JP2010258276A - Anti-corrosion member - Google Patents

Anti-corrosion member Download PDF

Info

Publication number
JP2010258276A
JP2010258276A JP2009107824A JP2009107824A JP2010258276A JP 2010258276 A JP2010258276 A JP 2010258276A JP 2009107824 A JP2009107824 A JP 2009107824A JP 2009107824 A JP2009107824 A JP 2009107824A JP 2010258276 A JP2010258276 A JP 2010258276A
Authority
JP
Japan
Prior art keywords
corrosion
heat
resistant
film
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009107824A
Other languages
Japanese (ja)
Inventor
Koji Kato
公二 加藤
Masaki Kano
正樹 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009107824A priority Critical patent/JP2010258276A/en
Publication of JP2010258276A publication Critical patent/JP2010258276A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce heat conduction to a part of a base material which is covered with a film and to prevent generation of thermal stress in bent parts or fine parts of surrounding members by covering the whole surface or a part of the base material with the film whose thermal conductivity is lower than that thereof. <P>SOLUTION: The anti-corrosion member is exposed to a plasma environment. At least a part of the surface of its anti-corrosion base material 1 is covered with a film exhibiting a high corrosion resistance. The thermal conductivity of the film is lower than that of the anti-corrosion base material 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、腐食性プラズマガスなどの雰囲気下で用いられる耐食性部材であり、例えば、半導体デバイスの製造工程で使用される、ハロゲン系腐食ガスやハロゲンガスプラズマに対して、優れた耐食性を有する耐食性部材に関する。   The present invention is a corrosion-resistant member used in an atmosphere such as a corrosive plasma gas, and has, for example, a corrosion resistance having excellent corrosion resistance against a halogen-based corrosive gas or a halogen gas plasma used in a semiconductor device manufacturing process. It relates to members.

半導体デバイスの製造工程において、腐食性の高い雰囲気下で使用される部材として、従来ではシリコン、石英ガラス、炭化珪素が用途に応じて用いられてきた。しかし、これらの材料において種々の問題があった。例えば、石英ガラスは反応性の高いフッ素系ガスの存在下では、フッ化珪素など反応性化合物の蒸気圧が高く気体となってしまい、腐食が進行し部材が消失してしまう。また、石英ガラスよりも耐食性が優れる炭化珪素も、シリコン含浸炭化珪素のため、シリコン部がフッ素系ガスとの反応により消失するため、炭化珪素の粒子が離脱してパーティクルの原因となる。   Conventionally, silicon, quartz glass, and silicon carbide have been used according to applications as members used in a highly corrosive atmosphere in a semiconductor device manufacturing process. However, these materials have various problems. For example, in the presence of a highly reactive fluorine-based gas, quartz glass has a high vapor pressure of a reactive compound such as silicon fluoride and becomes a gas, corrosion proceeds, and the member disappears. In addition, silicon carbide, which has better corrosion resistance than quartz glass, is silicon-impregnated silicon carbide, so that the silicon portion disappears due to reaction with the fluorine-based gas, so that the silicon carbide particles are detached and cause particles.

一方で、アルミニウム、アルミナ、窒化アルミニウムなどのアルミニウム系材料は、フッ素ガスと反応して生成するフッ化アルミニウム(AlF3)の蒸気圧が低いことから、使用されている。
特に、アルミニウムや窒化アルミニウムは優れた熱伝導率を持っており、Siウェハなどの被加熱物を均一に加熱するため、半導体製造装置のヒーター及び静電チャックの基材に使用されている。
On the other hand, aluminum-based materials such as aluminum, alumina and aluminum nitride are used because the vapor pressure of aluminum fluoride (AlF 3 ) produced by reaction with fluorine gas is low.
In particular, aluminum and aluminum nitride have excellent thermal conductivity, and are used for heaters of semiconductor manufacturing apparatuses and substrates of electrostatic chucks to uniformly heat an object to be heated such as a Si wafer.

