JP5876259B2 - Method for manufacturing member covered with aluminum nitride film - Google Patents

Method for manufacturing member covered with aluminum nitride film Download PDF

Info

Publication number
JP5876259B2
JP5876259B2 JP2011220004A JP2011220004A JP5876259B2 JP 5876259 B2 JP5876259 B2 JP 5876259B2 JP 2011220004 A JP2011220004 A JP 2011220004A JP 2011220004 A JP2011220004 A JP 2011220004A JP 5876259 B2 JP5876259 B2 JP 5876259B2
Authority
JP
Japan
Prior art keywords
coating film
aluminum nitride
fluorine
film
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011220004A
Other languages
Japanese (ja)
Other versions
JP2012229149A (en
Inventor
狩野 正樹
正樹 狩野
加藤 公二
公二 加藤
山村 和市
和市 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2011220004A priority Critical patent/JP5876259B2/en
Publication of JP2012229149A publication Critical patent/JP2012229149A/en
Application granted granted Critical
Publication of JP5876259B2 publication Critical patent/JP5876259B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、フッ素系の腐食性ガスに対する耐性に優れた部材に関し、特に、放熱用基板や半導体デバイスの製造工程に好適に使用される静電チャック、ウエハを加熱するセラミックスヒーター、半導体製造装置内で使用される円板、シャワープレート及びリング形状の部材等の、フッ素系腐食性ガスに対する耐性に優れた部材の製造方法に関する。 The present invention relates to a member excellent in resistance to a fluorine-based corrosive gas, and in particular, an electrostatic chuck, a ceramic heater for heating a wafer, and a semiconductor manufacturing apparatus that are preferably used in a manufacturing process of a heat dissipation substrate or a semiconductor device. The present invention relates to a method for producing a member excellent in resistance to a fluorine-based corrosive gas , such as a disc, a shower plate, and a ring-shaped member used in the above.

半導体製造工程において、CVD装置を用いてシリコンウエハ上に酸化膜や配線のメタル膜等を形成させる場合、ウエハ以外の余分な箇所にも膜成分が付着する。この余分に付着した膜成分を除去するために行われる定期的なセルフクリーニングのために、或いは、エッチング装置を用いて熱エッチングやプラズマエッチングにより形成した膜を除去する際に、腐蝕性の高い、NF3、CF4、ClF3 等のフッ素系ガスが用いられている。 In a semiconductor manufacturing process, when a CVD apparatus is used to form an oxide film, a metal film of wiring, or the like on a silicon wafer, film components adhere to extra portions other than the wafer. Highly corrosive for periodic self-cleaning performed to remove this excessively adhered film component, or when removing a film formed by thermal etching or plasma etching using an etching apparatus, A fluorine-based gas such as NF 3 , CF 4 , or ClF 3 is used.

このような高腐蝕性ガス中という厳しい条件下で使用する、ウエハを載置するサセプタやクランプリング、フォーカスリング等の、半導体装置を構成する部材としては、従来、シリコン(Si)や石英ガラス、炭化珪素等が、用途に応じて選択され適用されてきた。しかしながら、従来用いられているこれらの材料には、以下のような種々の問題があった。   As a member constituting a semiconductor device, such as a susceptor, a clamp ring, and a focus ring for mounting a wafer, which are used under such severe conditions as highly corrosive gas, conventionally, silicon (Si), quartz glass, Silicon carbide or the like has been selected and applied depending on the application. However, these conventionally used materials have the following various problems.

例えば、石英ガラスの場合には、反応性の高いフッ素系ガスの存在下においては、フッ化珪素等の反応生成物の蒸気圧が高く、気体となって揮散するため、腐蝕が連続的に進行し部材の消失が生じるという欠点があった。   For example, in the case of quartz glass, in the presence of a highly reactive fluorine-based gas, the vapor pressure of reaction products such as silicon fluoride is high and vaporizes as a gas, so that corrosion proceeds continuously. However, there has been a drawback that the disappearance of the members occurs.

また炭化珪素の場合には、基本的には石英ガラスよりも耐蝕性が優れているものの、半導体製造装置用として使用する炭化珪素は、主にシリコン含浸炭化珪素であるため、シリコン部がフッ素系ガスとの反応により消失する。このため、構造組織が緻密化された基材から炭化珪素が離脱し易く、半導体不良の原因となるパーティクルを発生し易くなるという欠点があった。   In addition, in the case of silicon carbide, although the corrosion resistance is basically better than that of quartz glass, silicon carbide used for semiconductor manufacturing equipment is mainly silicon-impregnated silicon carbide. Disappears upon reaction with gas. For this reason, there is a drawback in that silicon carbide is easily detached from a substrate having a dense structure, and particles that cause a semiconductor defect are easily generated.

