high pressure atmosphere. Compared with this, in the method <2> in which the group V gas is blown into the melt in the crucible under the sealing liquid, the pressure vessel of the pressurizing vessel has a smaller pressure resistance, the composition can be easily controlled, and the single crystal can be produced by the same apparatus after the synthesis. Although it has the advantage that it can be transferred to growing, the device is too complicated from the viewpoint of compound polycrystal synthesis, and contamination from the encapsulant is also a problem.

【0006】また、密封容器内でV族蒸気を坩堝やボー
ト等の容器中の III族原料と反応させる方法<3>で
は、原理的には厳密な組成制御が可能で、封止材による
汚染がなく、基本的には装置や工程が比較的簡単である
にもかかわらず複雑化するきらいがあり、この方法の本
来の利点がそこなわれがちである。以下、それらの主な
問題点についてさらに説明する。
In the method <3> of reacting group V vapor with a group III raw material in a container such as a crucible or a boat in a sealed container, strict composition control is possible in principle, and contamination by the sealing material is possible. However, there is a tendency that it is complicated even though the apparatus and process are basically relatively simple, and the original advantage of this method tends to be impaired. Hereinafter, those main problems will be further described.

【0007】まず、V族蒸気を閉じ込める密封容器の材
質としては従来から石英がよく用いられているが、Ga
Asなどのように融点が石英の軟化点をこえるような化
合物を合成する際は、例えば密封容器全体を電気炉内に
入れてしまう場合のように、密封容器自体も必要以上の
高温になってしまい、合成蒸気圧がそれほど高くなくと
も密封容器内外の圧力差によって密封容器が変形したり
破壊するおそれがある。このことから、炉全体を加圧容
器内に収容し、密封容器の変形を測定し乍ら圧力差をな
くすような制御を行なうという例がある。また、石英か
らのSi汚染をきらって密封容器の材質を種々のセラミ
ックスやグラファイト等にする例もある。しかし、これ
らの材質も機械的強度が小さく、内外圧力差をなくす上
記のような仕組みが採用されてはいるものの、特にセラ
ミックス系の材料は価格が高くなるという難点があり、
圧力制御系も差圧検出のために密封容器壁の一部を金属
箔にするなど、装置を複雑なものとしている。更には、
密封容器或いはその一部を可視光や赤外光に対して透明
なセラミックスとして合成反応を観察するという例もあ
るがこうしたこともコスト増の要因になる。
First of all, quartz has been often used as a material for a hermetically sealed container for containing Group V vapor.
When synthesizing a compound such as As whose melting point exceeds the softening point of quartz, the temperature of the sealed container itself becomes unnecessarily high, for example, when the entire sealed container is put in an electric furnace. Even if the synthetic vapor pressure is not so high, the sealed container may be deformed or broken due to the pressure difference between the inside and outside of the sealed container. From this, there is an example in which the entire furnace is housed in a pressure vessel, and the deformation of the sealed vessel is measured to perform control so as to eliminate the pressure difference. There are also examples in which Si contamination from quartz is rejected and the material of the sealed container is changed to various ceramics or graphite. However, these materials also have low mechanical strength, and although the above-mentioned mechanism for eliminating the pressure difference between the inside and the outside is adopted, there is a drawback that the price of the ceramic-based material becomes high,
The pressure control system also complicates the device, for example, a part of the wall of the sealed container is made of metal foil to detect the differential pressure. Furthermore,
There is an example of observing a synthetic reaction by using a sealed container or a part thereof as a ceramic transparent to visible light or infrared light, but this also causes a cost increase.

【0008】上記のような圧力制御系を用いて融液にか
かる密封容器内のV族蒸気圧を一定に制御したり、単に
密封容器内の蒸気圧制御部のV族蒸気圧を一定にするだ
けでは融液の温度によって組成が変動し、またその結果
としてV族蒸気圧も変動してしまうことから、これを防
止して、化合物組成の安定性を得るという目的で、測定
したV族蒸気圧に応じてV族元素溜めの温度だけでなく
成長化合物の温度も制御変数の1つに加える方法もあ
る。これらは単結晶育成時の方法としては有用とも言え
るが、化合物多結晶の製造を目的とする場合、装置も工
程も複雑過ぎるという欠点がある。即ち、化合物単結晶
の化学量論的組成は、単結晶育成時に平衡蒸気圧ではな
く厳密に化学量論的組成の化合物と平衡する最適蒸気圧
を印加するという意味での蒸気圧制御により最終的に調
整しなければならないのであり、その際の原料多結晶と
しては厳密に化学量論的組成のものは過剰仕様であっ
て、 III族リッチ相のような第2相のない化学量論的組
成に極めて近い組成のもので十分である。 III−V族化
合物は III族とV族の原子分率が正確に1対1の化合物
のみでなく僅かな組成幅をもって存在することが知られ
ているが、化学量論的組成に極めて近い組成という意味
はこの組成幅の範囲内のものという意味である。
By using the pressure control system as described above, the group V vapor pressure applied to the melt in the sealed container is controlled to be constant, or the group V vapor pressure of the vapor pressure control section in the sealed container is simply kept constant. Since the composition changes with the temperature of the melt and the V group vapor pressure also fluctuates as a result, the measured V group vapor is used for the purpose of preventing this and obtaining stability of the compound composition. There is also a method in which not only the temperature of the V group element reservoir but also the temperature of the growth compound is added to one of the control variables according to the pressure. Although these can be said to be useful as a method for growing a single crystal, there is a drawback that the apparatus and the process are too complicated for the purpose of producing a compound polycrystal. That is, the stoichiometric composition of the compound single crystal is determined by the vapor pressure control in the sense that the optimum vapor pressure that equilibrates with the compound having the exact stoichiometric composition is applied, not the equilibrium vapor pressure during single crystal growth. In this case, the raw material polycrystal in the case of a strictly stoichiometric composition has an excessive specification, and a stoichiometric composition without a second phase such as a group III rich phase. A composition extremely close to is sufficient. It is known that group III-V compounds exist not only in exactly one-to-one group III and group V atomic fractions but also in a small composition range, but the composition is very close to the stoichiometric composition. Means within this composition range.