しかしながら、アルミニウムや窒化アルミニウムは熱伝導率が高いため、熱を周囲へ伝えやすい。特に周囲部材の曲部や細部に熱が伝導し、昇降温の繰り返しにより熱応力が繰り返し加えられると比較的容易に割れてしまうという問題があった。   However, since aluminum and aluminum nitride have high thermal conductivity, heat is easily transferred to the surroundings. In particular, there is a problem that heat is conducted to the curved portions and details of the surrounding members, and when thermal stress is repeatedly applied due to repeated raising and lowering of temperature, it is relatively easily cracked.

特許文献1に開示されているように、載置台を支持するセラミック製の支持部材を複雑な形状に成形したり、或いは特許文献2に開示されているように、載置台と支持部材の接合部の外周を特定の曲率半径になるように形成することが行われているが、載置台等の割れを十分に抑制できるものではなかった。   As disclosed in Patent Document 1, a ceramic support member that supports the mounting table is formed into a complicated shape, or as disclosed in Patent Document 2, a joint between the mounting table and the supporting member. However, it has not been possible to sufficiently suppress cracking of the mounting table or the like.

特許4101425号公報Japanese Patent No. 4101425 特許3520074号公報Japanese Patent No. 3520074

本発明は、上記のような問題点に鑑みて、昇降温の繰り返しにより熱応力が繰り返し加えられても割れが発生し難い、静電チャック等に用いて好適な耐食材料を提供すること課題とする。   In view of the problems as described above, the present invention provides a corrosion-resistant material suitable for use in an electrostatic chuck or the like that is unlikely to crack even when thermal stress is repeatedly applied by repeated heating and cooling. To do.

本発明の耐食材料は、プラズマ環境に曝される耐食部材であって、耐熱基材の表面全体あるいは一部の少なくとも一部が耐食性の高い被覆膜で覆われており、前記耐熱基材の熱伝導率よりも低い熱伝導率の被覆膜であることを特徴とする。
前記膜の熱伝導率は、90W/m・K以下であること、前記膜の相対密度は、50%以上98%未満であること、前記膜の材質がAlNであり、TMA(トリメチルアルミニウム)ガスとアンモニアガスを原料に用いて作製したものであること、前記耐熱基材は、熱分解窒化硼素、窒化硼素と窒化アルミニウムの混合焼結体、熱分解窒化硼素コートグラファイト、窒化アルミニウム、希土類酸化物、酸化アルミニウム、酸化珪素、ジルコニア、サイアロン、グラファイト、高融点金属の何れかが主成分であること、前記耐熱基材は、ヒーター及び/または静電チャックの機能を備えていること、が、それぞれ好ましい。
The corrosion-resistant material of the present invention is a corrosion-resistant member that is exposed to a plasma environment, and at least part of the entire surface or part of the heat-resistant substrate is covered with a coating film having high corrosion resistance. It is a coating film having a thermal conductivity lower than the thermal conductivity.
The thermal conductivity of the film is 90 W / m · K or less, the relative density of the film is 50% or more and less than 98%, the material of the film is AlN, and TMA (trimethylaluminum) gas And the heat resistant base material is pyrolytic boron nitride, mixed sintered body of boron nitride and aluminum nitride, pyrolytic boron nitride coated graphite, aluminum nitride, rare earth oxide Any of aluminum oxide, silicon oxide, zirconia, sialon, graphite, and refractory metal is the main component, and the heat-resistant substrate has a heater and / or electrostatic chuck function, preferable.

本発明によれば、基材に被覆された膜の部分で熱伝導を抑制することにより、曲部や細部の熱応力による割れや破損を防止することができる。さらには、耐食性が高いため、腐食性の高い雰囲気でも長時間使用が可能である。   According to the present invention, it is possible to prevent cracks and breakage due to thermal stresses in curved portions and details by suppressing heat conduction at the portion of the film coated on the substrate. Furthermore, since it has high corrosion resistance, it can be used for a long time even in a highly corrosive atmosphere.

本発明の実施例1の耐食部材を示した図である。It is the figure which showed the corrosion-resistant member of Example 1 of this invention. 本発明の実施例1の耐食部材を組込んだ構造を示した図である。It is the figure which showed the structure incorporating the corrosion-resistant member of Example 1 of this invention. 組込み構造の温度測定部を示した図である。It is the figure which showed the temperature measurement part of the built-in structure.