一方、窒化アルミニウム焼結体の場合には、上記材料に比べて耐蝕性に優れているので、最近は、窒化アルミニウム焼結体部材が、特に半導体製造工程で使用される耐蝕部材として多く採用されるようになった。しかしながら、窒化アルミニウム焼結体を成型体とした場合には、微量の焼結助剤を含有すると共に、製法特有の粒界が存在する。したがって、長時間フッ素系ガスに曝されると、助剤部分や粒界部分付近が選択的にエッチングされ、上記石英や炭化珪素の場合ほどではないものの、徐々に劣化するため、長時間使用すると前記パーティクルを発生し易くなると言う欠点があった。   On the other hand, in the case of an aluminum nitride sintered body, since it is superior in corrosion resistance compared to the above materials, recently, an aluminum nitride sintered body member has been widely adopted as a corrosion resistant member used particularly in a semiconductor manufacturing process. It became so. However, when the aluminum nitride sintered body is formed into a molded body, it contains a trace amount of a sintering aid and has grain boundaries peculiar to the manufacturing method. Therefore, when exposed to fluorine-based gas for a long time, the auxiliary part and the vicinity of the grain boundary part are selectively etched, and although it is not as much as in the case of the above-mentioned quartz or silicon carbide, it gradually deteriorates. There is a drawback that the particles are easily generated.

近年、前記したような従来の欠点を改善するために、窒化アルミニウム焼結体の表面にフッ化アルミニウム膜を設けて、フッ素系腐蝕性ガスに対する耐蝕性を改善することが提案された(特許文献1)。しかしながらこの場合には、窒化アルミニウム焼結体(セラミックス)基材の熱膨張率が4×10-6/℃であるのに対し、フッ化アルミニウムの熱膨張率は1.9×10-5/℃と5倍程度の差があるために、フッ化アルミニウム膜にクラックが発生し、ヒートサイクルを伴う使用においては、酷い場合には、フッ化アルミニウム膜が剥がれるという欠点があった。 In recent years, in order to improve the conventional defects as described above, it has been proposed to provide an aluminum fluoride film on the surface of an aluminum nitride sintered body to improve the corrosion resistance against a fluorine-based corrosive gas (Patent Literature). 1). However, in this case, the thermal expansion coefficient of the aluminum nitride sintered body (ceramics) substrate is 4 × 10 −6 / ° C., whereas the thermal expansion coefficient of aluminum fluoride is 1.9 × 10 −5 / ° C. Since there is a difference of about 5 times, cracks occur in the aluminum fluoride film, and there is a drawback that the aluminum fluoride film is peeled off in severe cases when used with a heat cycle.

特開平5-251365JP 5-251365 A

したがって本発明の第1の目的は、フッ素系腐蝕性ガスに対する耐蝕性に優れる部材の製造方法を提供することにある。
本発明の第2の目的は、フッ素系腐蝕性ガスに対する耐蝕性に優れる部材だけでなく、ヒートサイクルを伴う使用にも十分耐え、熱膨張差によるクラックの発生や剥離が生じ難い、基材との密着性に優れた被覆膜を有する部材を提供することにある。
Accordingly, a first object of the present invention is to provide a method for producing a member having excellent corrosion resistance against a fluorine-based corrosive gas .
The second object of the present invention is not only a member excellent in corrosion resistance against fluorine-based corrosive gas , but also sufficiently withstands use with a heat cycle, and is less likely to cause cracking or peeling due to a difference in thermal expansion. An object of the present invention is to provide a member having a coating film having excellent adhesion.