【0009】最後に III族融液にV族蒸気圧を印加する
のに際し、合成反応が急激に進行しV族蒸気の供給がこ
れに追随出来ないことから、V族蒸気圧が急速に低下し
て密封容器が変形破壊するのを防止するために、予め適
当量の III−V族化合物多結晶を III族融液中に加えて
おくという方法がある。しかしながら、コスト低減のみ
ならず不純物混入防止の観点からもこうした多段階的な
工程は避けたい。
Finally, when the Group V vapor pressure is applied to the Group III melt, the synthesis reaction rapidly progresses and the supply of the Group V vapor cannot follow it, so that the Group V vapor pressure drops rapidly. In order to prevent the sealed container from being deformed and destroyed, there is a method of adding an appropriate amount of the group III-V compound polycrystal to the group III melt in advance. However, from the viewpoint of not only cost reduction but also prevention of contamination of impurities, it is desirable to avoid such multi-step processes.

【0010】[0010]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、Al,Ga,In等の蒸気圧の
小さい III族元素の原料を、坩堝或いはサセプターを装
着した坩堝中に装入して石英製の封管内に収容し、一
方、P,As,Sb等の蒸気圧の大きいV族元素の原料
を、この坩堝から適当な距離だけ離れた封管内の蒸気圧
制御部に III族原料と化合物を生成するのに必要な量と
封管内容積を所定の圧力のV族蒸気で満たすために必要
な量を合わせた量を収容し、蒸気圧制御部の端部は常に
封管中の最低温度としつつ所定の昇温速度でこの坩堝中
原料を化合物の融点以上の所定の温度まで昇温し、並行
して、蒸気圧制御部も、少なくとも坩堝中 III族原料の
蒸発損失が抑制される所定の昇温温度で封管内のV族元
素蒸気圧が化合物融液の平衡蒸気圧以上になる所定の温
度まで昇温し、蒸気圧制御部のV族原料が坩堝中 III族
原料と化合物を生成する量だけ減少したことを確認した
後、適当なV族蒸気圧下で坩堝を下端から徐々に冷却す
ることによって、坩堝中の化合物融液を下端から上方に
向かって固化させていくことを特徴とする III−V族化
合物半導体多結晶の製造方法を提供する。
In order to solve the above-mentioned problems, the present invention provides a raw material of a group III element having a small vapor pressure such as Al, Ga and In in a crucible or a crucible equipped with a susceptor. The raw material of the group V element having a large vapor pressure such as P, As, and Sb is put in a quartz sealed tube, and the vapor pressure control section in the sealed tube is separated from the crucible by an appropriate distance. It accommodates a combined amount of the amount necessary to generate the group raw material and the compound and the amount necessary to fill the internal volume of the sealed tube with the group V vapor of a predetermined pressure, and the end of the vapor pressure control unit is always a sealed tube. The temperature inside the crucible is raised to a predetermined temperature above the melting point of the compound at a predetermined rate of temperature increase while keeping the lowest temperature inside, and in parallel, the vapor pressure control unit also reduces the evaporation loss of at least the Group III raw material in the crucible. The vapor pressure of the group V element in the sealed tube is controlled by After raising the temperature to a predetermined temperature above the equilibrium vapor pressure and confirming that the amount of the group V raw material in the vapor pressure control unit has decreased to the amount that forms a compound with the group III raw material in the crucible, Provided is a method for producing a III-V group compound semiconductor polycrystal, characterized in that a compound melt in a crucible is solidified upward from the lower end by gradually cooling the crucible from the lower end.

【0011】またこの発明は混晶半導体単結晶の製造方
法であって、上記の方法により製造された混晶多結晶体
の表面層を一定量除去した後、浮遊帯域溶融法により単
結晶化することを特徴とする混晶半導体単結晶の製造方
法を提供する。さらにまたこの発明は、高周波加熱部と
輻射加熱部とからなる加熱炉、原料や坩堝或いはまたサ
セプターが収容された石英封管、及びこの石英封管の上
下移動機構とから構成され、高周波加熱部は、高周波コ
イルと加熱温度によっては必要に応じて高周波コイルの
内側に配設される石英材質等の保温管とからなり、輻射
加熱部は、高周波コイルの幅方向の少なくとも一方に隣
接する電気炉等の幅射加熱ヒーターからなり、石英封管
は、坩堝収容部及びこの坩堝収容部と、適当な距離だけ
離した蒸気圧制御部とからなり、この石英封管中には坩
堝或いは坩堝周囲にサセプターが装着されたものが坩堝
収容部の石英封管壁との間に適当な間隙をもたせて収容
され、上下移動機構は、この石英封管と連結された構造
を有し、蒸気圧制御部を最低温部としつつ輻射加熱ヒー
ター及び高周波加熱によって発熱する原料や坩堝或いは
またサセプターからの輻射熱とによって石英封管全体を
昇温する際に、坩堝中原料が化合物の融点以上になって
も坩堝収容部の石英封管壁が封管中の蒸気圧を所定の圧
力に維持するのに必要な温度もしくはその近傍よりも高
くならないようにし、坩堝下端から徐々に冷却するため
に上下移動機構によって石英封管を降下させる際に、蒸
気圧制御部の温度を所定の温度に追随させることを特徴
とする化合物半導体結晶の製造装置をも提供する。
The present invention is also a method for producing a mixed crystal semiconductor single crystal, wherein a certain amount of the surface layer of the mixed crystal polycrystal produced by the above method is removed, and then a single crystal is formed by a floating zone melting method. A method for producing a mixed crystal semiconductor single crystal is provided. Furthermore, the present invention comprises a heating furnace including a high-frequency heating unit and a radiant heating unit, a quartz sealed tube containing a raw material, a crucible, or a susceptor, and a vertical movement mechanism for the quartz sealed tube. Consists of a high-frequency coil and a heat-retaining tube made of quartz or the like, which is arranged inside the high-frequency coil if necessary depending on the heating temperature, and the radiant heating section is adjacent to at least one of the width direction of the high-frequency coil in the electric furnace. The quartz sealed tube consists of a crucible housing part and this crucible housing part, and a vapor pressure control part separated by an appropriate distance.The quartz sealed tube is surrounded by a crucible or a crucible. The susceptor mounted is housed with a proper gap between it and the quartz tube wall of the crucible housing part, and the vertical movement mechanism has a structure connected to this quartz tube, and the vapor pressure control part The lowest temperature While raising the temperature of the entire quartz sealed tube with the radiant heat from the radiant heating heater and the radiant heat from the crucible or the susceptor that generates heat by the high frequency heating, even if the raw material in the crucible exceeds the melting point of the compound, the quartz in the crucible storage part Make sure that the wall of the sealed tube does not become higher than or near the temperature required to maintain the vapor pressure in the sealed tube at the specified pressure, and lower the quartz sealed tube by the vertical movement mechanism to cool gradually from the lower end of the crucible. Also provided is a compound semiconductor crystal manufacturing apparatus characterized by causing the temperature of the vapor pressure control unit to follow a predetermined temperature.