以下、本発明の耐食部材について説明する。
本発明者等は鋭意検討を重ねた結果、基材の熱伝導率よりも低い熱伝導率の膜で表面全体あるいは一部を覆うことで、被覆された部分の熱伝導を減少させ、周囲部材曲部や細部に熱応力が発生することを防止することができること、さらには、腐食性の高い雰囲気でも使用することのできる耐食性の高い膜とすることができること、を知見し、本発明に至った。
本発明は、耐熱基材の表面全体あるいは一部を耐食性の高い被覆膜で覆われており、前記基材の熱伝導率よりも低い熱伝導率の被覆膜で覆われていることを基本とする。
Hereinafter, the corrosion-resistant member of the present invention will be described.
As a result of intensive studies, the inventors have covered the entire surface or a part thereof with a film having a thermal conductivity lower than the thermal conductivity of the base material, thereby reducing the thermal conductivity of the coated part and surrounding members. The inventors have found that it is possible to prevent thermal stress from being generated in curved portions and details, and that it is possible to provide a highly corrosion-resistant film that can be used even in highly corrosive atmospheres, leading to the present invention. It was.
In the present invention, the entire surface or a part of the heat-resistant substrate is covered with a coating film having high corrosion resistance, and is covered with a coating film having a thermal conductivity lower than that of the substrate. Basic.

本発明の耐食部材は、図1に示すように、耐熱基材1の少なくとも一方の表面に被腹膜3が形成されている。耐熱基材1には、内部に発熱層2を設けることができる。
図2は、図1に示す耐食部材を組み込んで、半導体製造用ヒーターとしたものの基本的な構造を示す。支柱4で耐食部材を支えて、耐熱基材1上に、例えば、シリコンウェハからなる被処理物(図示せず)を載置して吸着・加熱する。6は、発熱ないし静電チャックのためのコイルへの通電電極である。この場合の、支柱4の支柱曲部5(図3)に、従来は割れ等の不具合が発生しがちであったが、その支柱曲部5における温度を測定することによって、本発明の被覆膜の効果を確認することができる。
As shown in FIG. 1, the corrosion-resistant member of the present invention has a peritoneum 3 formed on at least one surface of a heat-resistant substrate 1. The heat-resistant substrate 1 can be provided with a heat generating layer 2 inside.
FIG. 2 shows a basic structure of a semiconductor manufacturing heater incorporating the corrosion-resistant member shown in FIG. The support member 4 supports the corrosion-resistant member, and an object to be processed (not shown) made of, for example, a silicon wafer is placed on the heat-resistant substrate 1 and is adsorbed and heated. Reference numeral 6 denotes an energization electrode to a coil for heat generation or electrostatic chuck. In this case, a problem such as cracking has been apt to occur in the column curved portion 5 (FIG. 3) of the column 4 in the past. By measuring the temperature in the column curved portion 5, the coating of the present invention The effect of the film can be confirmed.

本発明の耐食部材は、耐熱基材と相対密度が50以上で98%未満、熱伝導率が90W/m・K以下の窒化アルミニウムからなる被覆膜とを備えた耐食部材であり、基材から周囲へ熱が伝導することを抑制し、周囲の部材の熱応力による割れや破損を防止することができる。
ヒーター及び静電チャックの機能を備えた耐熱基材としては、熱伝導率の高い窒化アルミニウムが主流である。耐熱基材に窒化アルミニウムを使用した場合、被覆膜の熱伝導率は耐熱基材よりも低いことが必要なため、窒化アルミニウム焼結体(三井鉱山マテリアル製MAN−90)の90W/m・K以下であることが好ましい。さらに周囲への熱伝導を抑制するためには、45W/m・K以下とすることがより好ましい。(請求項2)
The corrosion-resistant member of the present invention is a corrosion-resistant member comprising a heat-resistant substrate and a coating film made of aluminum nitride having a relative density of 50 or more and less than 98% and a thermal conductivity of 90 W / m · K or less. It is possible to suppress the conduction of heat from the surroundings to the surroundings, and to prevent cracking or breakage of surrounding members due to thermal stress.
As a heat-resistant substrate having functions of a heater and an electrostatic chuck, aluminum nitride having a high thermal conductivity is the mainstream. When aluminum nitride is used for the heat resistant substrate, the thermal conductivity of the coating film needs to be lower than that of the heat resistant substrate. Therefore, 90 W / m · of aluminum nitride sintered body (MAN-90 manufactured by Mitsui Mining Materials) It is preferable that it is K or less. Furthermore, in order to suppress heat conduction to the surroundings, it is more preferable to set it to 45 W / m · K or less. (Claim 2)