本発明者らは、上記の目的を達成するために鋭意検討した結果、基材を被覆する膜として、被覆膜表面から内部に向けて熱膨張率が徐々に変化する耐蝕性の窒化アルミニウム膜を使用した場合には、該膜にクラック等が発生し難く、被覆膜の基材への密着性が良好となることを見出し、本発明に到達した。
即ち本発明は、(1)窒化アルミニウム、熱分解窒化硼素、窒化硼素と窒化アルミニウムの混合焼結体、熱分解窒化硼素コートグラファイト、希土類酸化物、酸化アルミニウム、酸化珪素、ジルコニア、サイアロン、グラファイト、シリコン、タングステン及びニッケル並びにインコネルからなる群の中から選択される1種を主成分としてなる基材の少なくとも一部表面に、化学気相成長法によって、相対密度が70〜98%で厚みが5〜500μmの窒化アルミニウムからなる被覆膜を設ける工程、
(2)前記窒化アルミニウム被覆膜の表面を100℃〜500℃のフッ素系腐食性ガス雰囲気中で処理する工程、及び、
(3)前記被覆膜が、その最表面に1原子%以上40原子%以下のフッ素を含有するように、前記処理工程(2)における処理時間及びアルミニウム被覆膜の表面温度の管理・調整を行う工程、
を含むことを特徴とする、フッ素系腐食性ガスに対する耐性に優れた部材の製造方法である。
本発明においては、前記化学気相成長法の工程における加熱温度が800℃〜1200℃であることが好ましく、該工程が特に、前記被覆膜中の相対密度が80〜95%となるように調整された工程であることが好ましく、更に、被腹膜の厚み10〜300μmとなるように調整された工程であることが好ましい。
As a result of intensive studies to achieve the above-mentioned object, the present inventors have determined that a corrosion-resistant aluminum nitride film whose coefficient of thermal expansion gradually changes from the surface of the coating film toward the inside as a film for coating the substrate. It was found that when the film was used, cracks and the like were hardly generated in the film, and the adhesion of the coating film to the base material was improved, and the present invention was achieved.
That is, the present invention provides: (1) Aluminum nitride, pyrolytic boron nitride, mixed sintered body of boron nitride and aluminum nitride, pyrolytic boron nitride coated graphite, rare earth oxide, aluminum oxide, silicon oxide, zirconia, sialon, graphite, A relative density of 70 to 98% and a thickness of 5 are formed on at least a part of the surface of a base material mainly composed of one selected from the group consisting of silicon, tungsten, nickel and inconel by chemical vapor deposition. Providing a coating film made of aluminum nitride of ~ 500 μm;
(2) a step of treating the surface of the aluminum nitride coating film in a fluorine corrosive gas atmosphere at 100 ° C. to 500 ° C., and
(3) Management and adjustment of the treatment time in the treatment step (2) and the surface temperature of the aluminum coating film so that the coating film contains 1 atomic% to 40 atomic% of fluorine on the outermost surface. The process of performing,
It is a manufacturing method of the member excellent in the tolerance with respect to fluorine type corrosive gas characterized by including .
In the present invention, it is preferable that the heating temperature in the chemical vapor deposition step is 800 ° C. to 1200 ° C., the process is particularly, such that the relative density in the coating film becomes 80% to 95% it is rather preferably be adjusted step further is preferably a step of thickness of the peritoneum has been adjusted to be 10 to 300 [mu] m.

本発明の方法によって製造された部材においては、被覆膜の基材への密着性が優れているので、ヒートサイクルに曝されてもクラックや膜剥がれ等が発生し難い上、フッ素プラズマガスに対する耐蝕性にも優れるという効果も奏する。 In the member manufactured by the method of the present invention, the adhesion of the coating film to the base material is excellent, so that cracks and film peeling do not easily occur even when exposed to a heat cycle, and against the fluorine plasma gas. There is also an effect of excellent corrosion resistance.

基材の表面をフッ素含有窒化アルミニウム被覆膜で保護した、本発明の方法で製造された部材の断面概念図である。 It is a section conceptual diagram of the member manufactured by the method of the present invention which protected the surface of the substrate with the fluorine-containing aluminum nitride coating film. 本発明の方法で製造された部材の具体的使用例を説明するための、フッ素含有窒化アルミニウム被覆膜によって耐蝕性部材の表面が保護された、内部にウエハを加熱するヒーターが内蔵されており、表面が本発明の方法で製造された部材からなる静電チャックの断面概念図である。A heater for heating the wafer is built in the surface of the corrosion-resistant member protected by a fluorine-containing aluminum nitride coating film to explain a specific use example of the member manufactured by the method of the present invention. FIG. 2 is a conceptual cross-sectional view of an electrostatic chuck whose surface is made of a member manufactured by the method of the present invention. 本発明の方法で製造された部材の具体的使用例を説明するための、フッ素含有窒化アルミニウム被覆膜によって耐蝕性部材の表面が保護された、表面が本発明の方法で製造された部材からなる試料ホルダ(ウエハホルダ)の断面概念図である。Illustrating a specific example of use of member manufactured by the method of the present invention, the fluorine-containing aluminum nitride coating the surface of the corrosion-resistant member is protected, from the surface produced by the process of the present invention member It is a section conceptual diagram of a sample holder (wafer holder). 本発明の方法で製造された部材の具体的使用例を説明するための、フッ素含有窒化アルミニウム被覆膜によって耐蝕性部材の表面が保護された、表面が本発明の方法で製造された部材からなるリング部品の断面概念図である。Illustrating a specific example of use of member manufactured by the method of the present invention, the fluorine-containing aluminum nitride coating the surface of the corrosion-resistant member is protected, from the surface produced by the process of the present invention member FIG. 基材の表面をフッ素含有窒化アルミニウム被覆膜で保護した部材における、前記基材と被覆膜の間の密着強度を測定する方法を説明するための概念図である。It is a conceptual diagram for demonstrating the method to measure the adhesive strength between the said base material and coating film in the member which protected the surface of the base material with the fluorine-containing aluminum nitride coating film. 耐熱性部材の表面をフッ素含有窒化アルミニウム被覆膜で保護した耐蝕性部材の、断面のEDX分析データを示すグラフである。It is a graph which shows the EDX analysis data of the cross section of the corrosion-resistant member which protected the surface of the heat-resistant member with the fluorine-containing aluminum nitride coating film. 図6の表面付近を拡大した、EDX分析データを示すグラフである。It is a graph which shows the EDX analysis data which expanded the surface vicinity of FIG.

