JP2003268548A - SiC FILM-FORMED GLASSY CARBON STOCK - Google Patents

SiC FILM-FORMED GLASSY CARBON STOCK

Info

Publication number
JP2003268548A
JP2003268548A JP2002070041A JP2002070041A JP2003268548A JP 2003268548 A JP2003268548 A JP 2003268548A JP 2002070041 A JP2002070041 A JP 2002070041A JP 2002070041 A JP2002070041 A JP 2002070041A JP 2003268548 A JP2003268548 A JP 2003268548A
Authority
JP
Japan
Prior art keywords
glassy carbon
sic film
film
ras
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002070041A
Other languages
Japanese (ja)
Inventor
Takaomi Sugihara
孝臣 杉原
Mitsuaki Dosono
充昭 堂薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2002070041A priority Critical patent/JP2003268548A/en
Publication of JP2003268548A publication Critical patent/JP2003268548A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an SiC film-formed glassy carbon material which is suitably as a heat resistant member used in a high temperature, high purity atmosphere including members of a semiconductor production system. <P>SOLUTION: The SiC film-formed glassy carbon material is obtained by forming SiC films deposited by a CVD (chemical vapor deposition) method on the surfaces of a glassy carbon base material having a planar or disk shape. In the SiC film-formed surfaces, the value of the ratio between the surface roughnesses RaL and RaS of two surfaces having large areas, RaL/RaS (wherein, RaL≥RaS) is 1.0 to 30, and also, the film thickness of the SiC films is 5 to 30 μm. In the SiC film-formed glassy carbon material with SiC films deposited by a CVD method on cylindrical glassy carbon base material surfaces, as for the surface roughnesses of the inner circumferential face and the outer circumferential face, provided that the larger one is defined as RaL, and the smaller one as RaS, the value of the ratio between the surface roughnesses, RaL/RaS is 1.0 to 30, and also, the film thickness of the SiC films is 5 to 30 μm. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、サセプタ、プロセ
スチュ−ブ、ウエハ−ボートあるいはガスや熱の遮蔽板
などの半導体製造装置の部材をはじめ高温、高純度雰囲
気下で使用される耐酸化性の耐熱部材として好適に用い
られるSiC膜被着ガラス状炭素材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxidation resistance used in a high temperature and high purity atmosphere including members of a semiconductor manufacturing apparatus such as a susceptor, a process tube, a wafer boat or a gas or heat shielding plate. The present invention relates to a glassy carbon material coated with a SiC film, which is preferably used as the heat-resistant member.

【0002】[0002]

【従来の技術】ガラス状炭素材は黒鉛材などの他の炭素
材に比べ、ガス不透過性、耐摩耗性、耐蝕性、表面平滑
性などの特性に優れており、このガラス状炭素材にCV
D法により高純度で緻密なSiC膜を被着して高温耐酸
化性を改良したSiC膜被着ガラス状炭素材は、サセプ
タ、プロセスチュ−ブ、ウエハ−ボート、ガスや熱の遮
蔽板などの半導体製造装置用の部材として有用されてい
る(特開平3−217016号公報など)。
2. Description of the Related Art A glassy carbon material is superior to other carbon materials such as a graphite material in gas impermeability, wear resistance, corrosion resistance and surface smoothness. CV
A glassy carbon material coated with a SiC film having a high-purity and dense SiC film deposited by the D method to improve high-temperature oxidation resistance is a susceptor, a process tube, a wafer boat, a gas or heat shielding plate, etc. Is used as a member for the semiconductor manufacturing apparatus (Japanese Patent Laid-Open No. 3-217016, etc.).

【0003】しかしながら、急速加熱、急速冷却などの
昇温および降温を繰り返し行う半導体製造用装置の部材
として用いることは、ガラス状炭素材とSiC膜との熱
膨張係数の差に起因してSiC膜にクラックが発生し易
く、更にクラックが起点となってSiC膜が剥離する難
点がある。
However, when used as a member of a semiconductor manufacturing apparatus that repeatedly raises and lowers temperature such as rapid heating and rapid cooling, the SiC film is caused by the difference in thermal expansion coefficient between the glassy carbon material and the SiC film. There is a problem that cracks tend to occur, and the SiC film peels off from the starting point of the cracks.

【0004】そこで、本出願人は上記難点を解消するた
めに、ガラス状炭素基材面にSiCを析出させ、SiC
膜を被着する気相熱分解温度を初期成膜過程から最終成
膜過程にかけて徐々に昇温し、最終成膜過程の気相熱分
解温度に所定時間保持するSiC膜被着ガラス状炭素材
の製造方法を開発した(特開2001−48682号公
報)。具体的には、初期成膜過程の気相熱分解温度を1
000〜1200℃に、最終成膜過程の気相熱分解温度
を1200〜1700℃に設定し、かつ初期成膜過程よ
り100〜700℃高温に制御し、更に、初期成膜過程
から最終成膜過程への昇温速度を20℃/分以下に制御
するものである。この方法により、ガラス状炭素基材面
にSiC膜を強固に被着させることができる。
In order to solve the above-mentioned problems, the applicant has deposited SiC on the glassy carbon substrate surface and
A SiC film-deposited glassy carbon material in which the vapor-phase thermal decomposition temperature for depositing the film is gradually raised from the initial film-forming process to the final film-forming process and kept at the vapor-phase thermal decomposition temperature in the final film-forming process for a predetermined time. Has been developed (Japanese Patent Laid-Open No. 2001-48682). Specifically, the vapor phase thermal decomposition temperature in the initial film formation process is set to 1
000 to 1200 ° C., the vapor phase pyrolysis temperature in the final film forming process is set to 1200 to 1700 ° C., and the temperature is controlled to 100 to 700 ° C. higher than in the initial film forming process. The heating rate to the process is controlled to 20 ° C./minute or less. By this method, the SiC film can be firmly adhered to the glassy carbon substrate surface.

