JPS62288186A - Production of compound semiconductor single crystal containing high vapor pressure component - Google Patents

Production of compound semiconductor single crystal containing high vapor pressure component

Info

Publication number
JPS62288186A
JPS62288186A JP13098486A JP13098486A JPS62288186A JP S62288186 A JPS62288186 A JP S62288186A JP 13098486 A JP13098486 A JP 13098486A JP 13098486 A JP13098486 A JP 13098486A JP S62288186 A JPS62288186 A JP S62288186A
Authority
JP
Japan
Prior art keywords
vapor pressure
single crystal
temperature
storage tank
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13098486A
Other languages
Japanese (ja)
Other versions
JPH07110797B2 (en
Inventor
Katsumi Mochizuki
勝美 望月
Takeshi Masumoto
剛 増本
Takeshi Miyazaki
健史 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61130984A priority Critical patent/JPH07110797B2/en
Publication of JPS62288186A publication Critical patent/JPS62288186A/en
Publication of JPH07110797B2 publication Critical patent/JPH07110797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:In producing the titled single crystal by three temperature zone horizontal Bridgman method, the titled uniform single crystal free from variability of physical properties, is readily attained by using a device equipped with a vapor pressure controlling storage tank. CONSTITUTION:A quartz boat 10 packed with a raw material 16 for growing single crystal is put in a crystal growing chamber 11 of a reaction tube 14, a vapor pressure controlling element 17 is added to a vapor pressure controlling storage tank 13 and the quartz tube 14 is sealed. Heaters 15 are operated, a given temperature distribution shown by the figure is set in a growth furnace and the reaction tube 14 is placed in the furnace. The reaction tube 14 is transferred from a high-temperature side to a low-temperature side in the furnace kept at the given temperature gradient to grow single crystal. In the operation, temperature control can be automatically regulated in good precision by detecting the temperature of the storage tank by a temperature detecting means 18 such as thermocouple, etc., connected to the storage tank 13 and inputting a signal based on the information to the heaters 15. Even if the vapor pressure controlling component 17 is melted, it neither flows nor diffuses and high-precision vapor pressure control is made possible.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は化合物半導体単結晶の製造方法に関する。更に
詳しくいえば、三温度帯水平ブリッジマン法を改良し、
高精度で蒸気圧を制御し、厳密な化学量論的組成の制御
を行うことによって、特性のバラツキのない、均一な化
合物半導体の単結晶を製造する方法に関するものである
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a method for manufacturing a compound semiconductor single crystal. More specifically, we improved the three-temperature horizontal Bridgman method,
The present invention relates to a method for producing a uniform single crystal of a compound semiconductor with no variation in properties by controlling the vapor pressure with high precision and strictly controlling the stoichiometric composition.

従来の技術 現代の半導体工業の主役は依然としてSi半導体によっ
て占められているが、Siではどうにもならない問題が
ある。それらはSiのバンド構造によるものである。即
ち、Siは間接遷移型であるため、Siで高効率の発光
デバイスを作ることは困難である。そこで、最近では電
子移動度が大きく、また飽和ドリフト速度が大きいこと
から、化合物半導体、特に■−v族化合物半導体が注目
され、各種半導体デバイスの高速動作化・高周波化を実
現し得るものとして大きな期待が寄せられている。一方
、I[−VI族化合物半導体はすべて直接遷移型であり
、紫外線、電子線による励起で高効率のルミネッセンス
を生ずることが知られ多数の研究の対象となっている。
BACKGROUND OF THE INVENTION Although Si semiconductors still play a leading role in the modern semiconductor industry, there are problems that cannot be solved with Si. These are due to the band structure of Si. That is, since Si is an indirect transition type, it is difficult to make a highly efficient light emitting device with Si. Recently, compound semiconductors, especially ■-V group compound semiconductors, have been attracting attention because of their high electron mobility and high saturation drift velocity, and they have become a major player in realizing high-speed operation and high frequency of various semiconductor devices. Expectations are high. On the other hand, all I[-VI group compound semiconductors are of the direct transition type, and are known to produce highly efficient luminescence when excited by ultraviolet rays or electron beams, and have been the subject of numerous studies.

また、II−VI属化合物半導体は特にオプトエレクト
ロニクスの分野で■−■族にない広い波長範囲の発光、
受光素子を実現し得る可能性を有しており、一般に禁止
帯幅が太き(窓効果用材料として適しており、更に■−
V族化合物半導体と比較して薄膜形成が比較的容易であ
ることから、種々の応用分野が検討されている。例えば
、I[−VI族化合物半導体であるCdTeはT線検出
器、X線検出器として、あるいは)Ig+−x(1:d
XTe混晶の形で赤外線検出器、CCD (Charg
e CoupledDev 1ce)等としてまたはC
dSと組合わせたCdS/CdTeは劣化の小さな薄膜
太陽電池として夫々利用されつつある。
In addition, II-VI group compound semiconductors are particularly used in the field of optoelectronics to emit light in a wide wavelength range not found in the ■-■ group.
It has the potential to realize a light-receiving element, and generally has a wide forbidden band width (suitable as a material for window effects, and also
Since it is relatively easy to form thin films compared to group V compound semiconductors, various application fields are being considered. For example, CdTe, which is a group I[-VI compound semiconductor, can be used as a T-ray detector, an X-ray detector, or)Ig+-x(1:d
Infrared detector, CCD (Charg
e CoupledDev 1ce) etc. or C
CdS/CdTe combined with dS is being used as a thin film solar cell with little deterioration.