以下本発明を、図面を参照しつつ詳細に説明する。
図1は、基材101の表面をフッ素含有窒化アルミニウム被覆膜103で保護した、本発明の方法で製造された部材(以下、単に「本発明の部材」とする。)の断面概念図である。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a conceptual cross-sectional view of a member manufactured by the method of the present invention (hereinafter, simply referred to as “member of the present invention”) in which the surface of the substrate 101 is protected by a fluorine-containing aluminum nitride coating film 103. is there.

前記フッ素含有窒化アルミニウムによって被覆される基材は、通常、高温で腐蝕性の高い、NF3、CF4、ClF3 等のフッ素系ガスに曝される環境に使用される部材である。したがって、これらの部材は、上記腐食性ガスに対する耐性が比較的高い材質であることが好ましい。このような基材は、通常、シリコン、タングステン及びニッケル等の高融点金属、窒化アルミニウム、熱分解窒化硼素、窒化硼素と窒化アルミニウムの混合焼結体、熱分解窒化硼素コートグラファイト、希土類酸化物、酸化アルミニウム、酸化珪素、ジルコニア、サイアロン、及びグラファイト等のセラミックス、並びにインコネル等の高融点合金からなる群の中から選択される何れかを主成分とすれば良い。このようにすることにより、半導体製造装置内における800℃程度の高温成膜プロセスにも十分に対応することができる。 The base material coated with the fluorine-containing aluminum nitride is a member used in an environment exposed to a fluorine-based gas such as NF 3 , CF 4 , or ClF 3 that is usually highly corrosive at high temperatures. Therefore, these members are preferably made of a material having a relatively high resistance to the corrosive gas. Such base materials are usually refractory metals such as silicon, tungsten and nickel, aluminum nitride, pyrolytic boron nitride, mixed sintered body of boron nitride and aluminum nitride, pyrolytic boron nitride coated graphite, rare earth oxide, The main component may be selected from the group consisting of ceramics such as aluminum oxide, silicon oxide, zirconia, sialon, and graphite, and a high melting point alloy such as inconel. By doing so, it is possible to sufficiently cope with a high-temperature film forming process of about 800 ° C. in the semiconductor manufacturing apparatus.

図2〜図4は、本発明の部材を応用した具体例であり、図2は静電チャックの断面概念図、図3はウエハホルダの断面概念図、図4はリング部品の断面概念図である。図5は、基材101の表面をフッ素含有窒化アルミニウム被覆膜103で保護した本発明の部材における、前記基材と被覆膜の間の密着強度を測定する方法を説明するための概念図である。    2 to 4 are specific examples in which the member of the present invention is applied. FIG. 2 is a conceptual sectional view of an electrostatic chuck, FIG. 3 is a conceptual sectional view of a wafer holder, and FIG. 4 is a conceptual sectional view of a ring component. . FIG. 5 is a conceptual diagram for explaining a method of measuring the adhesion strength between the base material and the coating film in the member of the present invention in which the surface of the base material 101 is protected by the fluorine-containing aluminum nitride coating film 103. It is.

本発明においては、上記基材表面の少なくとも一部を覆うように、基材表面に窒化アルミニウム被覆膜等の保護膜を形成させる。これによって、基材に、フッ素系ガスのような高腐蝕性ガスに対する耐性を付与する。この場合、上記窒化アルミニウム被覆膜を、表面におけるフッ素含有量が1原子%〜40原子%である窒化アルミニウム被覆膜とすることが必要である。これによって、基材と窒化アルミニウム被覆膜との密着強度を高め、部材としての機械的特性を向上させることができるので、ヒートサイクルに曝しても、クラックや膜剥離が発生することを抑制することができ、したがって膜厚を十分厚くしても割れることが無く、半導体の不良率を高めるパーティクルの発生を抑えることができる。   In the present invention, a protective film such as an aluminum nitride coating film is formed on the substrate surface so as to cover at least a part of the substrate surface. This gives the substrate resistance to a highly corrosive gas such as a fluorine-based gas. In this case, the aluminum nitride coating film needs to be an aluminum nitride coating film having a fluorine content of 1 atomic% to 40 atomic% on the surface. As a result, the adhesion strength between the base material and the aluminum nitride coating film can be increased and the mechanical properties as a member can be improved, so that the occurrence of cracks and film peeling is suppressed even when exposed to a heat cycle. Therefore, even if the film thickness is sufficiently thick, it is not cracked, and generation of particles that increase the defect rate of the semiconductor can be suppressed.

前記フッ素含有量が1原子%未満では被覆膜の十分な密着強度が得られず、フッ素系ガスに対する耐蝕性が不十分となり、40原子%以上となると膜が脆くなりクラックが発生し易く、密着強度も低下する。本発明においては、前記フッ素含有量を2原子%以上30原子%以下とすることが好ましい。   When the fluorine content is less than 1 atomic%, sufficient adhesion strength of the coating film cannot be obtained, and the corrosion resistance against the fluorine-based gas becomes insufficient. When the fluorine content is 40 atomic% or more, the film becomes brittle and cracks easily occur. The adhesion strength also decreases. In the present invention, the fluorine content is preferably 2 atom% or more and 30 atom% or less.