被覆膜の相対密度は熱伝導率と相関があり、相対密度が高い場合、基材(例えば焼結体)の熱伝導率よりも高い被覆膜となってしまい、周囲の部材に対する断熱性を持たない。一方で相対密度が低い場合、膜として形成せず、基材から剥がれてしまう。よって、相対密度は50以上で98%未満とすることが好ましい。より好ましくは50以上で80%未満である(請求項3)   The relative density of the coating film has a correlation with the thermal conductivity. When the relative density is high, the coating film is higher than the thermal conductivity of the base material (for example, a sintered body), and the heat insulating property to the surrounding members. Does not have. On the other hand, when the relative density is low, it is not formed as a film and peeled off from the substrate. Therefore, the relative density is preferably 50 or more and less than 98%. More preferably, it is 50 or more and less than 80% (Claim 3).

窒化アルミニウムを被覆膜に使用することで、ハロゲン系ガス、ハロゲンプラズマに対して高い耐食性を示すため、基材の劣化やパーティクルの発生を抑制できる。さらに、アルミニウムの有機金属化合物あるいは塩化アルミニウムとアンモニアを原料とした化学気相成長法によって成膜された窒化アルミニウムは、焼結体のような助剤を含んでいないため、特にパーティクルの発生が少ない。(請求項4)   By using aluminum nitride for the coating film, since it shows high corrosion resistance against the halogen-based gas and halogen plasma, deterioration of the base material and generation of particles can be suppressed. Furthermore, aluminum nitride formed by chemical vapor deposition using aluminum organometallic compounds or aluminum chloride and ammonia as raw materials does not contain any auxiliary agent such as a sintered body, and therefore generates less particles. . (Claim 4)

ベースとなる耐熱性部材の材質が熱分解窒化硼素、窒化硼素と窒化アルミニウムの混合焼結体、窒化アルミニウム、希土類酸化物、酸化アルミニウム、酸化珪素、ジルコニア、サイアロン、グラファイト、高融点金属のいずれかを主成分とするものであることにより500℃以上の高温プロセスにも十分に対応できる(請求項5)。   The base material of the heat-resistant member is pyrolytic boron nitride, mixed sintered body of boron nitride and aluminum nitride, aluminum nitride, rare earth oxide, aluminum oxide, silicon oxide, zirconia, sialon, graphite, refractory metal It can fully cope with a high temperature process of 500 ° C. or higher.

特に、ヒーター機能を備えた耐熱基材3では高温プロセスで使用されるため、耐熱基材を保持する周囲の部材も高温になる。本発明の被覆膜を備えることで、ヒーター機能により耐熱基材の温度を上げても、被覆膜により周囲に熱が伝導することを抑制することができる。さらには、被覆膜が断熱作用として働き、耐熱基材の温度を効率的に上げることが可能となり、省エネ効果にも繋がる。   In particular, since the heat-resistant substrate 3 having a heater function is used in a high-temperature process, surrounding members that hold the heat-resistant substrate also have a high temperature. By providing the coating film of the present invention, even if the temperature of the heat-resistant substrate is increased by the heater function, it is possible to suppress heat conduction to the surroundings by the coating film. Furthermore, the coating film acts as a heat insulating action, and the temperature of the heat resistant substrate can be increased efficiently, leading to an energy saving effect.

[実施例1]
内部に発熱層を備えたφ200×5tの耐熱基材の片面に、熱CVD法により窒化アルミニウム被覆膜を設けた。
被覆膜を成膜するに際し、原料はアルミニウムの有機金属化合物としてトリメチルアルミニウムをバブラー法にて供給し、バブリング用のガスはArガスを用いた。N2、H2、He等を用いても同様の結果である。
トリメチルアルミニウムは、35℃一定になるように恒温槽に入れ、バブリング用のAr流量を2L/minとし、シリンダ内の圧力を10kPaとなるように制御した。その際のトリメチルアルミニウムの供給量は0.3mol/hrとなる。一方、アンモニアは直接液体を加熱気化させて供給量1.7mol/hrとなるようにマスフローコントローラーで調整して供給した。
[Example 1]
An aluminum nitride coating film was provided on one side of a φ200 × 5 t heat-resistant substrate provided with a heat generating layer inside by a thermal CVD method.
When forming the coating film, trimethylaluminum was supplied as a raw material by using a bubbler method as an organometallic compound of aluminum, and Ar gas was used as a gas for bubbling. Similar results are obtained using N 2 , H 2 , He, or the like.
Trimethylaluminum was placed in a thermostatic bath so as to be constant at 35 ° C., the bubbling Ar flow rate was 2 L / min, and the pressure in the cylinder was controlled to 10 kPa. In this case, the supply amount of trimethylaluminum is 0.3 mol / hr. On the other hand, ammonia was supplied by adjusting the mass flow controller so that the liquid was directly vaporized by heating to a supply amount of 1.7 mol / hr.

原料ガスを反応器に導入するには、2重管構造の管状部材から供給するようにし、2重管の外側からアンモニア、内側からトリメチルアルミニウムを供給するようにした。
反応炉内は、真空状態となるよう真空ポンプでガスを排気した後、排気を継続しながら、圧力は50Pa程度になるように調整した。
反応温度は、600℃から1400℃の間で条件を変更させて、熱伝導率と相対密度を調整した窒化アルミニウムからなる厚さ100μmの被覆膜を設けた耐食部材(図1)を作製した。
In order to introduce the raw material gas into the reactor, ammonia was supplied from the outside of the double tube and trimethylaluminum was supplied from the inside of the double tube.
The inside of the reaction furnace was evacuated with a vacuum pump so as to be in a vacuum state, and then the pressure was adjusted to about 50 Pa while continuing the evacuation.
The reaction temperature was changed between 600 ° C. and 1400 ° C., and a corrosion-resistant member (FIG. 1) provided with a coating film having a thickness of 100 μm made of aluminum nitride with adjusted thermal conductivity and relative density was produced. .

被覆膜の物性を以下の方法により測定した。
熱伝導率はBETHEL社製 熱物性顕微鏡TM3を用いて、周期加熱サーモリフレクタンス法により、室温(24℃)にて測定した。
相対密度は、膜厚と成膜前後の重量を測定して差分を膜の重量とし、相対密度100%の密度を3.25g/cm3として算出した。
表1に被覆膜と基材との相対密度及び熱伝導率を示す。
The physical properties of the coating film were measured by the following method.
The thermal conductivity was measured at room temperature (24 ° C.) by a periodic heating thermoreflectance method using a thermophysical microscope TM3 manufactured by BETHEL.
The relative density was calculated by measuring the film thickness and the weight before and after the film formation, taking the difference as the film weight, and the density at a relative density of 100% as 3.25 g / cm 3 .
Table 1 shows the relative density and thermal conductivity between the coating film and the substrate.

Figure 2010258276
Figure 2010258276

図1の耐食部材を図2に示す構造に組込み、真空チャンバー内にて昇温試験を行った。発熱層に3kWの電力を投入し、定常状態になった時の図3に示す支柱曲部5の温度を放射温度計により測定した。また、比較例として、被覆膜を設けない場合についても同様に温度を測定した。支柱部材としてアルミナを使用し、昇降温の繰り返しを10回行った後、支柱曲部5の状態を観察した。
表2に支柱曲部の測定温度の結果を示す。
The corrosion-resistant member of FIG. 1 was incorporated in the structure shown in FIG. 2, and a temperature increase test was performed in a vacuum chamber. 3 kW of electric power was applied to the heat generation layer, and the temperature of the supporting column curved portion 5 shown in FIG. 3 when the steady state was reached was measured with a radiation thermometer. Further, as a comparative example, the temperature was similarly measured when no coating film was provided. Alumina was used as a support member, and after repeated heating and cooling 10 times, the state of the support bend 5 was observed.
Table 2 shows the results of the measurement temperature of the support column music part.

Figure 2010258276
Figure 2010258276

表2に示した結果から分かるように、本発明のように耐熱基材に熱伝導率が90W/m・K以下の窒化アルミニウム被覆膜を備えることで、支柱曲部の温度を低下させることができる。これにより、曲部に発生する熱応力が抑制され、昇温後も良好な状態であり、表面にひび割れ等の発生は認められていない。   As can be seen from the results shown in Table 2, by providing the heat resistant base material with an aluminum nitride coating film having a thermal conductivity of 90 W / m · K or less as in the present invention, the temperature of the column bending portion can be lowered. Can do. Thereby, the thermal stress which generate | occur | produces in a curved part is suppressed, it is in a favorable state after temperature rising, and generation | occurrence | production of the crack etc. is not recognized on the surface.

以上説明したように、本発明の耐食部材は、基材に被覆された膜の部分で熱伝導を抑制することにより、曲部や細部の熱応力による割れや破損を抑制することができる。さらには、窒化アルミニウムが高耐食性のため、腐食性の高い雰囲気でも長時間使用が可能となる。   As described above, the corrosion-resistant member of the present invention can suppress cracking and breakage due to thermal stress in curved portions and details by suppressing heat conduction at the film portion covered with the base material. Furthermore, since aluminum nitride has high corrosion resistance, it can be used for a long time even in a highly corrosive atmosphere.

1 耐熱基材
2 発熱層
3 被覆膜
4 支柱
5 支柱曲部(温度測定部)
6 通電電極
DESCRIPTION OF SYMBOLS 1 Heat-resistant base material 2 Heat generating layer 3 Coating film 4 support | pillar 5 support | curve bending part (temperature measurement part)
6 Conductive electrodes

Claims (6)

プラズマ環境に曝される耐食部材であって、耐熱基材の表面全体あるいは少なくとも一部が耐食性の高い被覆膜で覆われており、前記耐熱基材の熱伝導率よりも低い熱伝導率の被覆膜であることを特徴とする耐食部材。   A corrosion-resistant member exposed to a plasma environment, wherein the entire surface or at least a part of the heat-resistant substrate is covered with a coating film having high corrosion resistance, and has a thermal conductivity lower than that of the heat-resistant substrate. A corrosion-resistant member characterized by being a coating film. 前記膜の熱伝導率は、90W/m・K以下である請求項1に記載の耐食部材。   The corrosion resistance member according to claim 1, wherein the film has a thermal conductivity of 90 W / m · K or less. 前記膜の相対密度は、50%以上98%未満である請求項2に記載の耐食部材。   The corrosion-resistant member according to claim 2, wherein the relative density of the film is 50% or more and less than 98%. 前記膜の材質がAlNであり、TMA(トリメチルアルミニウム)ガスとアンモニアガスを原料に用いて作製したものである請求項3に記載の耐食部材。   The corrosion-resistant member according to claim 3, wherein the film is made of AlN and is made using TMA (trimethylaluminum) gas and ammonia gas as raw materials. 前記耐熱基材は、熱分解窒化硼素、窒化硼素と窒化アルミニウムの混合焼結体、熱分解窒化硼素コートグラファイト、窒化アルミニウム、希土類酸化物、酸化アルミニウム、酸化珪素、ジルコニア、サイアロン、グラファイト、高融点金属の何れかが主成分であることを特徴とする請求項4に記載の耐食部材。   The heat-resistant substrate is pyrolytic boron nitride, mixed sintered body of boron nitride and aluminum nitride, pyrolytic boron nitride coated graphite, aluminum nitride, rare earth oxide, aluminum oxide, silicon oxide, zirconia, sialon, graphite, high melting point The corrosion-resistant member according to claim 4, wherein any one of metals is a main component. 前記耐熱基材は、ヒーター及び/または静電チャックの機能を備えていることを特徴とする請求項5に記載の耐食部材。   The corrosion resistant member according to claim 5, wherein the heat resistant substrate has a function of a heater and / or an electrostatic chuck.
JP2009107824A 2009-04-27 2009-04-27 Anti-corrosion member Pending JP2010258276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107824A JP2010258276A (en) 2009-04-27 2009-04-27 Anti-corrosion member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009107824A JP2010258276A (en) 2009-04-27 2009-04-27 Anti-corrosion member