ところで、上記の如き種々の化合物半導体デバイスを作
製するためには、転位密度の低い低欠陥の化合物半導体
単結晶あるいは混晶の形成が必要となる。化合物半導体
はSiとは異った様々な特性を有しているために、その
結晶成長技術もまったく異る。例えば、Stについては
チョクラルスキー法(CZ法)、フローティングゾーン
法(FZ法)等が一般的であるが、化合物半導体では組
成の厳密な制御が必要とされ、また高温における臨界剪
断応力が小さく、しかも熱歪で転位がはいり易いなどの
微妙な技術上の各種問題を有しているために、蒸気圧制
御等の工夫が必要とされる。
Incidentally, in order to manufacture the various compound semiconductor devices as described above, it is necessary to form a compound semiconductor single crystal or mixed crystal with low dislocation density and low defects. Since compound semiconductors have various properties different from those of Si, their crystal growth techniques are also completely different. For example, for St, Czochralski method (CZ method), floating zone method (FZ method), etc. are commonly used, but compound semiconductors require strict control of composition, and critical shear stress at high temperatures is small. Moreover, since it has various delicate technical problems such as the tendency for dislocations to occur due to thermal strain, it is necessary to take measures such as vapor pressure control.

その高純度の単結晶を成長させるために成分元素の原子
量比を正確に秤量して反応させても、生成する結晶は必
ずしも化学量論比の組成とはならない。このことは、単
に化学分析的にストイキオメ) IJ−を問題とするだ
けでは不充分であって、化合物半導体の完全性(lat
tice perfection)からのずれをも考慮
に入れる必要のあることを示唆している。
Even if the atomic weight ratio of the component elements is accurately weighed and reacted in order to grow a highly pure single crystal, the resulting crystal does not necessarily have a stoichiometric composition. For this reason, it is not enough to simply question the stoichiometries (IJ-) from a chemical analysis;
This suggests that it is also necessary to take into account deviations from the tightest perfection.

化合物半導体の結晶成長はバルク結晶の成長とエピタキ
シーとに大別され、バルク結晶からいわゆるウェハと呼
ばれる板状結晶が切出され、これは直接デバイス作製プ
ロセスで使用するか、あるいはエピタキシー用の基板と
して利用される。一方、後者のエピタキシーによる成長
結晶は薄く、機械適強度が不十分であることから、その
ままでは使用できず、これを支持するための基板が必要
とされる。従って、エピタキシーにおいてもバルク結晶
の重要性は大きい。
Crystal growth of compound semiconductors can be broadly divided into bulk crystal growth and epitaxy. A plate-shaped crystal called a wafer is cut from the bulk crystal, and this can be used directly in the device fabrication process or as a substrate for epitaxy. used. On the other hand, the latter crystal grown by epitaxy is thin and has insufficient mechanical strength, so it cannot be used as is, and a substrate is required to support it. Therefore, bulk crystals are also of great importance in epitaxy.

化合物半導体のバルク結晶の成長法としては、例えばブ
リッジマン法(水平並びに垂直ブリッジマン法)、液体
封止チョクラルスキー法(LEC法)、FZ法等が従来
から使用されている。
Conventionally used methods for growing bulk crystals of compound semiconductors include, for example, the Bridgman method (horizontal and vertical Bridgman methods), liquid-filled Czochralski method (LEC method), FZ method, and the like.

ブリッジマン法の一つである三温度帯ブリッジマン法は
、三つの異なる温度のプラト一部分を有し所定の温度勾
配にある加熱炉内で、高解離平衡蒸気圧成分元素の分圧
を制御しながら原料成分元素を収納した反応管を所定の
速度で移動させることにより単結晶を製造するものであ
る。
The three-temperature Bridgman method, which is one of the Bridgman methods, controls the partial pressure of high dissociated equilibrium vapor pressure component elements in a heating furnace with plateau parts at three different temperatures and a predetermined temperature gradient. However, a single crystal is produced by moving a reaction tube containing raw material component elements at a predetermined speed.

従来の三温度帯水平ブリッジマン法による化合物半導体
単結晶の製造法を添付第2図を用いて更に詳細に説明す
る。第2図は反応管21が収められている炉内の温度分
布と、単結晶を成長させるための装置の概略断面図であ
る。温度分布におけるプラト一部分は、原料溶融部の温
度T1、蒸気圧制御温度T3、および成長結晶の熟成並
びに不純物の制御温度T2よりなっている。
A method for manufacturing a compound semiconductor single crystal by the conventional three-temperature horizontal Bridgman method will be explained in more detail with reference to FIG. 2 attached hereto. FIG. 2 shows the temperature distribution inside the furnace in which the reaction tube 21 is housed, and a schematic cross-sectional view of an apparatus for growing a single crystal. The plateau portion of the temperature distribution consists of the temperature T1 of the raw material melting zone, the vapor pressure control temperature T3, and the control temperature T2 for ripening of grown crystals and impurities.

第2図に示した水平ブリッジマン法による結晶成長装置
は、単結晶成長原料収納ボート20を封入する石英管2
1とその側部を取巻くように設けられたヒータ22(加
熱炉)とで主として構成される。
The crystal growth apparatus using the horizontal Bridgman method shown in FIG.
1 and a heater 22 (heating furnace) provided so as to surround the side thereof.