本発明においては、前記フッ素含有窒化アルミニウム被覆膜中のフッ素含有量が、被覆膜表面から膜内部に向かって漸次減少することが好ましい。このようにすることにより、密着強度を飛躍的に向上させることができる。   In the present invention, it is preferable that the fluorine content in the fluorine-containing aluminum nitride coating film gradually decreases from the coating film surface toward the inside of the film. By doing in this way, contact | adhesion intensity | strength can be improved significantly.

上記のようなフッ素含有量の勾配は、化学気相成長法(CVD)によって相対密度70〜98%に調整した窒化アルミニウム被覆膜を基材表面に成膜した後に、該窒化アルミニウム被覆膜の表面をフッ素系腐食性ガス雰囲気中で100℃以上500℃未満の温度で加熱する本発明の製造方法によって容易に形成することができる(図6及び図7参照)。 The gradient of fluorine content as described above is obtained by depositing an aluminum nitride coating film adjusted to a relative density of 70 to 98% by chemical vapor deposition (CVD) on the surface of the substrate, and then the aluminum nitride coating film. Can be easily formed by the production method of the present invention in which the surface is heated in a fluorine-based corrosive gas atmosphere at a temperature of 100 ° C. or higher and lower than 500 ° C. (see FIGS. 6 and 7).

上記被覆膜の相対密度が70%以下であると、フッ素系腐食性ガスによる処理によって導入されるフッ素含有量が多くなり、膜が膨張して割れが生じる。一方相対密度が98%以上であるとフッ素系腐食性ガスによる処理によって導入されるフッ素含有量が少なく、期待する効果が得られない。本発明においては、特に、相対密度が80%以上95%以下となるように調節することが好ましい。
When the relative density of the coating film is 70% or less, the fluorine content introduced by the treatment with the fluorine-based corrosive gas increases, and the film expands to cause cracks. On the other hand, if the relative density is 98% or more, the fluorine content introduced by the treatment with the fluorine-based corrosive gas is small, and the expected effect cannot be obtained. In the present invention, in particular, Rukoto be adjusted so that the relative density is 95% 80% or less is preferable.

前記CVD法とは、具体的には、アルミニウムの有機金属化合物又は塩化アルミニウムとアンモニアを原料とした化学気相成長法であり、その反応温度は800℃〜1200℃の間であることが好ましい。これにより、結晶性に優れた高純度の窒化アルミニウム被覆膜が得られる。このように化学気相成長法を利用することは、金属不純物が50ppm以下と非常に少ない窒化アルミニウム被覆膜とすることができるので、高純度を要求される半導体製造装置の部材、ヒーター、静電チャック等に、特に好都合である。   Specifically, the CVD method is a chemical vapor deposition method using an organometallic compound of aluminum or aluminum chloride and ammonia as raw materials, and the reaction temperature is preferably between 800 ° C and 1200 ° C. Thereby, a high purity aluminum nitride coating film having excellent crystallinity is obtained. By using the chemical vapor deposition method in this way, an aluminum nitride coating film having a very low metal impurity of 50 ppm or less can be obtained. Therefore, a member of a semiconductor manufacturing apparatus, a heater, It is particularly convenient for an electric chuck or the like.

これに対し、窒化アルミニウム焼結体の表面を単純にフッ素で置換する表面処理を施した場合には、焼結体中の金属不純物(焼結助剤やCa、Na、重金属等)がフッ素で置換される箇所にも存在するので、金属汚染が懸念される。金属不純物の少ない被覆膜であれば、金属不純物のコンタミネーションによる半導体への影響が少ないという優位性も付与される。   On the other hand, when the surface treatment for simply replacing the surface of the aluminum nitride sintered body with fluorine is performed, metal impurities (sintering aid, Ca, Na, heavy metal, etc.) in the sintered body are fluorine. Since it is also present at the place where it is replaced, metal contamination is a concern. If the coating film has few metal impurities, the advantage that there is little influence on the semiconductor due to contamination of metal impurities is given.