【0012】[0012]

【作用】この発明の特徴は、石英封管壁の温度が封管
内V族蒸気圧を所定の圧力に維持するために必要な温度
よりもあまり高くならないようにしながら、坩堝中融
液の昇温と並行して封管内蒸気圧も徐々に上げていき、
封管内蒸気圧を化合物中のV族元素の平衡蒸気圧より
高い適当な圧力とすることによって合成反応を促進し、
化合物融液生成後は適当な蒸気圧下で、適当な速度で
坩堝下端から固化させることによって、高純度で良質の
III−V族化合物多結晶体を安価に製造できることにあ
る。
A feature of the present invention is that the temperature of the quartz sealed tube wall does not become much higher than the temperature required to maintain the group V vapor pressure in the sealed tube at a predetermined pressure, while the temperature of the melt in the crucible is raised. In parallel with this, gradually increase the vapor pressure in the sealed tube,
Promote the synthetic reaction by setting the vapor pressure in the sealed tube to an appropriate pressure higher than the equilibrium vapor pressure of the group V element in the compound,
After formation of the compound melt, solidification from the bottom of the crucible at an appropriate speed under an appropriate vapor pressure will result in high purity and high quality.
The III-V group compound polycrystal can be manufactured at low cost.

【0013】石英封管壁の温度を石英の軟化点よりもか
なり低く抑えることができることから、Si汚染は非常
に少なくなり、封管内外の圧力差が生じても封管壁が塑
性変形することはない。また、As,Sb系の III−V
族化合物の場合は合成蒸気圧はせいぜい数気圧でよいか
ら、封管を大気圧下に置いても機械的破壊の可能性は殆
どないので炉全体を高価な圧力容器に入れる必要はな
く、万が一封管が破壊した場合に備えての排気装置付き
の簡単なエンクロージャーで覆う程度でよい。但し、P
系の場合は石英の機械的強度を超える圧力差が生じる恐
れがあるので、これと均衡し得る程度の耐圧容器に入れ
る必要があるが、数10〜100気圧にも及ぶ耐圧能力
をもつほどの高価な高圧容器は必要としない。
Since the temperature of the quartz envelope wall can be kept considerably lower than the softening point of quartz, Si contamination is very small, and the envelope wall is plastically deformed even if a pressure difference between the inside and outside of the envelope occurs. There is no. In addition, As, Sb system III-V
In the case of group compounds, the synthetic vapor pressure may be at most a few atmospheres, so even if the sealed tube is placed under atmospheric pressure, there is almost no possibility of mechanical destruction, so there is no need to put the entire furnace in an expensive pressure vessel, and by any chance. It only needs to be covered with a simple enclosure with an exhaust device in case the sealed tube breaks. However, P
In the case of a system, there is a risk of a pressure difference exceeding the mechanical strength of quartz, so it is necessary to put it in a pressure resistant container that can be balanced with this, but with a pressure resistance capacity of several tens to 100 atmospheres. No expensive high pressure vessels are required.

【0014】融液の昇温と並行してV族蒸気圧を上げて
いくことの利点は、1つには融液中の III族元素の活量
を低下させることにより、始めに真空排気して封じた石
英封管内で III族原料が坩堝外に逃散することを防止で
きることにある。もう1つは、融液温度が化合物の融点
に到達する前に融液中に少しずつ化合物の多結晶粒子が
形成されることにより、急速な合成反応による蒸気圧の
急激な変動を生じることがないので封管内外の圧力差の
劇的な変動による封管の破壊を防止できることである。
蒸気圧を上げる速度の設定は、実際には蒸気圧制御部の
昇温速度の設定になるが、昇温中の各融液温度でのV族
元素の飽和溶解度と平衡する程度の蒸気圧になるような
昇温が目安であるが、これはあまり厳密なものでなくと
もよい。
One of the advantages of raising the group V vapor pressure in parallel with the temperature rise of the melt is that the activity of the group III element in the melt is lowered, so that vacuum pumping is performed first. This is to prevent the group III raw material from escaping outside the crucible inside the quartz sealed tube. The other is that polycrystalline particles of the compound are gradually formed in the melt before the melt temperature reaches the melting point of the compound, which may cause a rapid change in vapor pressure due to a rapid synthesis reaction. Since it does not exist, it is possible to prevent the destruction of the sealed tube due to the drastic fluctuation of the pressure difference inside and outside the sealed tube.
The rate of increasing the vapor pressure is actually set to the rate of temperature rise of the vapor pressure control unit, but the vapor pressure is set to an equilibrium with the saturated solubility of the group V element at each melt temperature during temperature rise. The temperature rise is as a guide, but this need not be so strict.

【0015】封管内V族蒸気圧を化合物に於ける平衡蒸
気圧より高めにすると合成反応の進行が速くなるので工
程が効率化され、またそのために熔融時間が短くなるの
で坩堝その他の装置材質からの汚染も少なくなる。更
に、この発明の方法では合成反応の促進及び坩堝中の随
所で分散的に化合物固体が固定化して多孔質の多結晶体
になることを防止するために、最終的に融液温度を化合
物の融点より数10℃以上高くするので、その分の融液
に於ける平衡蒸気圧の上昇分も加味した高めの印加蒸気
圧を設定する。
If the group V vapor pressure in the sealed tube is made higher than the equilibrium vapor pressure in the compound, the synthetic reaction will proceed faster and the process will be more efficient. Therefore, the melting time will be shortened and the crucible and other equipment materials will be used. Less pollution. Further, in the method of the present invention, in order to accelerate the synthetic reaction and prevent the compound solid from being dispersed and fixed in various places in the crucible to form a porous polycrystal, the melt temperature is finally adjusted to Since the temperature is higher than the melting point by several tens of degrees Celsius or more, a higher applied vapor pressure is set in consideration of the increase in the equilibrium vapor pressure in the melt.

【0016】炉の一部に設けた観察窓から石英封管の蒸
気圧制御部に残っているV族原料の量からほぼ化合物融
液が生成したことが確認できるので、次に例えば石英封
管全体を少しずつ降下させて坩堝を高周波コイル外に抜
いていくことによって坩堝下端から化合物融液を冷却固
化させて化合物多結晶体を得る。この際、封管内V族蒸
気圧を合成時と同じ圧力に固定してもよいが、高圧にな
る程融液中の過剰As量が多くなるのであまり速く冷却
するとAsガスによる融液の吹き出しの恐れがあるので
注意を要する。冷却時のV族蒸気圧はある程度任意に選
択できるが、固化速度にもより、また多結晶体組成とし
て III族リッチ側かV族リッチ側を望むかにもよる。い
ずれにしてもこの方法によれば、冷却速度が適切であれ
ば坩堝上部の融液では常にV族蒸気雰囲気との反応によ
って融液組成が調整されつつ、坩堝下端から化学量論的
組成に極めて近い組成の III−V族化合物多結晶体を成
長させることができる。
From the observation window provided in a part of the furnace, it can be confirmed that almost the compound melt is generated from the amount of the group V raw material remaining in the vapor pressure control section of the quartz sealed tube. The compound melt is cooled and solidified from the lower end of the crucible by gradually lowering the whole and pulling the crucible out of the high frequency coil to obtain a compound polycrystal. At this time, the group V vapor pressure in the sealed tube may be fixed to the same pressure as during synthesis, but the higher the pressure, the larger the amount of excess As in the melt. There is a possibility of danger, so be careful. The vapor pressure of the V group at the time of cooling can be selected to some extent, but it depends on the solidification rate and whether the composition of the polycrystalline body should be the III group rich side or the V group rich side. In any case, according to this method, if the cooling rate is appropriate, the melt composition of the melt in the upper part of the crucible is always adjusted by the reaction with the group V vapor atmosphere, and the stoichiometric composition from the lower end of the crucible becomes extremely high. It is possible to grow a III-V compound polycrystal having a similar composition.

【0017】従って合成工程全体の時間を更に短縮した
い場合には、特に III族,V族いずれの原料も1元素で
ある2元化合物の場合のように目的の多結晶体内部での
組成偏析を問題としないときには、融液合成段階での蒸
気圧制御部の残留V族原料の量がある程度多めの時点で
冷却に移行しても坩堝下端から多結晶体が成長しつつ融
液にV族元素が供給されて最終的には全体が化学量論的
組成に極めて近い化合物多結晶体を得ることができる。
但し最後に固化する部分は III族リッチの第2相が残り
易いが封管の降下速度或いは又坩堝加熱温度の降下を最
後の方で少々遅くれてやれば、原料に対して殆ど100
%に近い収率で III−V族化合物多結晶体を得ることが
できる。
Therefore, when it is desired to further shorten the time of the entire synthesis process, composition segregation within the intended polycrystal is performed, particularly in the case of a binary compound in which the raw materials of both group III and group V are one element. When there is no problem, even if the amount of residual Group V raw material in the vapor pressure control unit in the melt synthesis stage is increased to some extent, cooling is started and a polycrystalline body grows from the lower end of the crucible while the Group V element remains in the melt. Finally, a compound polycrystal having a very close stoichiometric composition can be finally obtained.
However, the third solidified second phase is likely to remain in the final solidifying portion, but if the falling rate of the sealed tube or the temperature of the crucible heating is slowed a little at the end, almost 100
A group III-V compound polycrystal can be obtained with a yield close to%.