【0005】しかしながら、近年におけるシリコンウエ
ハーの大径化に伴い半導体製造装置も大型化が必要とな
り、SiC膜被着ガラス状炭素材から形成される部材に
も大型化が要求されている。部材の大型化により、ガラ
ス状炭素材とSiC膜との熱膨張係数の差に起因するS
iC膜のクラックは一層発生し易くなり、上記の技術に
よっても充分に解決することは困難となってきた。
However, along with the recent increase in the diameter of silicon wafers, it is necessary to increase the size of semiconductor manufacturing equipment, and the members formed from the SiC film-adhered glassy carbon material are also required to be increased in size. Due to the increase in the size of the member, S due to the difference in thermal expansion coefficient between the glassy carbon material and the SiC film
Cracking of the iC film is more likely to occur, and it has become difficult to sufficiently solve it even by the above technique.

【0006】[0006]

【発明が解決しようとする課題】そのため、本出願人
は、CVD法によりSiC膜を被覆したSiC膜被覆ガ
ラス状炭素材において、X線回折によるSiC膜のSi
C(111)結晶面の回折ピーク強度が10kc.p.s以下
であり、該SiC(111)結晶面の回折ピーク強度が
全結晶面(hkl)の回折ピーク強度の80%以上であ
るSiC膜被覆ガラス状炭素材およびその製造方法を開
発提案(特願2000−285026号)した。このS
iC膜被覆ガラス状炭素材は上記の半導体製造装置用の
部材として好適に用いることができるが、一部の用途に
おいて昇温過程で破断するという新たな問題が発生する
ことが判った。
Therefore, the applicant of the present invention has found that in the SiC film-covered glassy carbon material coated with the SiC film by the CVD method, the Si of the SiC film by X-ray diffraction is used.
SiC film-coated glass having a C (111) crystal plane diffraction peak intensity of 10 kc.ps or less and a SiC (111) crystal plane diffraction peak intensity of 80% or more of the diffraction peak intensity of all crystal planes (hkl) A proposal and development (Japanese Patent Application No. 2000-285026) were made for a carbonaceous material and a manufacturing method thereof. This S
Although the iC film-covered glassy carbon material can be suitably used as a member for the above semiconductor manufacturing apparatus, it has been found that a new problem occurs in some applications in that it breaks during the temperature rising process.

【0007】本発明者らは、この破断現象を詳細に検討
した結果、平板や円板形状の場合、SiC膜被着ガラス
状炭素材を構成する複数の面のうち面積が大きい2つの
面の表面粗さの比が一定の範囲を外れた場合に破断に至
ること、あるいは円筒形状の場合には内周面と外周面の
表面粗さの比が一定の範囲を外れた場合に破断に至るこ
とを知見した。
As a result of a detailed study of this fracture phenomenon, the present inventors have found that in the case of a flat plate or a disk, two of the two faces having a large area out of a plurality of faces constituting the SiC film-deposited glassy carbon material. Fracture occurs when the ratio of surface roughness is out of a certain range, or fracture occurs when the ratio of surface roughness of the inner and outer peripheral surfaces is out of a certain range in the case of a cylindrical shape. I found out that.

【0008】本発明は、上記の知見に基づいて完成に至
ったもので、その目的はCVD法によりSiC膜を被着
したSiC膜被着ガラス状炭素材において、大型化した
場合でも、急速加熱や急速冷却による熱衝撃に耐え得る
優れた耐熱衝撃性および耐酸化性を有し、半導体製造装
置用の種々の部材などとして好適に使用し得るSiC膜
被着ガラス状炭素材を提供することにある。
The present invention has been completed based on the above findings, and its purpose is to rapidly heat a SiC film-adhered glassy carbonaceous material on which an SiC film is adhered by a CVD method, even when the size is increased. To provide a glassy carbon material coated with a SiC film, which has excellent thermal shock resistance and oxidation resistance capable of withstanding thermal shock caused by rapid cooling, and can be suitably used as various members for semiconductor manufacturing equipment. is there.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの、本発明の請求項1に係るSiC膜被着ガラス状炭
素材は、平板あるいは円板形状のガラス状炭素基材面に
CVD法により析出させたSiC膜を被着したSiC膜
被着ガラス状炭素材において、SiC膜被着面のうち面
積の大きい2つの面の表面粗さRaL、RaS(但し、RaL
≧RaS)の比RaL/RaSの値が1.0〜30で、かつS
iC膜の膜厚が5〜30μm であることを構成上の特徴
とする。
In order to achieve the above-mentioned object, a glassy carbon material coated with a SiC film according to claim 1 of the present invention is a glass-like carbon substrate surface of a flat plate or a disk-shaped CVD. In the SiC film-deposited glassy carbon material coated with the SiC film deposited by the method, the surface roughness RaL, RaS (provided that RaL
≧ RaS), the ratio RaL / RaS is 1.0 to 30, and S
The structural feature is that the film thickness of the iC film is 5 to 30 μm.

【0010】また、請求項2に係るSiC膜被着ガラス
状炭素材は、円筒形状のガラス状炭素基材面にCVD法
により析出させたSiC膜を被着したSiC膜被着ガラ
ス状炭素材において、内周面と外周面の表面粗さのうち
大きい方をRaL、小さい方をRaSとして、表面粗さの比
RaL/RaSの値が1.0〜30で、かつSiC膜の膜厚
が5〜30μm であることを構成上の特徴とする。
Further, a glassy carbon material coated with a SiC film according to a second aspect of the present invention is a glassy carbon material coated with a SiC film, wherein a SiC film deposited by a CVD method is deposited on the surface of a cylindrical glassy carbon substrate. In the above, the larger one of the surface roughness of the inner peripheral surface and the outer peripheral surface is RaL, and the smaller one is RaS, the surface roughness ratio RaL / RaS is 1.0 to 30, and the thickness of the SiC film is The characteristic feature of the structure is that it is 5 to 30 μm.

【0011】請求項3に係るSiC膜被着ガラス状炭素
材は、請求項1においてガラス状炭素基材が円形、正方
形、矩形、三角形などの貫通部を有するものであること
を特徴とし、請求項4に係るSiC膜被着ガラス状炭素
材は、請求項2においてガラス状炭素基材が円形、正方
形、矩形、三角形などの貫通部を有するものであること
を特徴とする。なお、ここでいう貫通部は特に貫通部の
大きさが規定されるものではないが、例えば、直径が
0.3mmと極めて小さいものから、300×300×4
mmの平板に、直径220mmの貫通部を有するような大き
な直径のものなどを挙げることができる。
A glassy carbon material coated with a SiC film according to claim 3 is characterized in that the glassy carbon substrate according to claim 1 has a penetrating portion such as a circle, a square, a rectangle or a triangle. The SiC film-deposited glassy carbon material according to item 4 is characterized in that, in claim 2, the glassy carbon substrate has a penetrating portion such as a circle, a square, a rectangle, or a triangle. The size of the penetrating part is not particularly specified, but for example, the size is 300 mm x 300 mm x 4 mm from a very small diameter of 0.3 mm.
A flat plate having a diameter of 220 mm and a large diameter having a through portion having a diameter of 220 mm can be given.

【0012】[0012]

【発明の実施の形態】基材となるガラス状炭素材には特
に制限はなく、例えば、フェノール系、フラン系、ポリ
イミド系などの熱硬化性樹脂あるいはこれらの混合樹脂
を硬化成形したのち、非酸化性雰囲気中で800℃以上
の温度に加熱し、焼成炭化処理して得られたものが用い
られる。但し、最終的な熱処理温度はSiC膜を成膜す
る温度以上であることが必要である。なお、半導体製造
装置用の部材として使用するためには可及的に高純度で
あることが要求され、例えばハロゲンガスを含有する雰
囲気中で2000℃程度に加熱処理して高純度化するこ
とが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION There is no particular limitation on the glassy carbon material as a base material. For example, a thermosetting resin such as phenol-based, furan-based, or polyimide-based resin or a mixed resin thereof is cured and then molded. A product obtained by heating to a temperature of 800 ° C. or higher in an oxidizing atmosphere and calcining and carbonizing is used. However, the final heat treatment temperature needs to be higher than the temperature for forming the SiC film. In order to use as a member for a semiconductor manufacturing apparatus, it is required that the purity is as high as possible. For example, it is necessary to heat-treat to about 2000 ° C. in an atmosphere containing a halogen gas to achieve high purity. preferable.

【0013】CVD法によるSiC膜の被着は、ガラス
状炭素基材をCVD装置の反応チャンバー内にセットし
て、系内の空気を排気したのち所定の温度に加熱し、原
料ガスを送入して気相熱分解させることにより基材面に
SiCを析出することにより行われる。原料ガスとして
は1分子中にSi原子とC原子を含む、例えばトリクロ
ロメチルシラン( CH3SiCl3 )、ジクロロメチルシラン
( CH3SiHCl2)、トリクロロフェニルシラン( C6H5SiC
l3)、ジクロロジメチルシラン((CH3)2SiCl2)、クロ
ロトリメチルシラン((CH3)3SiCl)などのハロゲン化有
機珪素化合物が用いられ、水素ガスとともに反応チャン
バー内に送入して気相還元して熱分解させる、あるい
は、四塩化炭素、モノシランなどの珪素化合物をSi源
とし、メタン、プロパンのような炭素化合物をC源とし
て、水素やアルゴンガスのキャリアーガスとともに反応
チャンバー内に送入して気相反応させることによりSi
Cを析出し、基材面に被着するものである。
To deposit a SiC film by the CVD method, a glassy carbon base material is set in a reaction chamber of a CVD apparatus, air in the system is exhausted and then heated to a predetermined temperature, and a raw material gas is fed. Then, the vapor phase thermal decomposition is performed to deposit SiC on the surface of the base material. The raw material gas contains Si atoms and C atoms in one molecule, such as trichloromethylsilane (CH 3 SiCl 3 ), dichloromethylsilane (CH 3 SiHCl 2 ), trichlorophenylsilane (C 6 H 5 SiC
l 3 ), dichlorodimethylsilane ((CH 3 ) 2 SiCl 2 ), chlorotrimethylsilane ((CH 3 ) 3 SiCl) and other halogenated organosilicon compounds are used and are fed into the reaction chamber together with hydrogen gas. Vapor phase reduction and thermal decomposition, or silicon compounds such as carbon tetrachloride and monosilane as Si sources, carbon compounds such as methane and propane as C sources, and hydrogen and argon gas as carrier gas into the reaction chamber. By feeding and causing a gas phase reaction, Si
It deposits C and deposits it on the surface of the substrate.

【0014】本発明のSiC膜被着ガラス状炭素材は、
ガラス状炭素基材面に上記のCVD法により被着したS
iC膜被着面の表面粗さの比を特定範囲内に設定するも
のである。すなわち、ガラス状炭素基材が平板形状や円
板形状の場合には、SiC被着面を構成する複数の面の
うち面積の大きい2つの面(通常は表面および裏面)の
表面粗さを測定し、得られた表面粗さの大きい値をRa
L、小さい値をRaSとして、その比RaL/RaSの値を
1.0〜30に規定する。
The glass-like carbon material coated with the SiC film of the present invention is
S deposited on the glassy carbon substrate surface by the above CVD method
The ratio of the surface roughness of the iC film adhered surface is set within a specific range. That is, when the glassy carbon base material has a flat plate shape or a circular disk shape, the surface roughness of two large surface areas (usually the front surface and the back surface) of the plurality of surfaces forming the SiC adhered surface is measured. Then, the value of the obtained surface roughness is Ra
L, a small value is RaS, and the value of the ratio RaL / RaS is defined to be 1.0 to 30.

【0015】また、ガラス状炭素基材が円筒形状の場合
には、内周面と外周面の表面粗さを測定して、得られた
表面粗さの大きい値をRaL、小さい値をRaSとして、そ
の比RaL/RaSの値を1.0〜30に規定する。
When the glassy carbon substrate has a cylindrical shape, the surface roughness of the inner peripheral surface and the outer peripheral surface is measured, and a large value of the obtained surface roughness is RaL and a small value is RaS. , And the value of the ratio RaL / RaS is specified to be 1.0 to 30.

【0016】RaL/RaSの値が30を上回ると、平板形
状や円板形状のガラス状炭素基材面に被着したSiC膜
に生じる応力差が増大するので、耐熱衝撃性が低下し、
昇温・降温過程において破断し易くなる。この現象はS
iC被着面積が大きいほど著しくなるため、SiC被着
面積の大きい2つの面を対象とする。同様に、円筒形状
の場合には内周面と外周面のSiC膜間に生じる応力差
が大きくなるため、耐熱衝撃性が低下し、昇温・降温過
程における破断が発生し易くなる。
When the value of RaL / RaS exceeds 30, the difference in stress generated in the SiC film deposited on the flat plate-shaped or disk-shaped glassy carbon substrate surface increases, and the thermal shock resistance decreases.
Fracture easily occurs during the temperature rising / falling process. This phenomenon is S
Since the larger the iC deposition area is, the more remarkable it is, so two surfaces having a large SiC deposition area are targeted. Similarly, in the case of a cylindrical shape, the stress difference generated between the SiC films on the inner peripheral surface and the outer peripheral surface becomes large, so the thermal shock resistance decreases and breakage easily occurs during the temperature rising / cooling process.

【0017】なお、表面粗さは、JISB0601記載
の中心線平均粗さに準じて測定し、例えば、(株)東京
精密製超小型表面粗さ測定機ハンディーサーフE−30
Aにより測定することができる。
The surface roughness is measured according to the center line average roughness described in JISB0601, and is, for example, Handy Surf E-30, an ultra-compact surface roughness measuring instrument manufactured by Tokyo Seimitsu Co., Ltd.
It can be measured by A.

【0018】本発明は、表面粗さの比RaL/RaSの値を
規定するものであるが、RaLおよびRaSの値自身は特に
限定されない。それは、用途によって所定の表面粗さが
要求される場合が多いからである。例えば、Siウエハ
ーを真空チャックして固定する場合にはSiウエハーと
接触する面の表面粗さRa は1.0μm 以下が必要とさ
れ、一方、CVD反応装置においてガスや熱の遮蔽板と
して使用される場合には、SiC膜被着面にもCVD反
応による生成物が堆積し、堆積物が剥離して被処理物に
付着するのを避けるため表面粗さRa を10μm 程度に
して堆積物との密着性を高める必要があるなどの理由に
よる。
The present invention defines the value of the surface roughness ratio RaL / RaS, but the values of RaL and RaS themselves are not particularly limited. This is because a predetermined surface roughness is often required depending on the application. For example, when fixing a Si wafer by vacuum chucking, the surface roughness Ra of the surface in contact with the Si wafer needs to be 1.0 μm or less, while it is used as a gas or heat shield plate in a CVD reactor. In this case, the product of the CVD reaction is also deposited on the SiC film adhered surface, and the surface roughness Ra is set to about 10 μm in order to prevent the deposit from peeling off and adhering to the object to be treated. It is necessary to improve the adhesion.

【0019】また、半導体製造装置の部材によっては、
ガラス状炭素基材に予め円形、正方形、矩形、三角形な
どの貫通部を設けておくことが、後の加工に都合が良い
場合もあり、その場合には請求項3および請求項4の発
明のようにガラス状炭素基材に予め円形、正方形、矩
形、三角形などの貫通部を設けた基材が用いられる。
Further, depending on the members of the semiconductor manufacturing apparatus,
It may be convenient for the subsequent processing to preliminarily provide the glassy carbon substrate with a penetrating portion such as a circle, a square, a rectangle, or a triangle. In that case, in the case of the inventions of claims 3 and 4, As described above, a base material in which a penetrating portion such as a circle, a square, a rectangle, or a triangle is provided in advance on the glassy carbon base material is used.

【0020】この場合、ガラス状炭素基材に被着するS
iC膜の膜厚は5〜30μm に設定される。膜厚が5μ
m 未満では均一な厚さに成膜することが困難で、SiC
で被覆されない箇所や膜厚の極めて薄い箇所が存在する
可能性が高くなり、充分な耐酸化性が得られない。一
方、膜厚が30μm を越えると、成膜後にクラックや剥
離が生じ易くなるためである。
In this case, S deposited on the glassy carbon substrate
The film thickness of the iC film is set to 5 to 30 μm. Film thickness is 5μ
If it is less than m, it is difficult to form a film having a uniform thickness.
There is a high possibility that there will be a portion that is not covered by the above or a portion where the film thickness is extremely thin, and sufficient oxidation resistance cannot be obtained. On the other hand, if the film thickness exceeds 30 μm, cracks and peeling are likely to occur after film formation.

【0021】本発明のSiC膜被着ガラス状炭素材は、
ガラス状炭素基材面にSiC膜を被着したのち所定の被
着面、例えば平板や円板では表面と裏面、円筒では内周
面と外周面を所望する表面粗さに処理することにより製
造される。処理法としては、砥粒による研磨やショット
ブラスト、レーザー加工、ウオータージェット加工など
適宜な方法で行うことができる。
The SiC film-adhered glassy carbon material of the present invention is
Manufactured by depositing a SiC film on the surface of a glassy carbon substrate and then treating the prescribed adherend, for example, the front and back surfaces of flat plates and discs, and the inner and outer peripheral surfaces of cylinders to the desired surface roughness. To be done. As a treatment method, it is possible to perform an appropriate method such as polishing with abrasive grains, shot blasting, laser processing, or water jet processing.

【0022】本発明はSiC膜被着ガラス状炭素材のS
iC膜の表面粗さの比を規定したものであり、基材であ
るガラス状炭素材の表面粗さの比を規定したものではな
い。しかしながら、SiC膜の膜厚が30μm 以下の場
合には、ガラス状炭素基材の表面粗さとSiC膜の表面
粗さとはほぼ同じとなるため、ガラス状炭素基材の表面
粗さの比を1.0〜30の範囲に調節することにより、
SiC膜の表面粗さの比RaL/RaSの値を1.0〜30
の範囲に制御することが可能となる。
The present invention is based on S of glassy carbon material coated with SiC film.
The ratio of the surface roughness of the iC film is defined, not the ratio of the surface roughness of the glassy carbon material as the base material. However, when the film thickness of the SiC film is 30 μm or less, the surface roughness of the glassy carbon base material and the surface roughness of the SiC film are almost the same, so the ratio of the surface roughness of the glassy carbon base material is 1 By adjusting the range from 0 to 30,
The surface roughness ratio RaL / RaS of the SiC film is set to 1.0 to 30.
It becomes possible to control in the range of.

【0023】したがって、ガラス状炭素基材の表面を上
記の研磨やショットブラストなどの方法により予め所定
の表面粗さに処理しておけば、被着したSiC膜の表面
粗さ比RaL/RaSの値を1.0〜30の範囲に制御する
ことができる。また、ガラス状炭素材の原料である熱硬
化性樹脂を成形する際に、成形型の表面を所定の粗さに
設定することによりガラス状炭素の表面粗さを制御する
ことも可能である。
Therefore, if the surface of the glassy carbon base material is previously processed to have a predetermined surface roughness by the method such as polishing or shot blasting, the surface roughness ratio RaL / RaS of the adhered SiC film can be reduced. The value can be controlled in the range of 1.0 to 30. Further, it is possible to control the surface roughness of the glassy carbon by setting the surface of the mold to a predetermined roughness when molding the thermosetting resin which is the raw material of the glassy carbon material.

【0024】[0024]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0025】実施例1〜6、比較例1〜7 減圧蒸留により生成したフェノールおよびホルマリンか
ら調製したフェノール樹脂初期縮合物をポリプロピレン
製のバットに流し込み、10Torrの減圧下で3時間脱気
処理したのち、80℃の電気オーブンに入れて予備硬化
した。次いで、成形型から取り出し、10℃/時の昇温
速度で180℃まで昇温し、24時間保持して硬化し
た。この硬化樹脂板を高純度黒鉛板で挟み付けた状態で
電気炉に入れ、周囲を総灰分100 ppm未満の黒鉛粉で
被包して2℃/時の昇温速度で1000℃に加熱して焼
成炭化処理した。更に、雰囲気置換可能な真空炉に移
し、炉内に塩素/アルゴン(モル比:5/95)の精製ガス
を5リットル/分の割合で供給しながら2000℃まで
昇温して高純度化処理を施した。
Examples 1 to 6 and Comparative Examples 1 to 7 Phenol resin initial condensates prepared from phenol and formalin produced by vacuum distillation were poured into a polypropylene vat and deaerated under a reduced pressure of 10 Torr for 3 hours. Pre-cured in an electric oven at 80 ° C. Then, it was taken out from the molding die, heated to 180 ° C. at a heating rate of 10 ° C./hour, and held for 24 hours to be cured. This cured resin plate was sandwiched between high-purity graphite plates and placed in an electric furnace. The surrounding area was covered with graphite powder having a total ash content of less than 100 ppm and heated to 1000 ° C. at a heating rate of 2 ° C./hour. It was calcined and carbonized. Furthermore, it is transferred to a vacuum furnace that can replace the atmosphere, and while purifying gas of chlorine / argon (molar ratio: 5/95) at a rate of 5 liters / minute, the temperature is raised to 2000 ° C. for high purification treatment. Was applied.

【0026】このようにして得られたガラス状炭素板か
ら、300×300mm、厚さ4mmの平板、および、直径
300mm、厚さ4mmの円板を複数枚作製して基材とし
た。なお、一部の基材には中心に直径100mmの貫通孔
を設けた。これらの平板形状および円板形状のガラス状
炭素板の表面と裏面をショットブラストにより所定の表
面粗さに加工してCVD装置の反応チャンバーにセット
し、系内の空気を排気したのち所定温度に加熱し、常圧
(0.1MPa)下に水素ガスを送入して水素ガス雰囲気に置換
した。次いで、原料ガスとしてメチルトリクロロシラ
ン、キャリアガスに水素を用いて、メチルトリクロロシ
ラン/水素ガスの混合ガス中のメチルトリクロロシラン
濃度および反応温度を変えてSiC被膜をガラス状炭素
基材面に被着した。
From the glassy carbon plate thus obtained, a flat plate having a size of 300 × 300 mm and a thickness of 4 mm, and a plurality of discs having a diameter of 300 mm and a thickness of 4 mm were prepared as substrates. A through hole having a diameter of 100 mm was provided at the center of some of the base materials. The front and back surfaces of these flat plate-shaped and disk-shaped glassy carbon plates were processed to a predetermined surface roughness by shot blasting and set in the reaction chamber of the CVD device, and the air in the system was exhausted and then brought to a predetermined temperature. Heated to normal pressure
Hydrogen gas was fed under (0.1 MPa) to replace the atmosphere with hydrogen gas. Then, using methyltrichlorosilane as the source gas and hydrogen as the carrier gas, the concentration of methyltrichlorosilane in the mixed gas of methyltrichlorosilane / hydrogen gas and the reaction temperature were changed to deposit the SiC coating on the glassy carbon substrate surface. did.

【0027】実施例7〜9、比較例8〜10 減圧蒸留により生成したフェノールおよびホルマリンか
ら調製したフェノール樹脂初期縮合物を中子付き円筒に
流し込み、10Torrの減圧下で3時間脱気処理したの
ち、80℃の電気オーブンに入れて予備硬化した。次い
で、成形型から取り出し、10℃/時の昇温速度で18
0℃まで昇温し、24時間保持して硬化した。この硬化
樹脂成形体を電気炉に入れ、周囲を総灰分100 ppm未
満の黒鉛粉で被包して2℃/時の昇温速度で1000℃
に加熱して焼成炭化処理した。更に雰囲気置換可能な真
空炉に移し、炉内に塩素/アルゴン(モル比:5/95)の
精製ガスを5リットル/分の割合で供給しながら200
0℃まで昇温して高純度化処理を施した。
Examples 7 to 9 and Comparative Examples 8 to 10 Phenol resin initial condensates prepared from phenol and formalin produced by vacuum distillation were poured into a cylinder with a core and deaerated under a reduced pressure of 10 Torr for 3 hours. Pre-cured in an electric oven at 80 ° C. Then, it is taken out of the mold and heated at a rate of 10 ° C./hour for 18
The temperature was raised to 0 ° C. and kept for 24 hours to cure. This cured resin molded body is put into an electric furnace, and the surrounding is covered with graphite powder having a total ash content of less than 100 ppm, and the temperature is raised to 1000 ° C at a heating rate of 2 ° C / hour.
Then, it was heated to and calcined. Further, it was transferred to a vacuum furnace capable of atmosphere replacement, and while supplying a purified gas of chlorine / argon (molar ratio: 5/95) at a rate of 5 liters / minute into the furnace, 200
The temperature was raised to 0 ° C. and a purification treatment was performed.

【0028】このようにして内径50mm、外径55mm、
長さ200mmの円筒形状のガラス状炭素基材を複数個作
製した。なお、一部の基材には中心(円筒の長さ100
mmの位置)に直径30mmの貫通孔を設けた。これらの基
材の内周面と外周面をバレル研磨して所定の表面粗さに
加工してCVD装置の反応チャンバーにセットし、系内
の空気を排気したのち所定温度に加熱し、常圧(0.1MPa)
下に水素ガスを送入して水素ガス雰囲気に置換した。次
いで、原料ガスとしてメチルトリクロロシラン、キャリ
アガスに水素を用いて、メチルトリクロロシラン/水素
ガスの混合ガス中のメチルトリクロロシラン濃度および
反応温度を変えてSiC被膜をガラス状炭素基材面に被
着した。
In this way, the inner diameter is 50 mm, the outer diameter is 55 mm,
A plurality of cylindrical glassy carbon substrates having a length of 200 mm were prepared. It should be noted that some base materials have a center (the length of the cylinder is 100
A through hole having a diameter of 30 mm was provided at a position (mm position). The inner peripheral surface and the outer peripheral surface of these base materials are barrel-polished to be processed into a predetermined surface roughness and set in a reaction chamber of a CVD device, air in the system is exhausted, and then heated to a predetermined temperature, and subjected to normal pressure. (0.1MPa)
Hydrogen gas was fed below to replace the atmosphere with hydrogen gas. Then, using methyltrichlorosilane as a source gas and hydrogen as a carrier gas, the concentration of methyltrichlorosilane in the mixed gas of methyltrichlorosilane / hydrogen gas and the reaction temperature are changed to deposit the SiC coating on the glassy carbon substrate surface. did.

【0029】このようにして製造したSiC膜を被着し
たガラス状炭素材の表面と裏面あるいは内周面と外周面
について、下記の方法によりその表面粗さを測定し、値
の大きいものをRaL、小さいものをRaSとした。また、
被着したSiC膜の膜厚を下記の方法で測定した。得ら
れた結果を表1、2に示した。
The surface roughness of the front and back surfaces or the inner and outer peripheral surfaces of the glassy carbon material coated with the SiC film thus manufactured was measured by the following method. , The smaller one was designated as RaS. Also,
The thickness of the deposited SiC film was measured by the following method. The obtained results are shown in Tables 1 and 2.

【0030】表面粗さ;JIS B0601に準じ
て、(株)東京精密製、超小型表面粗さ測定機ハンディ
ーサーフE−30Aを用い、カットオフ値0.8mm、測
定長4mmの条件で測定した。
Surface roughness: Measured in accordance with JIS B0601 using Handysurf E-30A, a micro surface roughness measuring instrument manufactured by Tokyo Seimitsu Co., Ltd., with a cutoff value of 0.8 mm and a measuring length of 4 mm. .

【0031】SiC膜の膜厚;試料を切断して、その
断面をSEMにより観察して膜厚を測定した。
Thickness of SiC film: The sample was cut and the cross section was observed by SEM to measure the film thickness.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】次に、これらのSiC膜被着ガラス状炭素
材について下記の方法により熱衝撃試験および酸化試験
を行って、その結果を表3に示した。なお、SiC膜を
成膜後にクラックや剥離の見られた比較例3と比較例6
については、この試験を行っていない。
Next, these SiC film-adhered glassy carbon materials were subjected to a thermal shock test and an oxidation test by the following methods, and the results are shown in Table 3. Note that Comparative Example 3 and Comparative Example 6 in which cracks and peeling were observed after forming the SiC film
This test has not been carried out.

【0035】熱衝撃試験;1200℃に加熱した電気
炉内に試料を入れて10分間保持したのち、炉から取出
して一気に200℃に冷却し、次いで再び1200℃に
加熱されている電気炉に入れて10分間保持する、とい
う熱サイクル試験を繰り返し行って、SiC被膜にクラ
ックや剥離が発生したり、破断したときの試験回数を求
めた。なお、熱サイクル試験は50回行い、実施例では
50回繰り返し熱サイクル試験を行った後のSiC被膜
の状況を観察した。また、SiC膜を成膜後にクラック
や剥離の見られた比較例3と比較例6については、この
試験を行っていない。
Thermal shock test: The sample was placed in an electric furnace heated to 1200 ° C. and held for 10 minutes, then taken out of the furnace, cooled to 200 ° C. at once, and then put into an electric furnace heated to 1200 ° C. again. The heat cycle test of holding for 10 minutes for 10 minutes was repeated to determine the number of tests when the SiC coating was cracked or peeled or ruptured. The heat cycle test was performed 50 times, and in the examples, the state of the SiC coating after the heat cycle test was repeated 50 times was observed. Further, this test was not conducted for Comparative Example 3 and Comparative Example 6 in which cracks and peeling were observed after forming the SiC film.

【0036】酸化試験;大気雰囲気において、100
0℃の温度に24時間保持した後の重量を測定して、重
量減少率を算出した。
Oxidation test; 100 in the atmosphere
Weight was measured after holding at a temperature of 0 ° C. for 24 hours, and the weight reduction rate was calculated.

【0037】[0037]

【表3】 注) *1 SiC膜に異常なし、 *2 SiC膜にクラッ
ク、剥離、破断など発生
[Table 3] Note) * 1 No abnormality in the SiC film, * 2 Crack, peeling, breakage, etc. occurred in the SiC film

【0038】表1〜3の結果から、実施例1〜9のSi
C膜被着ガラス状炭素材は、200℃から1200℃に
急速加熱および急速冷却する熱衝撃試験を50回繰り返
し行ってもSiC膜に異常が認められない。これに対し
て、RaL/RaSの値が30を越える比較例1、2、4、
5、8、9、10のSiC膜被着ガラス状炭素材は耐熱
衝撃性が著しく劣ることが判る。
From the results of Tables 1 to 3, Si of Examples 1 to 9 was obtained.
With respect to the glassy carbonaceous material coated with the C film, no abnormality was found in the SiC film even after the thermal shock test of rapid heating and rapid cooling from 200 ° C. to 1200 ° C. was repeated 50 times. On the other hand, Comparative Examples 1, 2, 4, in which the value of RaL / RaS exceeds 30,
It can be seen that the SiC film-coated glassy carbonaceous materials of 5, 8, 9, and 10 are extremely inferior in thermal shock resistance.

【0039】また、表面粗さの比RaL/RaSの値が30
以下であっても、SiC膜の膜厚が30μm を越える比
較例3、6では、SiC膜の成膜後にクラックや剥離が
発生しており、一方、SiC膜の膜厚が5μm 以下の比
較例7ではSiC膜に色斑があり、部分的に基材の露出
が認められ、耐酸化性、耐熱衝撃性も劣ることが認めら
れた。
The surface roughness ratio RaL / RaS is 30.
Even in the following cases, in Comparative Examples 3 and 6 in which the film thickness of the SiC film exceeds 30 μm, cracks and peeling occurred after the film formation of the SiC film, while the comparative examples in which the film thickness of the SiC film was 5 μm or less. In No. 7, it was confirmed that the SiC film had color spots, the substrate was partially exposed, and the oxidation resistance and thermal shock resistance were inferior.

【0040】[0040]

【発明の効果】以上のとおり、本発明のSiC膜被着ガ
ラス状炭素材によれば、SiC膜が被着された、被着面
積の大きい2つの面の表面粗さの比(RaL/RaS)を
1.0〜30に特定するとともにSiC膜の膜厚を5〜
30μm に特定することにより、優れた耐熱衝撃性およ
び耐酸化性を備え、ガイドリング、サセプタ、ライナー
チューブ、プロセスチューブ、ウエハーボート、単結晶
引上げ装置などの半導体製造に用いられる各種熱処理用
の耐熱部材として好適に使用することができる。
As described above, according to the SiC film-deposited glassy carbon material of the present invention, the ratio of the surface roughness (RaL / RaS) of two surfaces having a large adhered area, to which the SiC film is adhered, is measured. ) Is specified as 1.0 to 30 and the thickness of the SiC film is set to 5
By specifying 30 μm, it has excellent thermal shock resistance and oxidation resistance, and heat-resistant members for various heat treatments used in semiconductor manufacturing such as guide rings, susceptors, liner tubes, process tubes, wafer boats, and single crystal pulling equipment. Can be preferably used as.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 平板あるいは円板形状のガラス状炭素基
材面にCVD法により析出させたSiC膜を被着したS
iC膜被着ガラス状炭素材において、SiC膜被着面の
うち面積の大きい2つの面の表面粗さRaL、RaS(但
し、RaL≧RaS)の比RaL/RaSの値が1.0〜30
で、かつSiC膜の膜厚が5〜30μm であることを特
徴とするSiC膜被着ガラス状炭素材。
1. An S film obtained by depositing a SiC film deposited by a CVD method on the surface of a flat plate-shaped or disk-shaped glassy carbon substrate.
In the iC film-deposited glassy carbon material, the ratio RaL / RaS of the surface roughnesses RaL and RaS (however, RaL ≧ RaS) of two surfaces having a large area among the SiC film-deposited surfaces has a value RaL / RaS of 1.0 to 30.
And a SiC film-coated glassy carbonaceous material, characterized in that the film thickness of the SiC film is 5 to 30 μm.
【請求項2】 円筒形状のガラス状炭素基材面にCVD
法により析出させたSiC膜を被着したSiC膜被着ガ
ラス状炭素材において、内周面と外周面の表面粗さのう
ち大きい方をRaL、小さい方をRaSとして、表面粗さの
比RaL/RaSの値が1.0〜30で、かつSiC膜の膜
厚が5〜30μm であることを特徴とするSiC膜被着
ガラス状炭素材。
2. CVD on a cylindrical glassy carbon substrate surface
In the SiC film-deposited glassy carbon material coated with the SiC film deposited by the method, the larger surface roughness of the inner peripheral surface and the outer peripheral surface is RaL, and the smaller surface roughness is RaS. A glassy carbon material coated with a SiC film, wherein the value of / RaS is 1.0 to 30 and the film thickness of the SiC film is 5 to 30 μm.
【請求項3】 ガラス状炭素基材が円形、正方形、矩
形、三角形などの貫通部を有するものである請求項1記
載のSiC膜被着ガラス状炭素材。
3. The SiC film-adhered glassy carbon material according to claim 1, wherein the glassy carbon substrate has a penetrating portion such as a circle, a square, a rectangle, and a triangle.
【請求項4】 ガラス状炭素基材が円形、正方形、矩
形、三角形などの貫通部を有するものである請求項2記
載のSiC膜被着ガラス状炭素材。
4. The SiC film-adhered glassy carbon material according to claim 2, wherein the glassy carbon substrate has a penetrating portion such as a circle, a square, a rectangle, and a triangle.
JP2002070041A 2002-03-14 2002-03-14 SiC FILM-FORMED GLASSY CARBON STOCK Pending JP2003268548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002070041A JP2003268548A (en) 2002-03-14 2002-03-14 SiC FILM-FORMED GLASSY CARBON STOCK

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002070041A JP2003268548A (en) 2002-03-14 2002-03-14 SiC FILM-FORMED GLASSY CARBON STOCK

Publications (1)

Publication Number Publication Date
JP2003268548A true JP2003268548A (en) 2003-09-25

Family

ID=29200724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002070041A Pending JP2003268548A (en) 2002-03-14 2002-03-14 SiC FILM-FORMED GLASSY CARBON STOCK

Country Status (1)

Country Link
JP (1) JP2003268548A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100339503C (en) * 2003-10-28 2007-09-26 东洋炭素株式会社 Silicon carbide-coated carbonaceous material and carbonaceous material to be coated with silicon carbide
WO2023112607A1 (en) * 2021-12-13 2023-06-22 東海カーボン株式会社 Wafer lift pin and sic film-coated glassy carbon material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100339503C (en) * 2003-10-28 2007-09-26 东洋炭素株式会社 Silicon carbide-coated carbonaceous material and carbonaceous material to be coated with silicon carbide
WO2023112607A1 (en) * 2021-12-13 2023-06-22 東海カーボン株式会社 Wafer lift pin and sic film-coated glassy carbon material

Similar Documents

Publication Publication Date Title
KR101593922B1 (en) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof
JPH03146672A (en) Susceptor for cvd
KR100427118B1 (en) Heat treatment jig and its manufacturing method
JPH1012692A (en) Dummy wafer
JP2010228965A (en) Corrosion resistant member
JP4071919B2 (en) SiC-coated graphite member and method for producing the same
JP5110464B2 (en) Manufacturing method of CVD-SiC simple substance film
JP2000302577A (en) Graphite member coated with silicon carbide
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JP2000302576A (en) Graphite material coated with silicon carbide
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
JP2003268548A (en) SiC FILM-FORMED GLASSY CARBON STOCK
KR20040014257A (en) Component of glassy carbon for cvd apparatus and process for production thereof
JP3929140B2 (en) Corrosion resistant member and manufacturing method thereof
JP2011074436A (en) Silicon carbide material
JP3773341B2 (en) SiC coated carbon material
JP4455895B2 (en) Method for producing vapor-deposited ceramic coating material
JP3925884B2 (en) Method for coating SiC film
JP2007012933A (en) Semiconductor manufacturing device and component therefor
JP4556090B2 (en) Member for silicon carbide semiconductor manufacturing apparatus and method for manufacturing the same
JPH1067584A (en) Reaction vessel
JPH0647516B2 (en) Graphite susceptor for plasma CVD
JPH10287495A (en) High-purity silicon carbide-based semiconductor treating member and its production
JP3857446B2 (en) SiC molded body
JP5876259B2 (en) Method for manufacturing member covered with aluminum nitride film