本発明においては、前記窒化アルミニウム被覆膜の厚さを5μm以上500μm以下とすることにより、使用条件によって多少異なるものの、十分に所望する耐蝕性が得られる。
被覆膜の厚さが5μm未満であると、部分的に欠陥があった場合に下地の母材が腐蝕され、半導体の不良率を高めるパーティクルが発生するという危険性がある。また、そこから金属不純物が飛散するという可能性もある。一方、500μmを超えると、膜の内部応力により基材との境界部分から分離する危険性があるだけでなく、製造するのに膨大な時間がかかってコスト的に見合わない。したがって本発明においては、窒化アルミニウム被覆膜の厚さを10μm以上300μm以下とすることが特に好ましい。
以下、実施例及び比較例によって更に本発明を説明するが、本発明はこれらによって限定されるものではない。
In the present invention, by setting the thickness of the aluminum nitride coating film to 5 μm or more and 500 μm or less, sufficiently desired corrosion resistance can be obtained although it varies slightly depending on the use conditions.
If the thickness of the coating film is less than 5 μm, there is a risk that if there is a partial defect, the base material of the base is corroded and particles that increase the defective rate of the semiconductor are generated. There is also the possibility that metal impurities will scatter from there. On the other hand, if it exceeds 500 μm, there is not only a risk of separation from the boundary portion with the base material due to internal stress of the film, but also it takes an enormous amount of time to manufacture and it is not cost effective. Therefore, in the present invention, the thickness of the aluminum nitride coating film is particularly preferably 10 μm or more and 300 μm or less.
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further, this invention is not limited by these.

[実施例及び比較例]
長さ50mm、幅15mm、厚さ0.5mmの窒化アルミ焼結体基材の表面全体に、熱CVD法によって被覆膜を設けた。
上記被覆膜を成膜するに際しては、原料であるアルミニウムの有機金属化合物としてトリメチルアルミニウムをバブラー法によって供給し、バブリング用のガスとしてArガスを用いた。なお、Arガスの代わりにN2、H2、He等を用いても同様の結果が得られる。
[Examples and Comparative Examples]
A coating film was provided on the entire surface of the aluminum nitride sintered base having a length of 50 mm, a width of 15 mm, and a thickness of 0.5 mm by a thermal CVD method.
When forming the coating film, trimethylaluminum was supplied by a bubbler method as an organometallic compound of aluminum as a raw material, and Ar gas was used as a bubbling gas. Similar results can be obtained by using N 2 , H 2 , He or the like instead of Ar gas.

トリメチルアルミニウムを、25℃の温度で一定になるように恒温槽に入れ、バブリング用のArガス流量を1〜4L/分とし、シリンダ内の圧力をゲージ圧で10kPaとなるように制御した。成膜に際するトリメチルアルミニウムの供給量を0.1〜0.4mol/hrの間で変え、種々の相対密度の被覆膜を形成させた。
一方、アンモニア原料については、直接加熱気化させて供給量が1.7mol/hrとなるようにMFC(マスフローコントローラー)で調整して供給した。反応炉内を真空状態となるように真空ポンプでガスを排気しながら、圧力が絶対圧で50Pa程度になるように調整し、厚さ95μm、相対密度65%〜99%の被覆膜を形成させた。
Trimethylaluminum was placed in a thermostatic bath so as to be constant at a temperature of 25 ° C., the Ar gas flow rate for bubbling was set to 1 to 4 L / min, and the pressure in the cylinder was controlled to be 10 kPa as a gauge pressure. The supply amount of trimethylaluminum during film formation was changed between 0.1 to 0.4 mol / hr to form coating films having various relative densities.
On the other hand, the ammonia raw material was directly heated and vaporized and adjusted and supplied with an MFC (mass flow controller) so that the supply amount became 1.7 mol / hr. While exhausting the gas with a vacuum pump so that the inside of the reactor is in a vacuum state, the pressure is adjusted to about 50 Pa in absolute pressure to form a coating film with a thickness of 95 μm and a relative density of 65% to 99% I let you.

被覆膜が形成された基材を、室温から550℃まで種々変更して、フッ素気流中(50sccm)で4時間加熱処理を行った。比較例として、加熱処理を行わない基材も準備した。
各条件で作製された被覆膜について、表面のフッ素量と膜の密着強度を調べた。相対密度が90%の被覆膜を形成させた後に、フッ素気流中で加熱処理温度を変えて、フッ素含有量を変化させた部材に関する結果を表1に示し、相対密度が65%〜99%の被覆膜を形成させた後に、400℃のフッ素気流中で加熱処理した部材に関する結果を表2に示した。
The base material on which the coating film was formed was variously changed from room temperature to 550 ° C., and was subjected to heat treatment in a fluorine gas flow (50 sccm) for 4 hours. As a comparative example, a base material not subjected to heat treatment was also prepared.
The coating film prepared under each condition was examined for the amount of fluorine on the surface and the adhesion strength of the film. Table 1 shows the results for members in which the fluorine content was changed by changing the heat treatment temperature in a fluorine stream after forming a coating film having a relative density of 90%. The relative density was 65% to 99%. Table 2 shows the results regarding the members heat-treated in a fluorine stream at 400 ° C. after forming the coating film.