【0018】以上説明した方法は、III −V族の2元化
合物ばかりではなく多元系混晶或いはII−VI族化合物
多結晶体の合成に応用することが可能である。さらに、
この混晶 多結晶を用いれば、FZ法(浮遊帯域溶融
法)により混晶単結晶を容易に成長することができる。
この場合、多結晶体表面の一定厚さを研削又はエッチン
グ等により除去し、多結晶体半径方向の混晶比分布を均
一にすることによって一層単結晶化が容易になる。
The method described above can be applied not only to the binary compounds of the III-V group but also to the synthesis of multi-component mixed crystals or polycrystals of the II-VI group compounds. further,
By using this mixed crystal polycrystal, a mixed crystal single crystal can be easily grown by the FZ method (floating zone melting method).
In this case, single crystal crystallization is further facilitated by removing a certain thickness of the surface of the polycrystalline body by grinding or etching to make the mixed crystal ratio distribution in the radial direction of the polycrystalline body uniform.

【0019】以下実施例を示し、具体的にこの発明を説
明する。
The present invention will be specifically described with reference to the following examples.

【0020】[0020]

【実施例】実施例1 この発明の III−V族化合物半導体多結晶の製造方法と
そのための装置によりGaAs多結晶の合成を行なっ
た。図1は、GaAs製造装置の断面図である。図中番
号(1)は石英製の封管で、坩堝或いは坩堝加熱用サセ
プターを差し込む坩堝固定部(2)、その下にAs蒸気
通気孔(3)を有し、下端部のAs蒸気圧制御部(4)
に原料As(5)を装入し、原料Ga(6)を入れたP
BN製坩堝(7)をはめ込んだカーボンサセプター
(8)を坩堝固定部(2)に差し込んで真空排気し乍ら
ベーキング後に、その上端を封じたものである。
EXAMPLE 1 A GaAs polycrystal was synthesized by the method for producing a III-V compound semiconductor polycrystal of the present invention and an apparatus therefor. FIG. 1 is a sectional view of a GaAs manufacturing apparatus. Reference numeral (1) in the figure is a quartz sealed tube, which has a crucible fixing part (2) into which a crucible or a susceptor for heating a crucible is inserted, and an As vapor vent hole (3) under the crucible fixing part, and an As vapor pressure control at the lower end. Division (4)
P that was charged with the raw material As (5) and the raw material Ga (6)
The carbon susceptor (8) fitted with the BN crucible (7) was inserted into the crucible fixing part (2), vacuum exhaust was performed, and the upper end was sealed after baking.

【0021】この石英封管(1)を図の様に加熱炉に装
着する。加熱炉は電気炉(9)(10)(11)と高周
波コイル(12)から構成され、この高周波コイル(1
2)の内側には保温用石英管(13)を配設している。
カーボンサセプター(8)と石英封管(1)の間には適
当な間隙をもたせ、且つこの坩堝収容部の石英封管壁は
電気炉によっては直接加熱しないようにすることによっ
てサセプター(8)からの輻射によって温度が上がり過
ぎないようにしてある。また逆にあまり温度が下がり過
ぎないように保温用石英管(13)を配設してある。石
英封管(1)は上下動装置(14)に連結した支持棒
(15)下端のフックに吊し、最初は坩堝(7)が高周
波コイル(12)の中の適当な位置にくるようにする。
The quartz sealed tube (1) is mounted in a heating furnace as shown in the figure. The heating furnace comprises an electric furnace (9) (10) (11) and a high frequency coil (12).
A quartz tube (13) for heat retention is arranged inside the (2).
From the susceptor (8), an appropriate gap is provided between the carbon susceptor (8) and the quartz sealing tube (1), and the quartz sealing wall of the crucible housing is not directly heated by the electric furnace. The temperature does not rise too much due to the radiation. On the contrary, a quartz tube (13) for heat retention is provided so that the temperature does not drop too much. The quartz sealed tube (1) is hung on the hook at the lower end of the support rod (15) connected to the vertical movement device (14) so that the crucible (7) is initially at an appropriate position in the high frequency coil (12). To do.

【0022】また、加熱炉全体を簡便なエンクロージャ
ー(16)に収容し、排気装置(17)によって、万が
一石英封管(1)が破壊してもAsがこのエンクロージ
ャー(16)外に漏れ出さないようにしている。上記の
ような構造のGaAs合成装置に於いて、高周波コイル
(12)により適当な周波数の高周波でカーボンサセプ
ター(8)を誘導加熱することによって、坩堝(7)中
の原料Ga(6)の昇温を開始する。この時Ga(6)
だけをGaAsの融点の1240℃付近まで一気に加熱
してしまうと原料Ga(6)の殆どが蒸発して坩堝
(7)外に逃散し石英封管(1)内壁に付着してしまう
ので、As蒸気圧制御部(4)が最低温部になるように
してAs蒸気圧制御部(4)以外の石英封管(1)内壁
にAsが付着しないように電気炉(9)(10)(1
1)を昇温して封管内のAs蒸気圧を上げていく。
Further, the entire heating furnace is housed in a simple enclosure (16), and the exhaust device (17) prevents As from leaking out of the enclosure (16) even if the quartz sealed tube (1) is broken. I am trying. In the GaAs synthesizer having the above structure, the carbon susceptor (8) is induction-heated by the high-frequency coil (12) at a high frequency of an appropriate frequency to raise the raw material Ga (6) in the crucible (7). Start warming. At this time Ga (6)
If it is heated up to about 1240 ° C., which is the melting point of GaAs, most of the raw material Ga (6) evaporates and escapes to the outside of the crucible (7) and adheres to the inner wall of the quartz sealed tube (1). The electric furnaces (9) (10) (1) so that the vapor pressure control unit (4) becomes the lowest temperature part and As is not attached to the inner wall of the quartz sealed tube (1) other than the As vapor pressure control unit (4).
1) is heated to raise the As vapor pressure in the sealed tube.

【0023】次に、観察窓(21)を通してパイロスコ
ープにより測定する坩堝(7)付近のサセプター(8)
の適当な幅の均熱部の温度を1280℃まで、熱電対
(18)で指示される蒸気圧制御部(4)の温度を65
0℃まで、室温から約30分で昇温するとチャージした
原料Asの5割以上が坩堝(7)内融液中に吸収され、
化合物融液の生成に要する所定量のAsが吸収されるに
は、更に30分程度保持すれば十分で、観察窓(19)
(20)を通して蒸気圧制御部のAsの減少量を目視す
ることにより確認される。
Next, through the observation window (21), the susceptor (8) near the crucible (7) to be measured by the pyroscope.
The temperature of the soaking part with an appropriate width of up to 1280 ° C, and the temperature of the vapor pressure control part (4) indicated by the thermocouple (18) are set to 65 ° C.
When the temperature is raised from room temperature to 0 ° C in about 30 minutes, 50% or more of the charged raw material As is absorbed in the melt in the crucible (7),
In order to absorb the predetermined amount of As required for the formation of the compound melt, it is sufficient to hold it for about 30 minutes, and the observation window (19)
It is confirmed by visually observing the decrease amount of As in the vapor pressure control unit through (20).

【0024】次に上下動装置(14)を作動させて石英
封管(1)を移動降下させる。この際の移動速度は主に
坩堝(7)径によってある程度調整する必要がある。坩
堝(7)内径が20mmの場合の一例を挙げると、蒸気
圧制御部(4)の温度は650℃に固定するように電気
炉(11)温度を制御しながら、平均して1.5mm/
分の速度で約100分間移動することで、Gaリッチな
第2相のない長さ約150mmの緻密なGaAs多結晶
を得ることができた。昇温を始めてから装置全体の電源
を切るまで約3時間で、直径20mm、長さ150mm
のGaAs多結晶体を得ることができたわけである。
Next, the vertical movement device (14) is operated to move and lower the quartz sealed tube (1). The moving speed at this time needs to be adjusted to some extent mainly by the diameter of the crucible (7). Taking an example of the case where the inner diameter of the crucible (7) is 20 mm, the average temperature of the steam pressure control unit (4) is 1.5 mm / mm while controlling the temperature of the electric furnace (11) so as to be fixed at 650 ° C.
By moving at a speed of about 100 minutes for about 100 minutes, a dense GaAs polycrystal having a Ga-rich second phase and a length of about 150 mm could be obtained. It takes about 3 hours from the start of heating up to turning off the power of the whole equipment, diameter 20mm, length 150mm
That is, the GaAs polycrystal was obtained.

【0025】また、SIMSにより不純物密度を測定し
たところ、Siが1×1015cm-3以下、Sが4×10
14cm-3以下、Crが1×1014cm-3以下等々、高純
度のGaAs多結晶体であることがわかった。PBN坩
堝内径に僅かなテーパを付けておけば、第2相のない良
質の多結晶インゴットができると、坩堝(7)を逆さに
して軽く叩くだげで簡単にインゴットを取り出すことが
でき、しかも坩堝(7)は外見上殆ど損傷は見られな
い。殆どの坩堝が50回以上使用しても損傷なく綺麗な
状態を保っている。また石英封管(1)も、真空封入時
に溶接する上端部を除けば繰り返し使用できる。実施例2 実施例1と同じ装置を用い、坩堝(7)にGaとAlを
モル比で7:3の割合で装入し、蒸気圧制御部(4)に
Asを装入した。坩堝温度1400℃、蒸気圧制御部温
度670℃として、平均速度0.7mm/minで、坩
堝を下端から冷却して直径20mm長さ70mmのGa
1-X AlxAs多結晶を得ることができた。この種の多
結晶の軸方向の組成x分布は、両端に10〜15mm幅
の勾配部を有し、その間は一定組成xである。実施例3 カーボンサセプターを用いず坩堝中融液を直接高周波加
熱することによりGaAs多結晶を合成した。この場
合、実施例1と同じ坩堝(7)を使用し、高周波加熱コ
イル(12)とその内側に配設する石英保温管(13)
の直径をサセプター(8)がない分だけ小さくし、石英
封管(1)も小さい径のものを用い、坩堝固定部(2)
にはアルミナ系のセラミックスを用いた。
When the impurity density was measured by SIMS, Si was 1 × 10 15 cm -3 or less and S was 4 × 10 5.
It was found to be a high-purity GaAs polycrystal with 14 cm -3 or less and Cr of 1 × 10 14 cm -3 or less. If the inner diameter of the PBN crucible is slightly tapered, a good quality polycrystalline ingot without the second phase can be produced, and the crucible (7) can be inverted and tapped to remove the ingot easily. The crucible (7) has almost no visible damage. Most crucibles remain clean without damage even after being used 50 times or more. Also, the quartz sealed tube (1) can be repeatedly used except for the upper end portion which is welded during vacuum sealing. Example 2 Using the same apparatus as in Example 1, Ga and Al were charged in the crucible (7) at a molar ratio of 7: 3, and As was charged in the vapor pressure control section (4). With a crucible temperature of 1400 ° C. and a vapor pressure control unit temperature of 670 ° C., an average speed of 0.7 mm / min was used to cool the crucible from the lower end to obtain a Ga having a diameter of 20 mm and a length of 70 mm.
A 1-X AlxAs polycrystal could be obtained. The composition x distribution in the axial direction of this type of polycrystal has a gradient portion with a width of 10 to 15 mm at both ends, and the composition x is constant during that time. Example 3 A GaAs polycrystal was synthesized by directly heating a melt in a crucible at high frequency without using a carbon susceptor. In this case, the same crucible (7) as in Example 1 is used, and the high-frequency heating coil (12) and the quartz heat insulating tube (13) arranged inside thereof are used.
The diameter of the crucible fixing part (2) is made smaller by reducing the diameter of the susceptor (8) and the quartz sealing tube (1) is also smaller.
Alumina-based ceramics were used for the.

【0026】[0026]

【発明の効果】以上詳しく説明したように、この発明に
よれば、極めて簡単な構造で安価な装置と単純な工程に
より、化学量論的組成に極めて近い高純度で良質な III
−V族化合物多結晶体を高収率で製造することができ
る。このため、 III−V族化合物単結晶の製造コストの
低減と高品質化が図られる。特にこの発明の方法は、F
Z法や、VB法、VGF法等による単結晶育成用原料と
して供する化合物多結晶体の製造には最適な方法であ
る。
As described above in detail, according to the present invention, a high purity and high quality III crystal having a very close stoichiometric composition can be obtained by an extremely simple structure, an inexpensive apparatus and a simple process.
A group V compound polycrystal can be produced in high yield. Therefore, the production cost and the quality of the III-V compound single crystal can be reduced. In particular, the method of the present invention
It is an optimal method for producing a compound polycrystal to be used as a raw material for growing a single crystal by the Z method, the VB method, the VGF method, or the like.

【0027】また、この発明は、II−VI族化合物やその
他の蒸気圧の大きい成分を構成元素とする化合物の合成
にも応用し得るものである。尚、P系化合物のように成
分元素の蒸気圧が融点付近で10気圧を超えるような場
合は、実施例1に説明したようなエンクロージャーに替
えて、化合物の融点付近での平衡蒸気圧程度の耐圧性を
もつ加圧容器を用いればよい。
The present invention can also be applied to the synthesis of II-VI group compounds and other compounds having a component with a high vapor pressure as a constituent element. When the vapor pressure of the constituent elements exceeds 10 atm near the melting point, such as in P-based compounds, the enclosure as described in Example 1 is replaced with an equilibrium vapor pressure near the melting point of the compound. A pressure vessel having pressure resistance may be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の好適な実施例を模式的に示す断面図
である。
FIG. 1 is a sectional view schematically showing a preferred embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 石英封管 2 坩堝固定部 3 As蒸気通気孔 4 蒸気圧制御部 5 原料As 6 原料Ga 7 PBN坩堝 8 カーボンサセプター 9 電気炉 10 電気炉 11 電気炉 12 高周波加熱コイル 13 保温用石英管 14 上下動装置 15 支持棒 16 エンクロージャー 17 排気装置 18 熱電対 19 観察窓 20 観察窓 21 観察窓 1 Quartz Sealed Tube 2 Crucible Fixing Section 3 As Steam Vent 4 Steam Pressure Control Section 5 Raw Material As 6 Raw Material Ga 7 PBN Crucible 8 Carbon Susceptor 9 Electric Furnace 10 Electric Furnace 11 Electric Furnace 12 High Frequency Heating Coil 13 Heat Keeping Quartz Tube 14 Upper and Lower Moving device 15 Support rod 16 Enclosure 17 Exhaust device 18 Thermocouple 19 Observation window 20 Observation window 21 Observation window

───────────────────────────────────────────────────── フロントページの続き (72)発明者 澤藤 裕 宮城県仙台市太白区長町七丁目20番1号 東北特殊鋼株式会社研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yutaka Sawafuji 7-20-1, Nagamachi, Taichiro-ku, Sendai City, Miyagi Prefecture Tohoku Special Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 蒸気圧の小さい III族元素の原料を、坩
堝或いはサセプターを装着した坩堝中に装入して石英製
の封管内に収容し、一方、蒸気圧の大きいV族元素の原
料を、この坩堝から適当な距離だけ離れた封管内の蒸気
圧制御部に該III族原料と化合物を生成するのに必要な
量と封管内容積を所定の圧力のV族蒸気で満たすために
必要な量を合わせた量を収容し、蒸気圧制御部の端部は
常に封管中の最低温度としつつ所定の昇温速度で坩堝中
原料を化合物の融点以上の所定の温度まで昇温し、並行
して、蒸気圧制御部も、少なくとも坩堝中 III族原料の
蒸発損失が抑制される所定の昇温速度で封管内のV族元
素蒸気圧が化合物融液の平衡蒸気圧以上になる所定の温
度まで昇温し、蒸気圧制御部のV族原料が坩堝中III族
原料と化合物を生成する量だけ減少したことを確認した
後、適当なV族蒸気圧下で坩堝を下端から徐々に冷却す
ることによって、坩堝中の化合物融液を下端から上方に
向かって固化させていくことを特徴とする III−V族化
合物半導体多結晶の製造方法。
1. A raw material of a group III element having a low vapor pressure is charged into a crucible or a crucible equipped with a susceptor and accommodated in a quartz sealed tube, while a raw material of a group V element having a high vapor pressure is charged. , The vapor pressure control unit in the sealed tube, which is separated from the crucible by an appropriate distance, is required to fill the amount of the group III raw material and the compound required to generate the compound and the volume in the sealed tube with the group V vapor of a predetermined pressure. The combined amount is stored, and the end of the vapor pressure control unit always raises the temperature of the raw material in the crucible to a predetermined temperature above the melting point of the compound while keeping the lowest temperature in the sealed tube, and in parallel, Then, the vapor pressure control unit also controls the vapor pressure of the group V element in the sealed tube to be equal to or higher than the equilibrium vapor pressure of the compound melt at a predetermined temperature increasing rate at which evaporation loss of the group III raw material in the crucible is suppressed. The amount of the group V raw material in the vapor pressure control unit that forms a compound with the group III raw material in the crucible After confirming that the crucible has decreased, the compound melt in the crucible is solidified upward from the lower end by gradually cooling the crucible from the lower end under an appropriate Group V vapor pressure. III -Method for producing Group V compound semiconductor polycrystal.
【請求項2】 混晶半導体単結晶の製造方法であって、
請求項1の方法により製造された混晶多結晶体の表面層
を一定量除去した後浮遊帯域溶融法により単結晶化する
ことを特徴とする混晶半導体単結晶の製造方法。
2. A method for producing a mixed crystal semiconductor single crystal, comprising:
A method for producing a mixed crystal semiconductor single crystal, which comprises removing a certain amount of a surface layer of a mixed crystal polycrystal produced by the method of claim 1 and then performing single crystallization by a floating zone melting method.
【請求項3】 高周波加熱部と輻射加熱部とからなる加
熱炉、原料や坩堝或いはまたサセプターが収容された石
英封管、及びこの石英封管の上下移動機構とから構成さ
れ、高周波加熱部は、高周波コイルと加熱温度によって
は必要に応じて高周波コイルの内側に配設される保温管
とからなり、輻射加熱部は、高周波コイルの軸方向の少
なくとも一方に隣設する輻射加熱ヒーターからなり、石
英封管は、坩堝収容部及びこの坩堝収容部と適当な距離
だけ離した蒸気圧制御部とからなり、この石英封管中に
は坩堝或いは坩堝周囲にサセプターが装着されたものが
坩堝収容部の石英封管壁との間に適当な間隙をもたせて
収容され、上下移動機構はこの石英封管と連結された構
造を有し、蒸気圧制御部を最低温度としつつ輻射加熱ヒ
ーター及び高周波加熱によって発熱する原料や坩堝或い
はまたサセプターからの輻射熱とによって石英封管全体
を昇温する際に、坩堝中原料が化合物の融点以上になっ
ても坩堝収容部の石英封管壁が封管中の蒸気圧を所定の
圧力に維持するのに必要な温度もしくはその近傍よりも
高くならないようにし、坩堝下端から徐々に冷却するた
めに上下移動機構によって石英封管を降下させる際に、
蒸気圧制御部の温度を所定の温度に追随させることを特
徴とする化合物半導体結晶の製造装置。
3. A heating furnace comprising a high-frequency heating unit and a radiant heating unit, a quartz sealed tube containing a raw material, a crucible or a susceptor, and a mechanism for vertically moving the quartz sealed tube. , Consisting of a high-frequency coil and a heat insulating tube arranged inside the high-frequency coil as needed depending on the heating temperature, and the radiant heating section is composed of a radiant heater adjacent to at least one of the high-frequency coil in the axial direction, The quartz sealed tube is composed of a crucible housing part and a vapor pressure control part separated from the crucible housing part by an appropriate distance. The quartz sealed tube is a crucible or a crucible with a susceptor installed around the crucible housing part. It is housed with an appropriate gap between it and the wall of the quartz sealed tube, and the vertical movement mechanism has a structure connected to this quartz sealed tube. When the temperature of the entire quartz sealed tube is increased by the heat generated by the raw material, the crucible, or the radiant heat from the susceptor, even if the raw material in the crucible exceeds the melting point of the compound, the quartz sealed wall of the crucible housing part is sealed. When the quartz sealed tube is lowered by the vertical movement mechanism in order to gradually cool from the lower end of the crucible, the temperature should not be higher than or near the temperature necessary to maintain the vapor pressure of
An apparatus for producing a compound semiconductor crystal, characterized in that the temperature of a vapor pressure controller is made to follow a predetermined temperature.
JP10768795A 1995-05-01 1995-05-01 Production of compound semiconductor crystal and device therefor Pending JPH08301696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10768795A JPH08301696A (en) 1995-05-01 1995-05-01 Production of compound semiconductor crystal and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10768795A JPH08301696A (en) 1995-05-01 1995-05-01 Production of compound semiconductor crystal and device therefor

Publications (1)

Publication Number Publication Date
JPH08301696A true JPH08301696A (en) 1996-11-19

Family

ID=14465429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10768795A Pending JPH08301696A (en) 1995-05-01 1995-05-01 Production of compound semiconductor crystal and device therefor

Country Status (1)

Country Link
JP (1) JPH08301696A (en)

Similar Documents

Publication Publication Date Title
EP0068021B1 (en) The method and apparatus for forming and growing a single crystal of a semiconductor compound
US5714004A (en) Process for producing polycrystalline semiconductors
JP6606638B2 (en) Method and apparatus for growing Fe-Ga based alloy single crystal
JP2011042560A (en) Method and equipment for producing sapphire single crystal
JP4810346B2 (en) Method for producing sapphire single crystal
EP1571240B1 (en) Method for producing compound semiconductor single crystal
JP2008508187A (en) Method for growing a single crystal from a melt
WO2021020539A1 (en) Scalmgo4 single crystal, preparation method for same, and free-standing substrate
US5063986A (en) Method for manufacturing alloy rod having giant magnetostriction
JPH08301696A (en) Production of compound semiconductor crystal and device therefor
EP0186249B1 (en) Process for the preparation of polycrystalline materials and equipment suitable to the accomplishing thereof
JP4399631B2 (en) Method for manufacturing compound semiconductor single crystal and apparatus for manufacturing the same
JPH1129398A (en) Apparatus for producing compound semiconductor single crystal
JP4549111B2 (en) GaAs polycrystal production furnace
JP2010030868A (en) Production method of semiconductor single crystal
JP2009023867A (en) Manufacturing method of semiconductor crystal and its manufacturing apparatus
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JP2769300B2 (en) Crystal pulling device
JP2005200279A (en) Method for manufacturing silicon ingot and solar battery
JPH0710674A (en) Method for growing inorganic compound signal crystal
JP2022146327A (en) MANUFACTURING METHOD OF FeGa ALLOY SINGLE CRYSTAL
JP4316183B2 (en) Single crystal growth method
JP2022146328A (en) MANUFACTURING METHOD OF FeGa ALLOY SINGLE CRYSTAL
JP2014156373A (en) Manufacturing apparatus for sapphire single crystal
JPH0341432B2 (en)