この装置によって化合物半導体単結晶を成長する場合、
まず石英ボート20内に多結晶化合物半導体などの原料
23を投入し、これを石英管21内に収納すると共に、
石英管21の低温側端部に蒸気圧制御用の高蒸気圧成分
固体24を入れ、密封する。一方、炉内に、第2図に併
記したような温度分布を、ヒータ22を動作することに
より設定し、次いでボート20の右端がT1領域にあり
、また高蒸気圧成分固体24がT3領域にあるように、
石英管を配置し、原料23が溶融すると共に、この融液
が均一な温度となるのに充分な時間この状態で維持した
後、炉あるいは石英管21を所定の速度で移動させて結
晶成長する。成長中の原料融液−成長結晶界面はT1領
域からT2領域への変移部分のほぼ中間の温度(m。
When growing a compound semiconductor single crystal using this equipment,
First, a raw material 23 such as a polycrystalline compound semiconductor is put into a quartz boat 20, and is stored in a quartz tube 21.
A high vapor pressure component solid 24 for vapor pressure control is placed in the low temperature side end of the quartz tube 21 and sealed. On the other hand, the temperature distribution in the furnace as shown in FIG. 2 is set by operating the heater 22, and then the right end of the boat 20 is in the T1 region, and the high vapor pressure component solid 24 is in the T3 region. As it is,
After arranging the quartz tube and maintaining this state for a sufficient period of time for the raw material 23 to melt and for the melt to reach a uniform temperature, the furnace or quartz tube 21 is moved at a predetermined speed to grow crystals. . The temperature of the raw material melt-growing crystal interface during growth is approximately at the middle of the transition from the T1 region to the T2 region (m).

p、)部分にある。p, ) part.

かくして、蒸気圧制御を行いつつ単結晶成長を実施する
ことにより低転位密度、かつ組成のストイキオメトリ−
の点で満足な化合物半導体単結晶を得ることができる。
Thus, by performing single crystal growth while controlling vapor pressure, low dislocation density and compositional stoichiometry can be achieved.
A compound semiconductor single crystal that is satisfactory in terms of these points can be obtained.

尚、石英管としてはキャピラリーを備えた隔壁によって
2分された単結晶成長室と、高蒸気圧成分収納室とから
なるものも知られており、これによっても同様に良好な
蒸気圧制御を行うことができる。
It should be noted that quartz tubes are also known that consist of a single crystal growth chamber divided into two by a partition wall equipped with a capillary and a high vapor pressure component storage chamber, which also achieves good vapor pressure control. be able to.

発明が解決しようとする問題点 以上述べてきたように、化合物半導体の各種デバイスを
作製するためには、均一で且つ完全性からのずれの少な
い低欠陥の単結晶を製造する必要があり、様々な方法が
提案され利用されてきた。
Problems to be Solved by the Invention As mentioned above, in order to manufacture various compound semiconductor devices, it is necessary to manufacture a single crystal that is uniform and has low defects with little deviation from perfection. Several methods have been proposed and used.

中でも、三温度帯水平ブリッジマン法は、組成の制御性
が良好であることから多用されている技術である。また
、経験からT3を760〜850℃の範囲とすることに
より好結果が得られることがわかっている。しかしなが
ら、例えば■−■族化合物半導体であるCdTeの単結
晶製造のために上記ブリッジマン法を利用した場合、C
dの沸点が767℃(融点=324℃)であることから
、上記蒸気圧制御温度T3の範囲内で溶融状態乃至沸騰
することになる。その結果、蒸気圧制御用成分固体は石
英管内あるいは蒸気圧制御室内でCd融液が流動・拡散
する。従って、蒸気圧制御域、即ち温度(T3)制御域
も広い範囲に亘ることとなり、このような場合に均一な
温度分布を維持することは極めて難しくなる。このこと
は、成長単結晶の物性を所定の値に制御できないことを
意味する。
Among these, the three-temperature zone horizontal Bridgman method is a frequently used technique because it provides good controllability of composition. Moreover, it has been found from experience that good results can be obtained by setting T3 in the range of 760 to 850°C. However, when the Bridgman method is used to manufacture a single crystal of CdTe, which is a ■-■ group compound semiconductor,
Since the boiling point of d is 767°C (melting point = 324°C), it will reach a molten state or boil within the range of the vapor pressure control temperature T3. As a result, the Cd melt flows and diffuses in the vapor pressure control component solid within the quartz tube or the vapor pressure control chamber. Therefore, the vapor pressure control range, that is, the temperature (T3) control range, also extends over a wide range, and in such a case, it becomes extremely difficult to maintain a uniform temperature distribution. This means that the physical properties of the grown single crystal cannot be controlled to predetermined values.

以上の如< 、CdTeの単結晶成長においてみられる
ように、蒸気圧制御温度下で溶融または沸騰するような
成分を含む化合物半導体単結晶の製造を行うためには、
上記のような従来の装置をそのまま使用することはでき
ず、上記問題を克服するための何等かの改良、工夫を施
す必要がある。
As described above, in order to manufacture a compound semiconductor single crystal containing a component that melts or boils under vapor pressure controlled temperature, as seen in CdTe single crystal growth,
It is not possible to use the conventional apparatus as described above as is, and it is necessary to make some kind of improvement or devising to overcome the above-mentioned problems.

それ故に、新しい単結晶の製造法の開発が切に望まれて
いた。そこで、本発明の目的は従来の三温度帯水平ブリ
ッジマン法を改良して、ストイキオメトリ−に優れ完全
性からのずれの少ない均−且つ特性の揃ったバルク単結
晶を作製する方法を提供することにある。
Therefore, the development of a new method for producing single crystals has been desperately desired. Therefore, the purpose of the present invention is to improve the conventional three-temperature zone horizontal Bridgman method and provide a method for producing a bulk single crystal with excellent stoichiometry and less deviation from perfection, with uniform properties. It's about doing.

問題点を解決するための手段 本発明者は、三温度帯水平ブリッジマン法による高蒸気
圧成分を含む化合物半導体のバルク単結晶の製造方法の
上記のような、現状に鑑みて、上記従来法の呈する問題
点を解決する新しい技術を開発すべく種々検討、研究し
た結果、蒸気圧制御用収納槽を設けることが有効である
ことを見出し、かかる知見に基き本発明を完成した。
Means for Solving the Problems In view of the current state of the method for producing bulk single crystals of compound semiconductors containing high vapor pressure components by the three-temperature horizontal Bridgman method, the present inventor proposed the above-mentioned conventional method. As a result of various studies and studies to develop new techniques to solve the problems presented by the above, it was discovered that it is effective to provide a storage tank for controlling steam pressure, and based on this knowledge, the present invention was completed.

即ち、本発明の化合物半導体単結晶の製造方法は、結晶
成長室と、該結晶成長室と連通手段を介して連通した蒸
気圧制御用収納槽とを備えた反応管を使用し、該結晶成
長室内に半導体単結晶成長用原料を充填したボートを収
納し、該蒸気圧制御用収納槽に高蒸気圧成分元素を収納
し、密閉した該反応管を、所定の温度勾配に保たれた炉
内で、高温側から低温側に移動することを特徴とする。
That is, the method for manufacturing a compound semiconductor single crystal of the present invention uses a reaction tube equipped with a crystal growth chamber and a vapor pressure control storage tank that communicates with the crystal growth chamber through a communication means. A boat filled with raw materials for semiconductor single crystal growth is stored in the chamber, high vapor pressure component elements are stored in the vapor pressure control storage tank, and the sealed reaction tube is placed inside a furnace maintained at a predetermined temperature gradient. It is characterized by moving from the high temperature side to the low temperature side.

本発明の方法は高い解離平衡蒸気圧を有する化合物半導
体の単結晶成長に対して有効であり、また特に蒸気圧制
御温度下で溶融もしくは沸騰するようなCdTeを典型
例とする、高精度で蒸気圧制御を行う上で種々の難点を
示す化合物半導体、さらにはその混晶等の単結晶成長に
おいて有用である。
The method of the present invention is effective for single crystal growth of compound semiconductors having a high dissociation equilibrium vapor pressure, and is particularly effective for growing single crystals of compound semiconductors with high precision, such as CdTe, which melts or boils under vapor pressure controlled temperatures. It is useful in the single crystal growth of compound semiconductors, which have various difficulties in pressure control, and also their mixed crystals.

本発明の方法において使用するのに適した単結晶成長装
置は、単結晶成長用原料収納用ボート(例えば石英ボー
ト)10を収容するための結晶成長室11と、これと連
通手段12を介して接続された蒸気圧制御用元素収納槽
13とで構成される反応管、例えば石英管14および石
英管14の外周部にこれを取巻くように配置されたヒー
タ15とを含むものである。ここで、蒸気圧制御元素収
納槽13は、該元素が溶融状態となっても、これを特定
の狭い領域内に保持できるような充分な深さの凹部を有
するものであれば良い。また、製造の容易さ等を考慮す
れば、成長室と同質の材料で形成することが望ましい。
A single crystal growth apparatus suitable for use in the method of the present invention includes a crystal growth chamber 11 for accommodating a boat 10 for storing raw materials for single crystal growth (for example, a quartz boat), and a crystal growth chamber 11 for accommodating a boat 10 for storing raw materials for single crystal growth, and a communication means 12 connected thereto. It includes a reaction tube, for example, a quartz tube 14, which is configured with a connected vapor pressure control element storage tank 13, and a heater 15 disposed around the outer circumference of the quartz tube 14. Here, the vapor pressure control element storage tank 13 may have a concave portion of sufficient depth to hold the element within a specific narrow area even if the element becomes molten. Furthermore, in consideration of ease of manufacturing, etc., it is desirable that the growth chamber be made of the same material as the growth chamber.

これと成長室とを連通し、前者からの蒸気が自由に成長
室に移動できるような連通手段としてはキャピラリーあ
るいは幾分径の大きな管とその管内、好ましくは成長室
側に設けた細孔を有する隔壁部材などで構成することが
望ましい。
The means of communication between this and the growth chamber so that the vapor from the former can freely move into the growth chamber is a capillary or a somewhat large diameter tube with pores provided inside the tube, preferably on the growth chamber side. It is preferable that the structure be constructed using a partition wall member having the following structure.

第1図に示した水平ブリッジマン法による単結晶成長装
置を用いて、本発明の方法を実施する場合、まず反応管
14の結晶成長室11内に単結晶成長用原料16を装入
した石英ボート10を収容し、一方収納槽13内に蒸気
圧制御用元素17を投入し、石英管14を密封する。一
方、ヒータ15を動作させて成長炉内に第1図の上方に
示したような所定の温度分布を設定し、該炉内に上記反
応管14を配置する。
When carrying out the method of the present invention using the horizontal Bridgman method single crystal growth apparatus shown in FIG. The boat 10 is housed, while the vapor pressure control element 17 is put into the storage tank 13, and the quartz tube 14 is sealed. On the other hand, the heater 15 is operated to set a predetermined temperature distribution in the growth furnace as shown in the upper part of FIG. 1, and the reaction tube 14 is placed inside the growth furnace.

この際、ボート10の右端までがT1領域に含まれ、一
方収納槽13部分はその温度制御域に含まれるように配
置され、この状態で十分な時間保持して、温度の均−化
並びに蒸気圧の平衡化を達成する。
At this time, the right end of the boat 10 is included in the T1 area, while the storage tank 13 is placed in the temperature control area, and is maintained in this state for a sufficient period of time to equalize the temperature and steam. Achieve pressure equilibration.

次いで、上記の如き温度分布に維持された炉内を所定の
速度、一般には0.01〜1cm/時で、炉または石英
管を移動させ、石英ボート内の融液をT1からT2方向
に移動させることにより、T1部と12部との間の変移
領域のほぼ中間部の融点(m、p、)近傍で結晶成長さ
せる。
Next, the furnace or quartz tube is moved at a predetermined speed, generally 0.01 to 1 cm/hour, inside the furnace where the temperature distribution as described above is maintained, and the melt in the quartz boat is moved from T1 to T2 direction. By doing so, crystal growth is caused near the melting point (m, p,) of a substantially intermediate portion of the transition region between the T1 portion and the T12 portion.

蒸気圧制御成分の温度制御は収納槽13に接続された熱
電対などの温度検出手段18によってその温度を検知し
、その情報に基づく信号をヒータに入力することにより
自動的に精度よい調節を行うことができ、また第1図に
示したように成分17が溶融され液状となったとしても
、それが流動・拡散することはないのでこの観点からも
高精度の蒸気圧制御が可能となる。
Temperature control of the vapor pressure control component is performed by detecting the temperature with a temperature detection means 18 such as a thermocouple connected to the storage tank 13, and inputting a signal based on the information to the heater to automatically and accurately adjust the temperature. Furthermore, even if the component 17 is melted into a liquid state as shown in FIG. 1, it will not flow or diffuse, making it possible to control the vapor pressure with high precision from this point of view as well.

尚、この蒸気圧制御成分の温度調節部、即ちT3領域は
、第1図の温度分布に示したように上に凸の単調減少カ
ーブとなるように調節することにより、連通手段部分で
の蒸気圧制御成分の蒸気の流れをスムーズにでき、また
成長室からの該成分の逆流を防止できるので有利である
The temperature adjustment section of this vapor pressure control component, that is, the T3 region, is adjusted to form an upwardly convex monotonically decreasing curve as shown in the temperature distribution in FIG. This is advantageous because the vapor of the pressure-controlled component can flow smoothly and the component can be prevented from flowing back from the growth chamber.

上記本発明の装置においては加熱形式は特に制限はなく
、従来公知の各種方法、例えば抵抗加熱、誘導加熱、輻
射加熱(ランプ、アーク、レーザ等)がいずれも使用で
き、また直接加熱することが問題となるような場合には
均熱管、ライナー管などによる遮蔽を行うことも当然可
能である。
In the above-mentioned apparatus of the present invention, there is no particular restriction on the heating method, and various conventionally known methods such as resistance heating, induction heating, and radiation heating (lamp, arc, laser, etc.) can all be used, and direct heating is also possible. In cases where this poses a problem, it is of course possible to provide shielding with a heat soaking tube, liner tube, or the like.

石英反応管及び結晶長用ボートは、あらかじめ高温(約
1100℃)で不活性ガス又は連光性ガス中で長時間(
約8時間以上)ベーキングしたものを用いると、良好な
結果を期待できる。結晶成長用ボートは熱伝導率が小さ
く、「ぬれ」を起こさず、融液及び結晶を汚染せず、形
状がかわらない等の特性を備えている材質で構成するこ
とが望ましい。
The quartz reaction tube and the boat for crystal length are heated in advance at a high temperature (approximately 1100°C) in an inert gas or flashing gas for a long period of time (
You can expect good results if you use one that has been baked (about 8 hours or more). It is desirable that the crystal growth boat be made of a material that has characteristics such as low thermal conductivity, no "wetting," no contamination of the melt and crystals, and no change in shape.

上記の特性を備えたものとして石英ガラスがあるが、結
晶成長用ボートとして石英を用いた時は石英管の内壁に
02ガスや820などの吸着ガスが残存したり、原料中
の残留酸化物が微量存在することにより単結晶が汚染す
るので、石英表面をカーボンコーティングすることが好
ましい。またパイロリティック窒化ボロン(PBN)管
等の反応性のないものも結晶成長用ボートとして有用で
ある。
Quartz glass has the above characteristics, but when quartz is used as a boat for crystal growth, adsorbed gases such as 02 gas and 820 remain on the inner wall of the quartz tube, and residual oxides in the raw materials may remain. Since the presence of a trace amount of carbon contaminates the single crystal, it is preferable to coat the quartz surface with carbon. Non-reactive materials such as pyrolytic boron nitride (PBN) tubes are also useful as crystal growth boats.

作用 一般に、化合物半導体の中でもIF−VI族化合物半導
体のバルク単結晶を製造することは困難であるとされて
おり、それは高蒸気圧成分を含むと共に該成分が制御温
度条件下で溶融したり、沸騰したりするという、蒸気圧
制御を難しくするという問題を含んでいることにある。
It is generally said that it is difficult to produce bulk single crystals of IF-VI group compound semiconductors among compound semiconductors, because they contain high vapor pressure components, and the components melt under controlled temperature conditions. This is due to the problem of boiling, which makes it difficult to control vapor pressure.

しかしながら、本発明の化合物半導体単結晶の製造方法
によれば、まず、蒸気圧制御用元素成分収納槽を設けた
装置を用いたことにより、制御温度条件下で液体であり
、しかも沸騰するような成分を含む場合にも、これを所
定の領域内に確実に保持できるので、従来の装置を用い
た場合にみられたように、これが蒸気圧制御室あるいは
結晶成長室にまで流動・拡散し、蒸気圧制御を困難にす
ると共に、成長里結晶の品位を劣化させる恐れは全くな
くなり、正確かつ厳密な蒸気圧制御が実現できることに
なる。
However, according to the method for manufacturing a compound semiconductor single crystal of the present invention, firstly, by using an apparatus provided with an elemental component storage tank for vapor pressure control, it becomes liquid under controlled temperature conditions and does not boil. Even if it contains components, it can be reliably held within a predetermined area, so that it can flow and diffuse into the vapor pressure control chamber or crystal growth chamber, as was the case with conventional equipment. There is no fear of making vapor pressure control difficult or deteriorating the quality of the grown sato crystals, and accurate and strict vapor pressure control can be realized.

更に、蒸気圧制御領域の温度分布(T3)を上に凸とな
るような単m減少曲線とすることにより、蒸気圧制御成
分の蒸気の移動を容易にでき、しかも結晶成長室からの
該成分の逆流を防止し得るので、この場合にはより一層
精度の高い蒸気圧制御が行える。
Furthermore, by setting the temperature distribution (T3) in the vapor pressure control region to an upwardly convex single meter decreasing curve, it is possible to easily move the vapor of the vapor pressure control component, and moreover, the vapor pressure control component can be easily transferred from the crystal growth chamber. In this case, vapor pressure control can be performed with even higher accuracy since backflow of the vapor can be prevented.

かくして、本発明の方法によれば従来法では困難であっ
た、CdTeのCd等を典型例とする、制御温度条件下
で溶融流動してしまうようなものについても、組成ずれ
がなく、完全性においても良好な化合物半導体単結晶を
有利に得ることができる。
Thus, according to the method of the present invention, even for materials that melt and flow under controlled temperature conditions, such as Cd in CdTe, which is a typical example, there is no composition shift and integrity can be maintained, which was difficult with conventional methods. Also, it is possible to advantageously obtain a good compound semiconductor single crystal.

ただし、本発明の方法はこれらに限らず、一般に高い解
離平衡蒸気圧を有する成分を含む任意の化合物半導体に
対しても勿論適用できるものである。
However, the method of the present invention is not limited to these, and can of course be applied to any compound semiconductor containing a component that generally has a high dissociation equilibrium vapor pressure.

実施例 以下、実施例に従って本発明の単結晶製造方法を更に具
体的に説明すると共に、その奏する効果を実証するが、
本発明はこれらによって何等制限されるものではない。
EXAMPLES Hereinafter, the single crystal manufacturing method of the present invention will be explained in more detail according to examples, and the effects thereof will be demonstrated.
The present invention is not limited to these in any way.

実施例1 本実施例は、第1図に示すように左側に結晶成長室11
と右側に蒸気圧制御用収納槽13を設けた水平ブリッジ
マン型結晶成長装置を用いて、CtlTe車結晶を製造
した。この場合、分圧制御は蒸気圧制御用収納槽13に
はCdを装入し、その温度を調節することにより行なっ
た。原料としては純度6ナイン(99,9999%)の
Cd及びTeを使用した。カーボンコーティングした石
英ボート10に原料のCdTeを入れ、これを高純度石
英管14内の結晶成長室11内に収容し、一方上言己の
如く蒸気圧制御用収納槽13にCdを入れた後、石英管
をI X 1O−7torrの真空度にて真空封入した
。このような反応管14を予めT+=1130℃、 ’
r2= t05Q℃およびT、= 760〜850℃(
単調減少)となるようにヒータを動作して温度痛撃した
炉内に挿入し、十分に温度平衡に達成したら、所定の速
度(3mm/hr)で結晶の成長方向に反応管14を移
動させてCdTeの単結晶を成長させた(得られた単結
晶をAとする。)。
Example 1 In this example, a crystal growth chamber 11 is installed on the left side as shown in FIG.
A CtlTe wheel crystal was manufactured using a horizontal Bridgman type crystal growth apparatus equipped with a vapor pressure control storage tank 13 on the right side. In this case, partial pressure control was performed by charging Cd into the vapor pressure control storage tank 13 and adjusting its temperature. Cd and Te with a purity of 6 nines (99,9999%) were used as raw materials. CdTe as a raw material is placed in a carbon-coated quartz boat 10 and placed in the crystal growth chamber 11 inside the high-purity quartz tube 14, while Cd is placed in the vapor pressure control storage tank 13 as described above. The quartz tube was vacuum sealed at a vacuum level of I x 10-7 torr. Such a reaction tube 14 is preheated to T+=1130°C, '
r2 = t05Q °C and T, = 760-850 °C (
The reactor tube 14 is inserted into the furnace where the temperature is set by operating the heater so that the temperature decreases (monotonically decreasing), and when temperature equilibrium is sufficiently achieved, the reaction tube 14 is moved in the direction of crystal growth at a predetermined speed (3 mm/hr). A CdTe single crystal was grown (the obtained single crystal is designated as A).

一方、従来の三温度帯水平ブリッジマン法による単結晶
の製造をも実施した。
On the other hand, we also fabricated single crystals using the conventional three-temperature zone horizontal Bridgman method.

従来の方法においては、第2図の如き温度分布および反
応装置を利用した。実施例1のように原料を反応管内に
収納し、真空引きして密封した。
In the conventional method, a temperature distribution and a reaction apparatus as shown in FIG. 2 were utilized. As in Example 1, the raw materials were placed in a reaction tube, which was evacuated and sealed.

三つの異なるプラト一部を有する温度を、夫々T、=1
130℃、’r2= t050℃、’r、= 820℃
に設定し、原料融液が十分に温度平衡に達したら反応管
を所定の速度(3mm/hr)で結晶の成長方向に移動
してCdTeの単結晶を成長させた(得られた単結晶を
Bとする)。
Temperatures with three different plateau parts, respectively T, = 1
130℃,'r2=t050℃,'r,=820℃
When the raw material melt sufficiently reached temperature equilibrium, the reaction tube was moved at a predetermined speed (3 mm/hr) in the crystal growth direction to grow a CdTe single crystal (the obtained single crystal was B).

かくして得られた2種のCdTeの単結晶A及び已につ
いて、結晶の長手方向に垂直にスライスし、各結晶片の
抵抗を測定し、結果を第3図にプロットした。第3図に
おいて、横軸は結晶の長手方向に沿ってとった長さを表
わし、縦軸はCdTeの抵抗率ρの対数を取っである。
The two types of CdTe single crystals A and A thus obtained were sliced perpendicularly to the longitudinal direction of the crystal, the resistance of each crystal piece was measured, and the results were plotted in FIG. In FIG. 3, the horizontal axis represents the length along the longitudinal direction of the crystal, and the vertical axis represents the logarithm of the resistivity ρ of CdTe.

第3図の結果から明らかな如く、単結晶AとBとを比較
すると、本発明の方法で得た単結晶Aは高抵抗で、特性
の安定性に優れたp型結晶であるのに対して、従来法に
よる単結晶Bは結晶の特性の一つである抵抗率が結晶の
位置によって大きく変化していることがわかる。その理
由は、従来法においては、蒸気圧制御用Cdの融液が反
応管の高温部に向かって流れだすために高いCd蒸気圧
制御部分が生じてしまうためと考えられ、低抵抗のn型
領域が形成されている。
As is clear from the results in Figure 3, when comparing single crystals A and B, single crystal A obtained by the method of the present invention is a p-type crystal with high resistance and excellent stability of characteristics. It can be seen that the resistivity, which is one of the characteristics of the crystal, of single crystal B produced by the conventional method varies greatly depending on the position of the crystal. The reason for this is thought to be that in the conventional method, the Cd melt for vapor pressure control flows toward the high-temperature part of the reaction tube, resulting in a high Cd vapor pressure control area. A region is formed.

発明の効果 以上詳しく説明したように、本発明の化合物半導体の単
結晶の製造法によれば、蒸気圧制御用収納槽を設けたこ
とにより、制限された所定の領域内で厳密かつ高精度の
高蒸気圧成分元素の蒸気圧制御を行うことが可能となっ
た。その結果、完全性からのずれの少ない均一で特性が
揃い低欠陥の単結晶を得ることができる。
Effects of the Invention As explained in detail above, according to the method for manufacturing a compound semiconductor single crystal of the present invention, by providing a storage tank for vapor pressure control, precise and highly accurate production can be performed within a limited predetermined area. It has become possible to control the vapor pressure of high vapor pressure component elements. As a result, it is possible to obtain a uniform single crystal with few deviations from perfection, uniform characteristics, and low defects.

従って、本発明の方法ではCdTeを代表とする制御温
度範囲で溶融、更には沸騰してしまうような成分を含む
ものに対しても十分な精度で蒸気圧制御でき、同一の成
長結晶内での特性の分布のない、高品位の単結晶を得る
ことができる。この種の単結晶を得ることは従来から難
しいとされていることがらII−VI族化合物半導体の
単結晶が高品位でi8られることは今後のこの分野の発
展にとって極めて意義深いことである。
Therefore, the method of the present invention can control the vapor pressure with sufficient accuracy even for components that melt or even boil within the controlled temperature range, such as CdTe, and can control the vapor pressure within the same growing crystal. High-quality single crystals without characteristic distribution can be obtained. Since it has traditionally been difficult to obtain single crystals of this type, the ability to produce high quality single crystals of II-VI compound semiconductors is extremely significant for the future development of this field.

更に、蒸気圧制御部の温度分布を上記の如く調節するこ
とにより、一層精度の高い蒸気圧制御が可能となり、得
られる単結晶の品質をより一層改善することが可能とな
る。
Furthermore, by adjusting the temperature distribution of the vapor pressure control section as described above, it becomes possible to control the vapor pressure with higher precision, and it becomes possible to further improve the quality of the obtained single crystal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の化合物半導体単結晶の製造方法を実施
するのに有用な装置の好ましい一態様を模式的に示した
断面図であり、併せて該装置の温度分布を示したもので
あり、 第2図は、従来の三温度帯水平ブリッジマン法による結
晶成長装置を模式的に示した断面図であり、併せて該装
置の温度分布を示したものであり、第3図は本発明の方
法と従来法により合成したC、dTe単結晶の長手方向
における抵抗率分布を示すグラフである。 (主な参照記号) 10、20・・石英ボート、 11・・結晶成長室、1
2・・連通手段、 13・・収納槽、14、21・・石
英管、 15.22・・ヒータ、L6.23・・原料、
 17.24・・高蒸気圧成分、18・・熱電対 特許出願人  望  月  勝  美 増     本     剛 住友電気工業株式会社
FIG. 1 is a cross-sectional view schematically showing a preferred embodiment of an apparatus useful for carrying out the method for manufacturing a compound semiconductor single crystal of the present invention, and also shows the temperature distribution of the apparatus. , FIG. 2 is a cross-sectional view schematically showing a conventional three-temperature zone horizontal Bridgman method crystal growth apparatus, and also shows the temperature distribution of the apparatus, and FIG. 3 is a graph showing the resistivity distribution in the longitudinal direction of C, dTe single crystals synthesized by the method described above and the conventional method. (Main reference symbols) 10, 20...Quartz boat, 11...Crystal growth chamber, 1
2...Communication means, 13...Storage tank, 14, 21...Quartz tube, 15.22...Heater, L6.23...Raw material,
17.24... High vapor pressure component, 18... Thermocouple patent applicant Masaru Mochizuki Mimasu Moto Tsuyoshi Sumitomo Electric Industries, Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)結晶成長室と、該結晶成長室と連通手段を介して
連通した蒸気圧制御用収納槽とを備える反応管を使用し
、該結晶成長室内に、化合物半導体単結晶成長用原料を
充填したボートを収納し、該蒸気圧制御用収納槽に高蒸
気圧成分元素を収納し密封した該反応管を、所定の温度
勾配に保たれた炉内で、高温側から低温側に移動するこ
とにより単結晶成長を行なうことを特徴とする高蒸気圧
成分を含む半導体単結晶の製造方法。
(1) Using a reaction tube equipped with a crystal growth chamber and a vapor pressure control storage tank that communicates with the crystal growth chamber via a communication means, the crystal growth chamber is filled with raw materials for compound semiconductor single crystal growth. The reaction tube, which has been sealed with high vapor pressure component elements stored in the vapor pressure control storage tank, is moved from the high temperature side to the low temperature side in a furnace maintained at a predetermined temperature gradient. 1. A method for producing a semiconductor single crystal containing a high vapor pressure component, characterized in that single crystal growth is performed by:
(2)上記炉内の温度分布において、蒸気圧制御用収納
管および連通手段部分の温度を、上に凸となるような単
調減少曲線に沿って低下するように調節することを特徴
とする特許請求の範囲第1項記載の製造方法。
(2) A patent characterized in that, in the temperature distribution in the furnace, the temperature of the steam pressure control storage pipe and the communication means is adjusted so as to decrease along an upwardly convex monotonically decreasing curve. The manufacturing method according to claim 1.
(3)上記化合物半導体がCdTeであることを特徴と
する特許請求の範囲第1項または第2項記載の製造方法
(3) The manufacturing method according to claim 1 or 2, wherein the compound semiconductor is CdTe.
JP61130984A 1986-06-05 1986-06-05 Method for producing compound semiconductor single crystal containing high vapor pressure component Expired - Lifetime JPH07110797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61130984A JPH07110797B2 (en) 1986-06-05 1986-06-05 Method for producing compound semiconductor single crystal containing high vapor pressure component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61130984A JPH07110797B2 (en) 1986-06-05 1986-06-05 Method for producing compound semiconductor single crystal containing high vapor pressure component

Publications (2)

Publication Number Publication Date
JPS62288186A true JPS62288186A (en) 1987-12-15
JPH07110797B2 JPH07110797B2 (en) 1995-11-29

Family

ID=15047196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61130984A Expired - Lifetime JPH07110797B2 (en) 1986-06-05 1986-06-05 Method for producing compound semiconductor single crystal containing high vapor pressure component

Country Status (1)

Country Link
JP (1) JPH07110797B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9114990B2 (en) 2010-06-15 2015-08-25 Solarworld Innovations Gmbh Device and method for the production of silicon blocks
CN109161970A (en) * 2018-10-11 2019-01-08 哈尔滨工业大学 A kind of visual three-temperature-zone gallium selenide single-crystal growing apparatus and growing method
CN111519246A (en) * 2020-06-11 2020-08-11 江西德义半导体科技有限公司 Method for measuring temperature field of gallium arsenide polycrystalline synthesis furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915900A (en) * 1972-06-13 1974-02-12
JPS60171296A (en) * 1984-02-15 1985-09-04 Furukawa Electric Co Ltd:The Production of compound semiconductor
JPS62108794A (en) * 1985-11-08 1987-05-20 Furukawa Electric Co Ltd:The Production of compound semiconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915900A (en) * 1972-06-13 1974-02-12
JPS60171296A (en) * 1984-02-15 1985-09-04 Furukawa Electric Co Ltd:The Production of compound semiconductor
JPS62108794A (en) * 1985-11-08 1987-05-20 Furukawa Electric Co Ltd:The Production of compound semiconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9114990B2 (en) 2010-06-15 2015-08-25 Solarworld Innovations Gmbh Device and method for the production of silicon blocks
CN109161970A (en) * 2018-10-11 2019-01-08 哈尔滨工业大学 A kind of visual three-temperature-zone gallium selenide single-crystal growing apparatus and growing method
CN109161970B (en) * 2018-10-11 2021-04-06 哈尔滨工业大学 Visible three-temperature-zone gallium selenide single crystal growth device and growth method
CN111519246A (en) * 2020-06-11 2020-08-11 江西德义半导体科技有限公司 Method for measuring temperature field of gallium arsenide polycrystalline synthesis furnace

Also Published As

Publication number Publication date
JPH07110797B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
US4315796A (en) Crystal growth of compound semiconductor mixed crystals under controlled vapor pressure
EP0244987B1 (en) A process for growing a multi-component crystal
US20080282968A1 (en) Method of Growing Single Crystals from Melt
US3507625A (en) Apparatus for producing binary crystalline compounds
EP0102054B1 (en) Method for growing gaas single crystal by using floating zone
JPS62288186A (en) Production of compound semiconductor single crystal containing high vapor pressure component
US3902860A (en) Thermal treatment of semiconducting compounds having one or more volatile components
US5240685A (en) Apparatus for growing a GaAs single crystal by pulling from GaAs melt
US4299649A (en) Vapor transport process for growing selected compound semiconductors of high purity
US5679151A (en) Method for growing single crystal
JP3788156B2 (en) Method for producing compound semiconductor single crystal and PBN container used therefor
Steininger High pressure reflux technique for growth of Hg1-xCdxTe crystals
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JPS62158186A (en) Production of single crystal of compound semiconductor
JP2010030868A (en) Production method of semiconductor single crystal
JPH08109094A (en) Production of compound semiconductor single crystal
JP2010030847A (en) Production method of semiconductor single crystal
JP2543449B2 (en) Crystal growth method and apparatus
JPS5819638B2 (en) Silicon gallium
JP2732573B2 (en) Manufacturing method of compound semiconductor single crystal
JP2873449B2 (en) Compound semiconductor floating zone melting single crystal growth method
JP2573655B2 (en) Method for producing non-doped compound semiconductor single crystal
JPH0631192B2 (en) Method and apparatus for manufacturing semiconductor single crystal
JPS62288187A (en) Production of compound semiconductor single crystal and device therefor
Su Bulk growth of wide band gap II-VI compound semiconductors by physical vapor transport

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term