被覆膜中のフッ素量は、サンプルの断面をSEM-EDX(EDAX社)を用いて測定し、Al,N,O,Fの総和を100%として、定量分析によって決定した。一方、被覆膜の密着強度は、薄膜密着強度測定機Romulus(QUAD GROUP社)を用い、エポキシ接着剤付Al製のスタットピン(先端φ2.7mm)を加熱して被覆膜に接着し、室温まで十分に冷却した後に該スタットピンをロードセルで引張り、剥がれる強度を測定した。   The amount of fluorine in the coating film was determined by quantitative analysis by measuring the cross section of the sample using SEM-EDX (EDAX) and setting the total of Al, N, O, and F as 100%. On the other hand, the adhesion strength of the coating film is adhered to the coating film by heating an Al stat pin (tip φ2.7 mm) with an epoxy adhesive using a thin film adhesion strength measuring device Romulus (QUAD GROUP) After sufficiently cooling to room temperature, the stat pin was pulled with a load cell, and the peel strength was measured.

フッ素気流中25℃の加熱処理温度で処理した被覆膜の密着強度は925kgf/cm2、90℃の加熱処理温度では955kg/cm2の密着強度を有していたが、何れも被覆膜と基材との界面で剥がれた。一方、100℃以上500℃以下で処理した被覆膜においては、エポキシ接着材部が1200kgf/cm2の負荷時に剥がれ、被覆膜側は全く剥がれずに、基材に密着したまま完全に残っていた。
又、500℃を超える高温で加熱処理した場合には、被覆膜と基材との界面で膜剥がれが生じた。
The adhesion strength of the coating film treated at a heat treatment temperature of 25 ° C. in a fluorine gas stream was 925 kgf / cm 2 and the adhesion strength of 955 kg / cm 2 at the heat treatment temperature of 90 ° C. And peeled off at the interface between the substrate and the substrate. On the other hand, in the coating film treated at 100 ° C. or more and 500 ° C. or less, the epoxy adhesive part peeled off under a load of 1200 kgf / cm 2 , and the coating film side did not peel at all and remained completely adhered to the substrate. It was.
In addition, when heat treatment was performed at a high temperature exceeding 500 ° C., film peeling occurred at the interface between the coating film and the substrate.

表1及び表2の結果は、本発明の有効性を実証するものである。   The results in Tables 1 and 2 demonstrate the effectiveness of the present invention.

本発明の部材は、被覆膜表面がフッ素系腐蝕性ガスに対する耐蝕性に優れるだけでなく、基材と被覆膜との密着性が優れており、ヒートサイクルを伴う使用にも十分耐え、熱膨張差によるクラックの発生や剥離が生じ難いので、産業上極めて有意義である。   The member of the present invention is not only excellent in corrosion resistance against the fluorine-based corrosive gas on the surface of the coating film, but also excellent in adhesion between the base material and the coating film, sufficiently withstands use with a heat cycle, Since it is difficult for cracks and peeling due to the difference in thermal expansion to occur, it is extremely significant in industry.

100 静電チャック
101、102 基材
103 フッ素含有窒化アルミニウム被覆膜
104a、104b 電極
105 ヒーター
106 冷却用ガス孔
107 スタッドピン
108 エポキシ接着剤
109 密着強度測定用基材固定部品
110 ロードセル加重
DESCRIPTION OF SYMBOLS 100 Electrostatic chuck 101,102 Base material 103 Fluorine-containing aluminum nitride coating film 104a, 104b Electrode 105 Heater 106 Cooling gas hole 107 Stud pin 108 Epoxy adhesive 109 Base material fixing part for adhesion strength measurement 110 Load cell load

Claims (4)

(1)窒化アルミニウム、熱分解窒化硼素、窒化硼素と窒化アルミニウムの混合焼結体、熱分解窒化硼素コートグラファイト、希土類酸化物、酸化アルミニウム、酸化珪素、ジルコニア、サイアロン、グラファイト、シリコン、タングステン及びニッケル並びにインコネルからなる群の中から選択される1種を主成分としてなる基材の少なくとも一部表面に、化学気相成長法によって、相対密度が70〜98%で厚みが5〜500μmの窒化アルミニウムからなる被覆膜を設ける工程、
(2)前記窒化アルミニウム被覆膜の表面を100℃〜500℃のフッ素系腐食性ガス雰囲気中で処理する工程、及び、
(3)前記被覆膜が、その最表面に1原子%以上40原子%以下のフッ素を含有するように、前記処理工程(2)における処理時間及び窒化アルミニウム被覆膜の表面温度の管理・調整を行う工程、
を含むことを特徴とする、フッ素系腐食性ガスに対する耐性に優れた部材の製造方法
(1) Aluminum nitride, pyrolytic boron nitride, mixed sintered body of boron nitride and aluminum nitride, pyrolytic boron nitride coated graphite, rare earth oxide, aluminum oxide, silicon oxide, zirconia, sialon, graphite, silicon, tungsten and nickel In addition, aluminum nitride having a relative density of 70 to 98% and a thickness of 5 to 500 μm is formed on at least a part of the surface of a substrate mainly composed of one selected from the group consisting of inconel by chemical vapor deposition. Providing a coating film comprising:
(2) a step of treating the surface of the aluminum nitride coating film in a fluorine corrosive gas atmosphere at 100 ° C. to 500 ° C., and
(3) Management of the treatment time in the treatment step (2) and the surface temperature of the aluminum nitride coating film so that the coating film contains 1 atomic% to 40 atomic% of fluorine on the outermost surface. Adjustment process,
Method for producing a member having excellent resistance to, wherein, fluorine-based corrosive gas comprises a.
前記化学気相成長法の工程における加熱が、800℃〜1200℃の範囲でなされる、請求項1に記載された部材の製造方法 The method for manufacturing a member according to claim 1, wherein the heating in the chemical vapor deposition method is performed in a range of 800 ° C to 1200 ° C. 前記化学気相成長法の工程が、前記被腹膜の相対密度が80〜95%となるように調整された工程である、請求項1又は2に記載された部材の製造方法The method for producing a member according to claim 1 or 2, wherein the chemical vapor deposition method is a step in which the relative density of the peritoneum is adjusted to 80 to 95%. 前記化学気相成長法の工程が、被覆膜の厚みが10〜300μmとなるように調整された工程である、請求項1〜3の何れかに記載された部材の製造方法
The method for producing a member according to claim 1, wherein the chemical vapor deposition method is a step in which the thickness of the coating film is adjusted to be 10 to 300 μm .
JP2011220004A 2011-04-14 2011-10-04 Method for manufacturing member covered with aluminum nitride film Expired - Fee Related JP5876259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011220004A JP5876259B2 (en) 2011-04-14 2011-10-04 Method for manufacturing member covered with aluminum nitride film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011089783 2011-04-14
JP2011089783 2011-04-14
JP2011220004A JP5876259B2 (en) 2011-04-14 2011-10-04 Method for manufacturing member covered with aluminum nitride film