Publications (1)

Publication Number Publication Date
JP2010258276A true JP2010258276A (en) 2010-11-11

Family

ID=43318833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107824A Pending JP2010258276A (en) 2009-04-27 2009-04-27 Anti-corrosion member

Country Status (1)

Country Link
JP (1) JP2010258276A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117054A (en) * 2009-12-07 2011-06-16 Tokyo Electron Ltd Alumina member for plasma treatment device and method for producing alumina member for plasma treatment device
JP2022500846A (en) * 2018-09-14 2022-01-04 北京北方華創微電子装備有限公司Beijing Naura Microelectronics Equipment Co., Ltd. Electrostatic chuck
WO2023223646A1 (en) * 2022-05-18 2023-11-23 株式会社フェローテックマテリアルテクノロジーズ Wafer support

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345309A (en) * 2000-06-01 2001-12-14 Toshiba Ceramics Co Ltd Ceramic heater for heating semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345309A (en) * 2000-06-01 2001-12-14 Toshiba Ceramics Co Ltd Ceramic heater for heating semiconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117054A (en) * 2009-12-07 2011-06-16 Tokyo Electron Ltd Alumina member for plasma treatment device and method for producing alumina member for plasma treatment device
JP2022500846A (en) * 2018-09-14 2022-01-04 北京北方華創微電子装備有限公司Beijing Naura Microelectronics Equipment Co., Ltd. Electrostatic chuck
JP7198915B2 (en) 2018-09-14 2023-01-04 北京北方華創微電子装備有限公司 electrostatic chuck
WO2023223646A1 (en) * 2022-05-18 2023-11-23 株式会社フェローテックマテリアルテクノロジーズ Wafer support

Similar Documents

Publication Publication Date Title
US5306895A (en) Corrosion-resistant member for chemical apparatus using halogen series corrosive gas
US7446284B2 (en) Etch resistant wafer processing apparatus and method for producing the same
CN104541362A (en) Apparatus and method for selective oxidation at lower temperature using remote plasma source
JP2007251126A (en) Semiconductor batch heating assembly
TW201032287A (en) Substrate support table of plasma processing device
JP2010228965A (en) Corrosion resistant member
US6605352B1 (en) Corrosion and erosion resistant thin film diamond coating and applications therefor
JP2010258276A (en) Anti-corrosion member
WO2010067424A1 (en) Catalyst chemical vapor deposition apparatus
JP2010228965A5 (en)
JP4856010B2 (en) Catalytic chemical vapor deposition system
JP3071933B2 (en) Corrosion-resistant member against dissociated halogen-based corrosive gas and method for producing the same
CN101045990A (en) Etch resistant heater and assembly thereof
JP2012237024A (en) Alminum nitride film and member covered therewith
TW200401367A (en) Semiconductor or liquid crystal manufacturing apparatus
US11885022B2 (en) Method of forming a film on a substrate by chemical vapor deposition
JP2019112288A (en) Silicon carbide member and member for semiconductor manufacturing device
JP5876259B2 (en) Method for manufacturing member covered with aluminum nitride film
JP4570372B2 (en) Materials for plasma-resistant semiconductor manufacturing equipment
JP3078671B2 (en) Corrosion resistant member, method of using the same and method of manufacturing the same
JP3133961B2 (en) Corrosion resistant member, method of using the same, and method of manufacturing the same
JPH07153370A (en) Discharge tube
CN105347848A (en) Preparation method for composite material graphite heater used at high temperature
KR20120046007A (en) A corrosion-resistant article coated with aluminum nitride and method for producing the same
JP4556389B2 (en) Bonded body and bonding method of ceramic-metal composite and semiconductor or liquid crystal manufacturing apparatus using the bonded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110425

A977 Report on retrieval

Effective date: 20120228

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20121228

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130424