Publications (2)

Publication Number Publication Date
JP2012229149A JP2012229149A (en) 2012-11-22
JP5876259B2 true JP5876259B2 (en) 2016-03-02

Family

ID=47431061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011220004A Expired - Fee Related JP5876259B2 (en) 2011-04-14 2011-10-04 Method for manufacturing member covered with aluminum nitride film

Country Status (1)

Country Link
JP (1) JP5876259B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103641489B (en) * 2013-12-16 2014-12-03 黑龙江省科学院高技术研究院 Preparation method of rare earth surface modified aluminum nitride powder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3078671B2 (en) * 1992-11-26 2000-08-21 日本碍子株式会社 Corrosion resistant member, method of using the same and method of manufacturing the same
JPH09328382A (en) * 1996-06-04 1997-12-22 Mitsubishi Materials Corp Aluminum nitride base material for semiconductor production unit and its production
JP3949268B2 (en) * 1998-04-20 2007-07-25 日本碍子株式会社 Corrosion resistant ceramic material
JP4054148B2 (en) * 1999-02-01 2008-02-27 日本碍子株式会社 Corrosion-resistant member manufacturing method and corrosion-resistant member
JP4166386B2 (en) * 1999-09-30 2008-10-15 日本碍子株式会社 Corrosion resistant member and manufacturing method thereof
JP2010228965A (en) * 2009-03-27 2010-10-14 Shin-Etsu Chemical Co Ltd Corrosion resistant member

Also Published As

Publication number Publication date
JP2012229149A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
US8017062B2 (en) Semiconductor processing components and semiconductor processing utilizing same
US20060008676A1 (en) Protective coating on a substrate and method of making thereof
JPH104083A (en) Anticorrosive material for semiconductor fabrication
JP2010228965A (en) Corrosion resistant member
JP2009054984A (en) Component for film forming apparatus and its manufacturing method
TW202113135A (en) Substrate support cover for high-temperature corrosive environment
JP5876259B2 (en) Method for manufacturing member covered with aluminum nitride film
JP2012237024A (en) Alminum nitride film and member covered therewith
JP2008001562A (en) Yttrium-based ceramic covering material and its production method
JP3929140B2 (en) Corrosion resistant member and manufacturing method thereof
WO2021117498A1 (en) Tantalum carbonate-coated graphite member and method for producing same
JP4373487B2 (en) Corrosion resistant CVD-SiC coating material and jig for CVD equipment
JP2008007350A (en) Yttria ceramic sintered compact
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
JP3784180B2 (en) Corrosion resistant material
JP2010258276A (en) Anti-corrosion member
KR20120046007A (en) A corrosion-resistant article coated with aluminum nitride and method for producing the same
JP2011093772A (en) Graphite member provided with plasma resistance characteristic
JP4570372B2 (en) Materials for plasma-resistant semiconductor manufacturing equipment
JPH1067584A (en) Reaction vessel
US20220181124A1 (en) Erosion resistant metal fluoride coatings, methods of preparation and methods of use thereof
JP2007073823A (en) Ceramic covering material and method of manufacturing same
JP2006097114A (en) Corrosion-resistant spray deposit member
US20220228260A1 (en) A chemical vapor deposition chamber article
KR20070032050A (en) Protective coating on a substrate and method of making thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160121

R150 Certificate of patent or registration of utility model

Ref document number: 5876259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees