JP4556389B2 - Bonded body and bonding method of ceramic-metal composite and semiconductor or liquid crystal manufacturing apparatus using the bonded body - Google Patents

Bonded body and bonding method of ceramic-metal composite and semiconductor or liquid crystal manufacturing apparatus using the bonded body Download PDF

Info

Publication number
JP4556389B2
JP4556389B2 JP2003186268A JP2003186268A JP4556389B2 JP 4556389 B2 JP4556389 B2 JP 4556389B2 JP 2003186268 A JP2003186268 A JP 2003186268A JP 2003186268 A JP2003186268 A JP 2003186268A JP 4556389 B2 JP4556389 B2 JP 4556389B2
Authority
JP
Japan
Prior art keywords
ceramic
metal composite
liquid crystal
semiconductor
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003186268A
Other languages
Japanese (ja)
Other versions
JP2005015317A (en
Inventor
学 橋倉
博彦 仲田
益宏 夏原
啓 柊平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2003186268A priority Critical patent/JP4556389B2/en
Publication of JP2005015317A publication Critical patent/JP2005015317A/en
Application granted granted Critical
Publication of JP4556389B2 publication Critical patent/JP4556389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミックス−金属複合体と、同種又は異種の材料との接合体及び該接合体の製造方法に関するものである。特に、該接合体は、プラズマCVD、減圧CVD、メタルCVD、絶縁膜CVD、イオン注入、エッチング、Low−K成膜、DEGAS装置などの半導体製造装置あるいは、液晶製造装置に使用される保持体として用いられ、更に該保持体を搭載した半導体あるいは液晶製造装置に関するものである。
【0002】
【従来の技術】
従来、半導体あるいは液晶の製造工程では、被処理物である半導体基板あるいは液晶用ガラスに対して成膜処理やエッチング処理など様々な処理が行われる。このような半導体基板あるいは液晶用ガラスに対する処理を行う処理装置では、半導体基板あるいは液晶用ガラスを保持し、半導体基板あるいは液晶用ガラスを加熱するための保持体(セラミックスヒータ)が用いられている。
【0003】
このような従来のセラミックスヒータは、例えば特開平4−78138号公報に開示されている。特開平4−78138号公報に開示されたセラミックスヒータは、抵抗発熱体が埋設され、容器内に設置され、ウェハー加熱面が設けられたセラミックス製のヒータ部と、このヒータ部のウェハー加熱面以外の面に設けられ、前記容器との間で気密性シールを形成する凸状支持部と、抵抗発熱体へと接続され、容器の内部空間へと実質的に露出しないように容器外へ取り出された電極とを有する。
【0004】
この発明では、それ以前のヒータである金属製のヒータで見られた汚染や、熱効率の悪さの改善が図られている。しかし、近年の半導体基板あるいは液晶用ガラスは大型化が進められている。例えば、半導体基板であるシリコン(Si)ウェハでは、その直径が8インチから12インチへと移行が進められている。また、液晶用ガラスでは、例えば1500mmx1800mmという非常に大型化が進められている。
【0005】
この半導体基板あるいは液晶用ガラスの大口径化に伴って、セラミックスヒータの大きさも大型化する必要がある。しかし、一般的に用いられるAl、AlN、Si、SiC等のセラミックスは、融点が非常に高いか融点を有さない材料もあるので、金属のように融解して鋳込んだり、ブロックを灼熱して圧延したりすることが困難である。従って、厚みを厚くしたり、直径を200mm以上と大きくしようとすれば、セラミックスのコストが飛躍的に上昇してしまうという問題もあった。更に、これらセラミックスは、脆性材料であるので、局所的に熱応力が加わると破壊するという問題もあった。
【0006】
更に、半導体あるいは液晶製造装置では、前記各種処理を行う際に、金属不純物のコンタミや粒子状のゴミ(パーティクル)が発生すれば、製造する半導体や液晶の品質に重大な悪影響をおよぼすので、前記コンタミやパーティクルの発生は極力抑えなければならないという問題もあった。。
【0007】
【特許文献1】
特開平04−078138号公報
【0008】
【発明が解決しようとする課題】
本発明は、上記問題点を解決するためになされたものである。すなわち、本発明は、接合部の耐食性や耐熱性に優れ、接合強度が高く、安価であるセラミックス−金属複合体と、同種又は異種の材料との接合体及びその製造方法を提供することを目的とする。
【0009】
特に、本発明のセラミックス−金属複合体の接合体を半導体あるいは液晶製造装置用の保持体として用いれば、半導体ウェハあるいは液晶用ガラスの表面の均熱性を高め、コンタミやパーティクルの発生がほとんどなく、耐熱衝撃性にも優れ、安価で生産効率の良い半導体あるいは液晶製造装置用保持体およびそれを搭載した半導体あるいは液晶製造装置とすることができる。
【0010】
【課題を解決するための手段】
本発明のセラミックス−金属複合体の接合体は、SiとSiCの複合体(Si−SiC)同士を、Si元素を含有し融点が500℃以上のNi基合金の接合材を介して接合してなり、その接合界面にSiまたはSiの化合物からなる再析出相又は晶出相が、再析出又は晶出していることを特徴とする。
【0011】
記セラミックス−金属複合体の接合体の外周面を耐食性の高い材料で、コーティングすることが好ましい。
【0012】
複数のSi−SiC基材の接合体の製造方法は、前記基材の間にSiを含有するNi基合金の接合材を設置し、非酸化性雰囲気中で加熱して前記接合材を溶融させ、前記基材の接合界面にSi又はSiの化合物からなる再析出相又は晶出相を、再析出又は晶出させる。
【0013】
以上のような接合体を被処理物保持体として搭載した半導体あるいは液晶製造装置であることが好ましい。このような半導体あるいは液晶製造装置は、被処理物であるウェハや液晶用ガラスの表面の温度が従来のセラミックス製保持体より均一になり、また耐熱衝撃性にも優れ、コンタミやパーティクルの発生もほとんどないので、歩留りよく、品質の高い半導体あるいは液晶表示装置を製造することができる。
【0014】
【発明の実施の形態】
セラミックス−金属複合体は、金属中にセラミックス粒子が分散した組織となっているので、セラミックス−金属複合体同士をロウ材で接合すると、金属部分は接合できるがセラミックス部分はロウ付けできないので、接合強度が高い接合体を得ることは困難であった。
【0015】
発明者らは、セラミックス−金属複合体を構成する元素と接合する相手材に含まれる元素の少なくとも1種の元素を含有し、融点が500℃以上の接合材を用いて、セラミックス−金属複合体と、同種又は異種の材料とを接合すれば、接合強度が向上することを見出した。
【0016】
セラミックス−金属複合体を構成する元素と、接合相手材を構成する元素の少なくとも1種の元素を含有し、融点が500℃以上の接合材を用いて、非酸化性雰囲気中で該接合材を溶融させ、冷却することによって、セラミックス−金属複合体と相手材との界面で、セラミックス−金属複合体中の金属又は該金属の化合物からなる再析出相又は晶出相が、再析出又は晶出するので、接合強度が向上する。
【0017】
セラミックス−金属複合体は、熱伝導率が高く、また金属よりもヤング率が高く、セラミックスよりも靭性が高い。従って、セラミックス−金属複合体を半導体あるいは液晶製造装置の保持体とすれば、保持面の均熱性を得ることが容易であり、局所的に熱応力が加わった場合でも破壊しにくい。
【0018】
セラミックス−金属複合体を保持体として、半導体あるいは液晶製造装置のチャンバー20内に設置するためには、図1に示すようにセラミックス−金属複合体1を支持部6で支持する構造にする必要がある。しかし、セラミックス−金属複合体は、加工が困難であるため、図1の構造を削り出し加工で得るにはコストが非常に高くなる。そこで、セラミックス−金属複合体と支持部を接合して、図1の構造にすれば、コスト的に有利である。
【0019】
このように、セラミックス−金属複合体1と支持部6とを接合部4で接合し、抵抗発熱体回路3を埋設したセラミックスヒータ2をセラミックス−金属複合体の下に備え、給電電極7や熱電対8を組み込んだ保持体をチャンバー20内に設置すれば、被処理物保持面5の均熱性や、保持体としての耐食性あるいは耐熱衝撃性に優れ、しかも安価な保持体とすることができる。
【0020】
セラミックス−金属複合体は、例えば、多孔質セラミックスに金属を溶浸させる方法や、セラミックス粉末と金属粉末を混合し、成型後焼結する方法等により製造することができるので、大型化することが容易である。特に大型化した場合には、前記溶浸や焼結を、セラミックス単体に比べて低温で行うことが可能であり、靭性が高いので割れにくく、セラミックスに比べてコストは格段に安価である。また、半導体あるいは液晶製造工程で使用される腐食性ガスに対する耐食性も金属に比べて高い。更に、300℃以上の高温での耐熱性に優れている。また、セラミックスや金属の材質を被処理物の材質に合わせれば、被処理物を汚染する心配がなくなる。
【0021】
このようなセラミックス−金属複合体を構成する金属としては、アルミニウム(Al)、シリコン(Si)、銅(Cu)が挙げられる。また、セラミックスとしては、SiC、Al、AlN、WC、BNが挙げられる。本発明のセラミックス−金属複合体は、これらの金属とセラミックスの少なくとも1種ずつの組合せが好ましい。被処理物がシリコンウェハである場合は、配線パターン材料にアルミニウムが用いられることが多いので、Al−SiC、Al−Al、Al−AlN、Si−SiC、Si−Al、Si−AlNのうち少なくとも1種類であることが特に好ましい。
【0022】
更に、500℃以上の耐熱性が要求される保持体の場合は、Si−SiC、Si−Al、Si−AlNのうち少なくとも1種類であることが特に好ましい。
【0023】
セラミックス−金属複合体の被処理物保持面の平面度は500μm以下、面粗さはRaで3μm以下であれば、被処理物を均一に加熱することができ、被処理物表面の温度分布を±1.0%以下にすることができるので、好ましい。
【0024】
また、セラミックス−金属複合体の直径は、200mm以上であれば、大型の半導体ウェハや液晶用ガラスに対応でき、本発明の効果が顕著であるので好ましい。更に、厚みは、50mm以下にすることが望ましい。厚みを50mm以下にすれば、急速な昇温や降温が可能となり、また保持面の均熱性も向上するからである。
【0025】
また、本発明の保持体を設置した装置内を一度真空引きしてから使用する場合は、該保持体からのガスの発生により、真空引きの時間が長くなることを防ぐために、セラミックス−金属複合体の吸水率は0.03%以下であることが好ましい。吸水率が0.03%を超えると、真空引きに要する時間が長くなり、設備の稼動率が低下し、生産効率が悪くなる。
【0026】
以上のような、セラミックス−金属複合体の下にセラミックスヒータを備えた構造の保持体を、半導体あるいは液晶製造装置のチャンバー20内に支持部6を介して搭載する。支持部は、セラミックス−金属複合体あるいはセラミックスヒータのいずれかの少なくとも一部を支持してもよいし、両方の少なくとも一部を支持してもよい。支持部6の具体的な一例を図1から図7に示す。図1に示すように、セラミックス−金属複合体1を支持部6で支持し、チャンバー20内に設置する。支持部6の内部に、給電用電極7や熱電対8を設置する。支持部6とチャンバー20は、図4に示すようにO−リング9を介して気密封止してもよい。
また、ボルトなどで固定してもよい。
【0027】
支持部の半導体あるいは液晶製造装置と接する部分の温度は、セラミックスヒータの温度より低いことが望ましい。セラミックス−金属複合体と支持部とは固定する。固定する方法としては、ネジ等の機械的固定方法もあるが、特に、腐食性ガスを使用する場合には、支持部内に設置される給電用電極7や熱電対8などを腐食性ガスによる腐食から防止するために、セラミックス−金属複合体あるいはセラミックスヒータと支持部とを気密シールすることが望ましい。気密シールの方法として、本発明のセラミックス−金属複合体の接合方法が好適である。
【0028】
すなわち、セラミックス−金属複合体を構成する元素と、支持部を構成する元素との少なくとも1種類の元素を含有し、融点が500℃以上の接合材を、接合部に設置し、希ガスや窒素ガスなどの非酸化性雰囲気中で、該接合材を溶融させた後、冷却する。このようにすることによって、接合界面で、セラミックス−金属複合体中の金属又は該金属の化合物からなる再析出相または晶出相を、再析出させるか又は晶出させることができる。再析出相又は晶出相は接合強度の向上に寄与し、接合強度の向上が図れる。
【0029】
また、500℃以上の耐熱性が要求される保持体の場合は、その接合部にも耐熱性が必要であるので、接合材として、500℃以上の融点を持つSi基合金またはNi基合金であることが好ましい。
【0030】
セラミックス−金属複合体と相手材の接合面の面粗さは、Ra0.5μm以上、5μm以下が好ましい。より好ましくは、Ra1μm以上、2μm以下である。接合面の面粗さが、Ra5μmを超えると、接合後の接合材に引け巣ができてしまうので、接合強度が低下する。また、Ra0.5μm未満の場合は、接合時に接合材が溶融した時に、接合材が接合部の外へ流出してしまうので、接合後に流出した接合材を除去する後加工が必要となるので、コスト的に割高になる。
【0031】
更に、接合工程において、ホットプレスなどによって、接合部に荷重をかけながら加熱すれば、接合強度はさらに向上すると共に、気密性も向上する。2MPa以上の荷重で加圧と加熱を行えば、接合部の気密性は、Heリーク試験で、1.0x10−9Pa・m/s以下にできるので好ましい。
【0032】
気密シールを行う場合は、セラミックス−金属複合体あるいはセラミックスヒータの熱膨張係数と、支持部の熱膨張係数は、近いほど良いが、熱膨張係数の差が、6x10−6/℃以下である材質が好ましい。
【0033】
熱膨張係数の差が、6x10−6/℃を超えると、セラミックス−金属複合体と支持部の接合部付近にクラックなどが発生したり、接合時にクラックが発生しなくても、繰り返し使用しているうちに接合部に熱サイクルが加わり、割れやクラックが発生することがある。例えば、セラミックス−金属複合体がSi−SiCの場合、支持部の材質は、Si−SiCが最も好適であるが、AlNや窒化珪素や炭化珪素あるいはムライト等が使用できる。
【0034】
また、腐食性ガスを使用する場合は、セラミックス−金属複合体や支持部やこれらの接合部が、腐食性ガスに曝されるので、腐食する可能性がある。この腐食を防止するために、図6に示すように、少なくとも被処理物保持面を腐食性ガスに対する耐食性に優れたコーティング10を施すことが好ましい。コーティング材料としては、Si、SiO、SiC、AlN、ダイヤモンド状カーボン(DLC)、ダイヤモンド、サファイヤ(Al)、フッ化アルミニウム、グラファイトが好ましい。
【0035】
また、図7に示すように、腐食性ガスに対する耐食性の高い部材11によって、セラミックス−金属複合体1とセラミックスヒータ2を覆ってもよい。このような部材としては、Si、SiO、SiC、AlN、サファイヤ(Al)、フッ化アルミニウム、グラファイトの他に、ガラス状カーボンを用いることができる。
【0036】
また、本発明の保持体を半導体装置に組み込んで、半導体ウェハを処理することができる。本発明の保持体は、ウェハ保持面の温度が均一であるので、ウェハの温度分布も従来より均一になるので、形成される膜や熱処理等に対して、安定した特性を得ることができる。
【0037】
また、本発明の保持体を液晶製造装置に組み込んで、液晶用ガラスを処理することができる。本発明の保持体は、液晶用ガラスの保持面の温度が均一であるので、液晶用ガラス表面の温度分布も従来より均一になるので、形成される膜や熱処理等に対して、安定した特性を得ることができる。
【0038】
【実施例】
参考例
市販の直径400mm、厚み10mmのSi−SiC製のセラミックス−金属複合体を用意した。図8に示すように、このセラミックス−金属複合体1に、外径350mm、内径330mm、長さ150mmのSi−SiC製のパイプ6を接合した。接合材は、厚さ1mmのSi−Al系合金とし、その組成を調整して、表1に示すような融点のものを用いた。接合は、ホットプレスを用いて、窒素ガス中で接合材の融点より100℃高い温度、荷重30MPa、2時間で行った。
【0039】
各接合材で接合した接合体の接合部の気密性をHeリーク測定した。また、JIS R1601に準拠した接合強度測定用のサンプルを別に作製し、四点曲げ試験により、接合強度を測定した。それらの結果を表1に示す。なお、Si−SiC複合体とSi−SiCパイプの接合面の面粗さはいずれもRaで1μmとした。
【0040】
【表1】

Figure 0004556389
【0041】
表1から、接合材の融点が500℃以上であれば、接合強度が200MPa以上であり、Heリーク試験で1.0x10−9Pa・m/s以下に成ることが判る。また、各接合部の組織を観察した結果、No.1の接合部の組織は、Si−AlNの共晶組織であった。No.2〜5の接合体では、Si−Alの共晶組織とSi結晶粒からなる組織であり、Si−SiCと接合材の界面は、優先的に接合材から晶出したAlが存在していた。これらの組織が接合強度の向上に寄与しているものと考えられる。
【0042】
参考例
セラミックス−金属複合体をSi−Alとし、セラミックス製のパイプを表2に示す材質のものとし、Si−Al系合金の融点を700℃のものとして、参考例1と同様に接合体を作製した後、接合強度とHeリーク試験を実施した。なお、接合条件はホットプレスで、窒素ガス中で、温度800℃、荷重50MPaで行った。その結果を表2に示す。表中のα差とは、セラミックス−金属複合体とセラミックス製のパイプとの熱膨張係数の差を示す。
【0043】
【表2】
Figure 0004556389
【0044】
参考例
セラミックス−金属複合体をSi−AlNにしたこと以外は、参考例2と同様に接合体を作成し、接合強度とHeリーク試験を行った。その結果を表3に示す。
【0045】
【表3】
Figure 0004556389
【0046】
参考例
セラミックス−金属複合体をSi−SiCにしたこと以外は、参考例2と同様に接合体を作成し、接合強度とHeリーク試験を行った。その結果を表3に示す。
【0047】
【表4】
Figure 0004556389
【0048】
表2〜4から次のことが判る。すなわち、セラミックス−金属複合体を構成する元素と、接合相手材を構成する元素との少なくとも1種の元素を含有し、融点が500℃以上の接合材を用いて、非酸化性雰囲気中で接合すれば、接合強度が200MPa以上の接合体を得ることができる。また、接合するもの同士の熱膨張係数の差が6x10−6/℃以下であれば、Heリーク試験で、1.0x10−9Pa・m/s以下の気密性を得ることができる。
【0049】
実施例
接合材を融点1002℃のNi−Si系合金粉末とし、該合金をペースト化したものを、厚さ100μmで接合界面に挟み、窒素雰囲気中、温度1100℃、荷重50MPaの条件で接合したこと以外は、参考例2乃至4と同様に接合体を作製した。接合体の接合強度試験を行い、その結果を表5に示す。
【0050】
【表5】
Figure 0004556389
【0051】
接合材をSi−Al系の合金箔からNi−Si系合金粉末に変えると、接合強度は接合材の強度が上がった分だけ高くなった。また、Heリーク試験の結果は接合材を変えても変わらず、いずれも1.0x10−9Pa・m/s未満であった。
【0052】
参考例5
参考例1と同様のSi−SiC複合体とAlNパイプを用いて参考例1と同様に接合体を作製した。この時、Si−SiCとAlNパイプの接合面の面粗さを表6に示すようにした。接合体のHeリーク試験を行い、その結果を表6に示す。
【0053】
【表6】
Figure 0004556389
【0054】
表6より、接合面の面粗さが、Ra5.0μm以下であれば、気密性は、1.0x10−9Pa・m/s未満となるが、面粗さRaが5.0μmを超えると、気密性が悪くなることが判る。
【0055】
参考例6
参考例1のNo.4の接合体を用いた。表7に示す各種コーティング材を接合部を含む全面に図6に示すようにコーティングした。SiおよびSiOのコーティングは溶射で行い、これら以外の材質のコーティングは、CVD法で行った。各コーティング10の厚みを表7に示す。これらコーティングを施した接合体とコーティングを施していないNo.4の接合体の下に、図6に示すようにセラミックスヒータ2をネジ(図示せず)で取り付けた。
【0056】
これらの保持体を、チャンバー内に設置し、保持体を500℃に加熱した状態で、腐食性ガス(CHF:O=4:1)を1時間供給した。その結果、Si−SiC複合体と支持部とのガラス接合部が、腐食(エッチング)されていた。そのエッチング深さを表7に示す。なお、表7において、コーティング欄が“−”は、コーティングしていないことを示す。
【0057】
【表7】
Figure 0004556389
【0058】
表7から判るように、コーティングを施すことによって、エッチングされにくくなるが、DLC(ダイヤモンド状カーボン)やダイヤモンドのように耐食性の高い材質をコーティングした方が、耐食性は向上する。
【0059】
【発明の効果】
以上のように、本発明によれば、セラミックスと金属の複合体と、同種又は異種の材料とを、セラミックス−金属複合体を構成する元素と、接合相手材を構成する元素との少なくとも1種の元素を含有し、融点が500℃以上の接合材を用いて、非酸化性雰囲気中で接合することによって、セラミックス−金属複合体と相手材との接合界面で、セラミックス−金属複合体中の金属又は該金属の化合物からなる再析出相又は晶出相が、再析出又は晶出するので、接合強度の高いセラミックス−金属複合体の接合体を得ることができる。
【0060】
このような接合体を、半導体あるいは液晶製造装置の保持体とすれば、保持面の均熱性を高め、耐熱衝撃性に優れ、パーティクルなどの発生を抑制することができる。更に、少なくとも被処理物保持面をコーティングすれば、耐久性を向上させることができる。このような保持体を半導体製造装置や液晶製造装置に搭載することにより、生産性や歩留りの良い半導体あるいは液晶製造装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の接合体の断面構造の一例を示す。
【図2】本発明の接合体の断面構造の他の一例を示す。
【図3】本発明の接合体の断面構造の他の一例を示す。
【図4】本発明の接合体の断面構造の他の一例を示す。
【図5】本発明の接合体の断面構造の他の一例を示す。
【図6】本発明の接合体の断面構造の他の一例を示す。
【図7】本発明の接合体の断面構造の他の一例を示す。
【図8】本発明の接合体の断面構造の他の一例を示す。
【符号の説明】
1 セラミックス−金属複合体
2 セラミックスヒータ
3 発熱体回路
4 接合部
5 保持面
6 支持部
7 電極
8 熱電対
9 O−リング
10 コーティング
20 チャンバー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a joined body of a ceramic-metal composite and the same or different material, and a method for producing the joined body. In particular, the bonded body is used as a holding body used in a semiconductor manufacturing apparatus such as plasma CVD, low pressure CVD, metal CVD, insulating film CVD, ion implantation, etching, low-K film formation, DEGAS apparatus, or a liquid crystal manufacturing apparatus. Further, the present invention relates to a semiconductor or liquid crystal manufacturing apparatus on which the holder is mounted.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a semiconductor or liquid crystal manufacturing process, various processes such as a film forming process and an etching process are performed on a semiconductor substrate or liquid crystal glass that is an object to be processed. In a processing apparatus for processing such a semiconductor substrate or glass for liquid crystal, a holding body (ceramic heater) for holding the semiconductor substrate or glass for liquid crystal and heating the semiconductor substrate or glass for liquid crystal is used.
[0003]
Such a conventional ceramic heater is disclosed in, for example, Japanese Patent Laid-Open No. 4-78138. A ceramic heater disclosed in Japanese Patent Laid-Open No. 4-78138 is a ceramic heater portion in which a resistance heating element is embedded, installed in a container, and provided with a wafer heating surface, and the heater portion other than the wafer heating surface. And is connected to a resistance heating element and taken out of the container so as not to be substantially exposed to the internal space of the container. Electrode.
[0004]
In the present invention, the contamination and the poor thermal efficiency observed in the metal heater which is the previous heater are improved. However, recent semiconductor substrates or glass for liquid crystals have been increased in size. For example, in the case of a silicon (Si) wafer that is a semiconductor substrate, the diameter is moving from 8 inches to 12 inches. In addition, the size of liquid crystal glass has been greatly increased, for example, 1500 mm × 1800 mm.
[0005]
As the semiconductor substrate or the glass for liquid crystal becomes larger, the size of the ceramic heater needs to be increased. However, commonly used ceramics such as Al 2 O 3 , AlN, Si 3 N 4 , and SiC have a melting point that is very high or does not have a melting point. It is difficult to heat and roll the block. Therefore, if the thickness is increased or the diameter is increased to 200 mm or more, there has been a problem that the cost of the ceramics increases dramatically. Further, since these ceramics are brittle materials, there is a problem that they are broken when a local thermal stress is applied.
[0006]
Furthermore, in the semiconductor or liquid crystal manufacturing apparatus, if the contamination of metal impurities and particulate dust (particles) are generated during the various treatments, the quality of the semiconductor and liquid crystal to be manufactured will be seriously adversely affected. There was also a problem that the generation of contamination and particles had to be suppressed as much as possible. .
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 04-078138
[Problems to be solved by the invention]
The present invention has been made to solve the above problems. That is, an object of the present invention is to provide a bonded body of a ceramic-metal composite that is excellent in corrosion resistance and heat resistance of a bonded portion, has high bonding strength, is inexpensive, and the same or different materials, and a manufacturing method thereof. And
[0009]
In particular, if the ceramic-metal composite assembly of the present invention is used as a holding body for a semiconductor or liquid crystal manufacturing apparatus, the heat uniformity of the surface of the semiconductor wafer or the glass for liquid crystal is improved, and there is almost no generation of contamination or particles. A holder for a semiconductor or liquid crystal manufacturing apparatus that is excellent in thermal shock resistance, is inexpensive, and has high production efficiency, and a semiconductor or liquid crystal manufacturing apparatus on which it is mounted.
[0010]
[Means for Solving the Problems]
Ceramics of the present invention - conjugate of metal complex is a complex of Si and SiC and (Si-SiC) with each other, and bonded via the bonding material of the Ni-base alloy containing by melting point is above 500 ° C. The Si element becomes, reprecipitated phase or crystallized phase comprising a compound of Si or Si on the bonding interface, characterized in that out reprecipitation or crystal.
[0011]
Before SL Ceramics - a high corrosion resistance outer peripheral surface of the bonded body of the metal composite material, is preferably coated.
[0012]
A method of manufacturing a joined body of a plurality of Si-SiC base materials includes a Ni-based alloy joint material containing Si between the base materials, and is heated in a non-oxidizing atmosphere to melt the joint material. The reprecipitation phase or crystallization phase comprising Si or a Si compound is reprecipitated or crystallized at the bonding interface of the base material.
[0013]
A semiconductor or liquid crystal manufacturing apparatus in which such a bonded body as described above is mounted as a workpiece holder is preferable. In such a semiconductor or liquid crystal manufacturing apparatus, the surface temperature of the wafer to be processed or the glass for liquid crystal becomes more uniform than that of a conventional ceramic holder, has excellent thermal shock resistance, and generates contamination and particles. Since there is almost no yield, a high-quality semiconductor or liquid crystal display device can be manufactured with high yield.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Since the ceramic-metal composite has a structure in which ceramic particles are dispersed in the metal, if the ceramic-metal composite is joined with a brazing material, the metal part can be joined but the ceramic part cannot be brazed. It was difficult to obtain a bonded body with high strength.
[0015]
The inventors include at least one element of an element included in a counterpart material to be bonded to an element constituting the ceramic-metal composite, and use a bonding material having a melting point of 500 ° C. or higher. It was found that the bonding strength is improved by bonding the same or different materials.
[0016]
Using a bonding material containing at least one element of an element constituting a ceramic-metal composite and a bonding partner material and having a melting point of 500 ° C. or higher, the bonding material is formed in a non-oxidizing atmosphere. By melting and cooling, a reprecipitation phase or a crystallization phase comprising a metal or a compound of the metal in the ceramic-metal composite is reprecipitated or crystallized at the interface between the ceramic-metal composite and the counterpart material. As a result, the bonding strength is improved.
[0017]
The ceramic-metal composite has a high thermal conductivity, a higher Young's modulus than a metal, and a higher toughness than a ceramic. Therefore, if the ceramic-metal composite is used as a holding body of a semiconductor or a liquid crystal manufacturing apparatus, it is easy to obtain a uniform temperature on the holding surface, and it is difficult to break even when a thermal stress is locally applied.
[0018]
In order to install the ceramic-metal composite as a holding body in the chamber 20 of the semiconductor or liquid crystal manufacturing apparatus, it is necessary to have a structure in which the ceramic-metal composite 1 is supported by the support portion 6 as shown in FIG. is there. However, since the ceramic-metal composite is difficult to process, it is very expensive to obtain the structure of FIG. 1 by machining. Therefore, it is advantageous in terms of cost if the structure shown in FIG.
[0019]
As described above, the ceramic heater 2 including the ceramic-metal composite 1 and the support 6 joined at the joint 4 and the resistance heating element circuit 3 embedded therein is provided under the ceramic-metal composite, and the feeding electrode 7 and the thermoelectric If the holding body incorporating the pair 8 is installed in the chamber 20, it is possible to obtain a holding body that is excellent in the thermal uniformity of the workpiece holding surface 5, the corrosion resistance or the thermal shock resistance as the holding body, and is inexpensive.
[0020]
The ceramic-metal composite can be manufactured by, for example, a method in which metal is infiltrated into porous ceramics, a method in which ceramic powder and metal powder are mixed, and sintered after molding. Easy. In particular, when the size is increased, the infiltration and sintering can be performed at a lower temperature than that of the ceramic alone, and the toughness is high, so that it is difficult to break, and the cost is much lower than that of the ceramic. Moreover, the corrosion resistance with respect to the corrosive gas used in a semiconductor or a liquid-crystal manufacturing process is high compared with a metal. Furthermore, it is excellent in heat resistance at a high temperature of 300 ° C. or higher. Further, if the material of the ceramic or metal is matched to the material of the object to be processed, there is no fear of contaminating the object to be processed.
[0021]
Examples of the metal constituting such a ceramic-metal composite include aluminum (Al), silicon (Si), and copper (Cu). As the ceramics, SiC, Al 2 O 3, AlN, WC, BN and the like. The ceramic-metal composite of the present invention is preferably a combination of at least one of these metals and ceramics. When the object to be processed is a silicon wafer, aluminum is often used as a wiring pattern material. Therefore, Al—SiC, Al—Al 2 O 3 , Al—AlN, Si—SiC, Si—Al 2 O 3 , Particularly preferred is at least one of Si-AlN.
[0022]
Furthermore, in the case of a holder requiring heat resistance of 500 ° C. or higher, it is particularly preferable that at least one of Si—SiC, Si—Al 2 O 3 , and Si—AlN.
[0023]
If the flatness of the workpiece holding surface of the ceramic-metal composite is 500 μm or less and the surface roughness is 3 μm or less in Ra, the workpiece can be heated uniformly and the temperature distribution on the surface of the workpiece can be determined. It is preferable because it can be ± 1.0% or less.
[0024]
Moreover, if the diameter of a ceramics-metal composite is 200 mm or more, it can respond to a large-sized semiconductor wafer and the glass for liquid crystals, and since the effect of this invention is remarkable, it is preferable. Furthermore, the thickness is desirably 50 mm or less. This is because if the thickness is 50 mm or less, rapid temperature rise and fall is possible, and the temperature uniformity of the holding surface is improved.
[0025]
In addition, when the inside of the apparatus in which the holder of the present invention is installed is evacuated once, in order to prevent the evacuation time from being prolonged due to the generation of gas from the holder, the ceramic-metal composite is used. The water absorption rate of the body is preferably 0.03% or less. When the water absorption rate exceeds 0.03%, the time required for evacuation becomes longer, the operating rate of the equipment is lowered, and the production efficiency is deteriorated.
[0026]
A holding body having a structure in which a ceramic heater is provided under the ceramic-metal composite as described above is mounted via a support portion 6 in a chamber 20 of a semiconductor or liquid crystal manufacturing apparatus. The support part may support at least a part of either the ceramic-metal composite or the ceramic heater, or may support at least a part of both. A specific example of the support 6 is shown in FIGS. As shown in FIG. 1, the ceramic-metal composite 1 is supported by a support 6 and installed in a chamber 20. A power supply electrode 7 and a thermocouple 8 are installed inside the support portion 6. The support 6 and the chamber 20 may be hermetically sealed through an O-ring 9 as shown in FIG.
Moreover, you may fix with a volt | bolt etc.
[0027]
It is desirable that the temperature of the portion of the support portion in contact with the semiconductor or liquid crystal manufacturing apparatus is lower than the temperature of the ceramic heater. The ceramic-metal composite and the support are fixed. As a fixing method, there is a mechanical fixing method such as a screw, but particularly when a corrosive gas is used, the feeding electrode 7 and the thermocouple 8 installed in the support portion are corroded by the corrosive gas. In order to prevent this, it is desirable to hermetically seal the ceramic-metal composite or ceramic heater and the support portion. As a method for hermetic sealing, the ceramic-metal composite joining method of the present invention is suitable.
[0028]
That is, a bonding material containing at least one element of the element constituting the ceramic-metal composite and the element constituting the support portion and having a melting point of 500 ° C. or higher is placed in the joint portion, and the noble gas or nitrogen The bonding material is melted in a non-oxidizing atmosphere such as gas and then cooled. By doing in this way, the reprecipitation phase or crystallization phase which consists of the metal in a ceramics-metal complex or a compound of this metal can be reprecipitated or crystallized in a joining interface. The reprecipitation phase or the crystallization phase contributes to the improvement of the bonding strength, and the bonding strength can be improved.
[0029]
In addition, in the case of a holding body that requires heat resistance of 500 ° C. or higher, the bonding portion also needs to have heat resistance. Therefore, a Si base alloy or Ni base alloy having a melting point of 500 ° C. or higher is used as the bonding material. Preferably there is.
[0030]
The surface roughness of the bonding surface between the ceramic-metal composite and the counterpart material is preferably Ra 0.5 μm or more and 5 μm or less. More preferably, Ra is 1 μm or more and 2 μm or less. If the surface roughness of the bonding surface exceeds Ra 5 μm, shrinkage cavities are formed in the bonding material after bonding, so that the bonding strength decreases. In addition, when Ra is less than 0.5 μm, when the bonding material is melted at the time of bonding, the bonding material flows out of the bonded portion, so post-processing is necessary to remove the bonding material that has flowed out after bonding. It becomes expensive in terms of cost.
[0031]
Further, in the joining process, if the joining portion is heated by applying a load by hot pressing or the like, the joining strength is further improved and the airtightness is also improved. It is preferable to apply pressure and heat with a load of 2 MPa or more because the airtightness of the joint can be reduced to 1.0 × 10 −9 Pa · m 3 / s or less in the He leak test.
[0032]
When performing hermetic sealing, the closer the thermal expansion coefficient of the ceramic-metal composite or ceramic heater and the thermal expansion coefficient of the support portion are, the better, but the difference in the thermal expansion coefficient is 6 × 10 −6 / ° C. or less. Is preferred.
[0033]
If the difference in thermal expansion coefficient exceeds 6 × 10 −6 / ° C., even if cracks occur near the joint between the ceramic-metal composite and the support, or cracks do not occur during joining, use repeatedly. In the meantime, a thermal cycle is applied to the joint, and cracks and cracks may occur. For example, when the ceramic-metal composite is Si—SiC, the support portion is most preferably Si—SiC, but AlN, silicon nitride, silicon carbide, mullite, or the like can be used.
[0034]
In addition, when a corrosive gas is used, the ceramic-metal composite, the support portion, and the joint portion thereof are exposed to the corrosive gas, and thus may corrode. In order to prevent this corrosion, as shown in FIG. 6, it is preferable to apply a coating 10 having excellent corrosion resistance against a corrosive gas on at least the workpiece holding surface. As the coating material, Si, SiO 2 , SiC, AlN, diamond-like carbon (DLC), diamond, sapphire (Al 2 O 3 ), aluminum fluoride, and graphite are preferable.
[0035]
Further, as shown in FIG. 7, the ceramic-metal composite 1 and the ceramic heater 2 may be covered with a member 11 having high corrosion resistance against corrosive gas. As such a member, glassy carbon can be used in addition to Si, SiO 2 , SiC, AlN, sapphire (Al 2 O 3 ), aluminum fluoride, and graphite.
[0036]
Moreover, a semiconductor wafer can be processed by incorporating the holding body of the present invention into a semiconductor device. Since the temperature of the wafer holding surface is uniform in the holder of the present invention, the temperature distribution of the wafer is also more uniform than before, so that stable characteristics can be obtained with respect to the formed film, heat treatment, and the like.
[0037]
Moreover, the glass for liquid crystals can be processed by incorporating the holding body of the present invention into a liquid crystal production apparatus. Since the temperature of the holding surface of the glass for liquid crystal is uniform, the temperature distribution on the surface of the glass for liquid crystal is more uniform than that of the conventional holding body. Can be obtained.
[0038]
【Example】
Reference example 1
A commercially available ceramic-metal composite made of Si—SiC having a diameter of 400 mm and a thickness of 10 mm was prepared. As shown in FIG. 8, a Si—SiC pipe 6 having an outer diameter of 350 mm, an inner diameter of 330 mm, and a length of 150 mm was joined to the ceramic-metal composite 1. The bonding material was a Si-Al alloy having a thickness of 1 mm, the composition was adjusted, and a melting point as shown in Table 1 was used. The joining was performed using a hot press in nitrogen gas at a temperature 100 ° C. higher than the melting point of the joining material and a load of 30 MPa for 2 hours.
[0039]
He leak measurement was performed on the airtightness of the joint portion of the joined body joined with each joining material. In addition, a sample for measuring bonding strength in accordance with JIS R1601 was separately prepared, and the bonding strength was measured by a four-point bending test. The results are shown in Table 1. The surface roughness of the joint surface between the Si—SiC composite and the Si—SiC pipe was 1 μm in Ra.
[0040]
[Table 1]
Figure 0004556389
[0041]
From Table 1, it can be seen that if the melting point of the bonding material is 500 ° C. or higher, the bonding strength is 200 MPa or higher and 1.0 × 10 −9 Pa · m 3 / s or lower in the He leak test. Moreover, as a result of observing the structure | tissue of each junction part, it was No. The joint structure of 1 was a Si—AlN eutectic structure. No. In the joined bodies of 2 to 5, the Si—Al eutectic structure and the structure composed of Si crystal grains were present, and the Al—crystallized from the joining material preferentially existed at the interface between the Si—SiC and the joining material. . These structures are considered to contribute to the improvement of the bonding strength.
[0042]
Reference Example 2
Ceramic - metal complex and Si-Al 2 O 3, a ceramic pipe and made of a material shown in Table 2, the melting point of the Si-Al alloy as a 700 ° C., in the same manner as in Reference Example 1 conjugate Then, the bonding strength and the He leak test were performed. The bonding conditions were hot press, in nitrogen gas, at a temperature of 800 ° C. and a load of 50 MPa. The results are shown in Table 2. The α difference in the table indicates a difference in thermal expansion coefficient between the ceramic-metal composite and the ceramic pipe.
[0043]
[Table 2]
Figure 0004556389
[0044]
Reference example 3
A bonded body was prepared in the same manner as in Reference Example 2 except that the ceramic-metal composite was changed to Si-AlN, and the bonding strength and He leak test were performed. The results are shown in Table 3.
[0045]
[Table 3]
Figure 0004556389
[0046]
Reference example 4
A bonded body was prepared in the same manner as in Reference Example 2 except that the ceramic-metal composite was changed to Si-SiC, and the bonding strength and He leak test were performed. The results are shown in Table 3.
[0047]
[Table 4]
Figure 0004556389
[0048]
The following can be seen from Tables 2-4. That is, bonding is performed in a non-oxidizing atmosphere using a bonding material containing at least one element of an element constituting a ceramic-metal composite and an element constituting a bonding partner material and having a melting point of 500 ° C. or higher. By doing so, a bonded body having a bonding strength of 200 MPa or more can be obtained. In addition, if the difference in thermal expansion coefficient between the objects to be joined is 6 × 10 −6 / ° C. or less, airtightness of 1.0 × 10 −9 Pa · m 3 / s or less can be obtained in the He leak test.
[0049]
Example 1
Except that the bonding material is Ni-Si alloy powder having a melting point of 1002 ° C., and the alloy paste is sandwiched between the bonding interfaces with a thickness of 100 μm and bonded in a nitrogen atmosphere at a temperature of 1100 ° C. and a load of 50 MPa. Were fabricated in the same manner as in Reference Examples 2 to 4. The joint strength test of the joined body was performed, and the results are shown in Table 5.
[0050]
[Table 5]
Figure 0004556389
[0051]
When the bonding material was changed from the Si—Al based alloy foil to the Ni—Si based alloy powder, the bonding strength was increased by the increase in the strength of the bonding material. Further, the results of the He leak test did not change even when the bonding material was changed, and all were less than 1.0 × 10 −9 Pa · m 3 / s.
[0052]
Reference Example 5
A joined body was produced in the same manner as in Reference Example 1 using the same Si—SiC composite as in Reference Example 1 and an AlN pipe. At this time, the surface roughness of the joint surface between the Si—SiC and the AlN pipe was set as shown in Table 6. A He leak test was performed on the joined body, and the results are shown in Table 6.
[0053]
[Table 6]
Figure 0004556389
[0054]
From Table 6, if the surface roughness of the joint surface is Ra 5.0 μm or less, the airtightness is less than 1.0 × 10 −9 Pa · m 3 / s, but the surface roughness Ra exceeds 5.0 μm. It turns out that airtightness worsens.
[0055]
Reference Example 6
No. of Reference Example 1 4 was used. Various coating materials shown in Table 7 were coated on the entire surface including the joint as shown in FIG. The coating of Si and SiO 2 was performed by thermal spraying, and the coating of materials other than these was performed by the CVD method. The thickness of each coating 10 is shown in Table 7. These coated joints and No. No. 4, the ceramic heater 2 was attached with screws (not shown) as shown in FIG. 6.
[0056]
These holders were placed in a chamber, and a corrosive gas (CHF 3 : O 2 = 4: 1) was supplied for 1 hour with the holder heated to 500 ° C. As a result, the glass joint portion between the Si—SiC composite and the support portion was corroded (etched). The etching depth is shown in Table 7. In Table 7, “-” in the coating column indicates that coating is not performed.
[0057]
[Table 7]
Figure 0004556389
[0058]
As can be seen from Table 7, it is difficult to etch by applying a coating, but the corrosion resistance is improved by coating a material having high corrosion resistance such as DLC (diamond-like carbon) or diamond.
[0059]
【The invention's effect】
As described above, according to the present invention, the ceramic and metal composite, the same kind or different kinds of materials, at least one of the elements constituting the ceramic-metal composite and the elements constituting the bonding partner material are used. In the ceramic-metal composite at the bonding interface between the ceramic-metal composite and the counterpart material, by joining in a non-oxidizing atmosphere using a joining material having a melting point of 500 ° C. or higher Since a reprecipitation phase or a crystallization phase composed of a metal or a compound of the metal reprecipitates or crystallizes, a bonded body of a ceramic-metal composite with high bonding strength can be obtained.
[0060]
If such a bonded body is used as a holding body of a semiconductor or a liquid crystal manufacturing apparatus, it is possible to improve the thermal uniformity of the holding surface, to have excellent thermal shock resistance, and to suppress generation of particles and the like. Furthermore, durability can be improved by coating at least the workpiece holding surface. By mounting such a holder on a semiconductor manufacturing apparatus or a liquid crystal manufacturing apparatus, it is possible to provide a semiconductor or liquid crystal manufacturing apparatus with good productivity and yield.
[Brief description of the drawings]
FIG. 1 shows an example of a cross-sectional structure of a joined body of the present invention.
FIG. 2 shows another example of the cross-sectional structure of the joined body of the present invention.
FIG. 3 shows another example of the cross-sectional structure of the joined body of the present invention.
FIG. 4 shows another example of the cross-sectional structure of the joined body of the present invention.
FIG. 5 shows another example of the cross-sectional structure of the joined body of the present invention.
FIG. 6 shows another example of the cross-sectional structure of the joined body of the present invention.
FIG. 7 shows another example of the cross-sectional structure of the joined body of the present invention.
FIG. 8 shows another example of the cross-sectional structure of the joined body of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ceramics-metal composite body 2 Ceramic heater 3 Heat generating body circuit 4 Joint part 5 Holding surface 6 Support part 7 Electrode 8 Thermocouple 9 O-ring 10 Coating 20 Chamber

Claims (4)

SiとSiCの複合体(Si−SiC)同士を、Si元素を含有し融点が500℃以上のNi基合金の接合材を介して接合してなり、その接合界面にSiまたはSiの化合物からなる再析出相又は晶出相が、再析出又は晶出していることを特徴とするセラミックス−金属複合体の接合体。A complex of Si and SiC (Si-SiC) is bonded to each other through a bonding material of a Ni-based alloy containing Si element and having a melting point of 500 ° C. or more. A ceramic-metal composite joined body wherein a reprecipitation phase or a crystallization phase is reprecipitation or crystallization . 前記セラミックス−金属複合体の接合体の外周面をコーティングすることを特徴とする請求項に記載のセラミックス−金属複合体の接合体。2. The ceramic-metal composite joined body according to claim 1 , wherein an outer peripheral surface of the ceramic-metal composite joined body is coated. 複数のSi−SiC基材の接合体であって、前記基材の間にSiを含有するNi基合金の接合材を設置し、非酸化性雰囲気中で加熱して前記接合材を溶融させ、前記基材の接合界面にSi又はSiの化合物からなる再析出相又は晶出相を、再析出又は晶出させることを特徴とするセラミックス−金属複合体の接合体の製造方法。A joined body of a plurality of Si-SiC base materials, wherein a joint material of a Ni-based alloy containing Si is installed between the base materials, and heated in a non-oxidizing atmosphere to melt the joint material, A method for producing a joined body of a ceramic-metal composite, comprising reprecipitation or crystallization of a reprecipitation phase or a crystallization phase comprising Si or a Si compound at a bonding interface of the base material. 請求項1または2のいずれかの接合体を、被処理物保持体として搭載したことを特徴とする半導体あるいは液晶製造装置。 3. A semiconductor or liquid crystal manufacturing apparatus, wherein the joined body according to claim 1 is mounted as a workpiece holder.
JP2003186268A 2003-06-30 2003-06-30 Bonded body and bonding method of ceramic-metal composite and semiconductor or liquid crystal manufacturing apparatus using the bonded body Expired - Fee Related JP4556389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003186268A JP4556389B2 (en) 2003-06-30 2003-06-30 Bonded body and bonding method of ceramic-metal composite and semiconductor or liquid crystal manufacturing apparatus using the bonded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003186268A JP4556389B2 (en) 2003-06-30 2003-06-30 Bonded body and bonding method of ceramic-metal composite and semiconductor or liquid crystal manufacturing apparatus using the bonded body

Publications (2)

Publication Number Publication Date
JP2005015317A JP2005015317A (en) 2005-01-20
JP4556389B2 true JP4556389B2 (en) 2010-10-06

Family

ID=34185442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003186268A Expired - Fee Related JP4556389B2 (en) 2003-06-30 2003-06-30 Bonded body and bonding method of ceramic-metal composite and semiconductor or liquid crystal manufacturing apparatus using the bonded body

Country Status (1)

Country Link
JP (1) JP4556389B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5009095B2 (en) * 2007-08-29 2012-08-22 太平洋セメント株式会社 JOINT BODY AND MANUFACTURING METHOD THEREOF
JP5674602B2 (en) * 2011-09-09 2015-02-25 太平洋セメント株式会社 Method for manufacturing silicon carbide sintered body and silicon carbide sintered body

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227973A (en) * 1985-03-30 1986-10-11 株式会社東芝 Silicon carbide ceramics-metal joined body
JPH04342479A (en) * 1991-05-16 1992-11-27 Nippon Cement Co Ltd Bonding of ceramic and metal
WO2000060658A1 (en) * 1999-04-06 2000-10-12 Tokyo Electron Limited Electrode, wafer stage, plasma device, method of manufacturing electrode and wafer stage
JP2001089270A (en) * 1999-09-16 2001-04-03 Toshiba Ceramics Co Ltd Method of producing silicon impregnated silicon carbide ceramic member
JP2001110884A (en) * 1999-10-06 2001-04-20 Taiheiyo Cement Corp Electrostatic chuck device and its manufacturing method
JP2002011653A (en) * 2000-04-26 2002-01-15 Ibiden Co Ltd Ceramic member and its manufacturing method, and table for wafer polishing device
JP2002359279A (en) * 2001-05-31 2002-12-13 Kyocera Corp Wafer support member and manufacturing method therefor
JP2004074220A (en) * 2002-08-19 2004-03-11 Taiheiyo Cement Corp Joint body of metal-ceramics composite material and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227973A (en) * 1985-03-30 1986-10-11 株式会社東芝 Silicon carbide ceramics-metal joined body
JPH04342479A (en) * 1991-05-16 1992-11-27 Nippon Cement Co Ltd Bonding of ceramic and metal
WO2000060658A1 (en) * 1999-04-06 2000-10-12 Tokyo Electron Limited Electrode, wafer stage, plasma device, method of manufacturing electrode and wafer stage
JP2001089270A (en) * 1999-09-16 2001-04-03 Toshiba Ceramics Co Ltd Method of producing silicon impregnated silicon carbide ceramic member
JP2001110884A (en) * 1999-10-06 2001-04-20 Taiheiyo Cement Corp Electrostatic chuck device and its manufacturing method
JP2002011653A (en) * 2000-04-26 2002-01-15 Ibiden Co Ltd Ceramic member and its manufacturing method, and table for wafer polishing device
JP2002359279A (en) * 2001-05-31 2002-12-13 Kyocera Corp Wafer support member and manufacturing method therefor
JP2004074220A (en) * 2002-08-19 2004-03-11 Taiheiyo Cement Corp Joint body of metal-ceramics composite material and its manufacturing method

Also Published As

Publication number Publication date
JP2005015317A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP4648030B2 (en) Yttria sintered body, ceramic member, and method for producing yttria sintered body
JP4796354B2 (en) Electrostatic chuck and method for producing yttria sintered body
KR100709544B1 (en) Joined body and manufacturing method for the same
TWI390663B (en) A joining structure and a method for manufacturing the same
TW200541377A (en) Supporting unit for semiconductor manufacturing device and semiconductor manufacturing device with supporting unit installed
JP2006128603A (en) Ceramic member and manufacturing method therefor
JP4569077B2 (en) HOLDER FOR SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE AND SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE WITH THE SAME
JP3840990B2 (en) Semiconductor / LCD manufacturing equipment
JP2005101108A (en) Method for manufacturing placement table
KR20030007958A (en) Joined ceramic article, substrate holding structure and apparatus for treating substrate
JPH10242252A (en) Wafer heater
US5998041A (en) Joined article, a process for producing said joined article, and a brazing agent for use in producing such a joined article
JP4539035B2 (en) HOLDER FOR SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE AND SEMICONDUCTOR OR LIQUID CRYSTAL MANUFACTURING DEVICE WITH THE SAME
JP4556389B2 (en) Bonded body and bonding method of ceramic-metal composite and semiconductor or liquid crystal manufacturing apparatus using the bonded body
JP2003152064A (en) Electrode built-in susceptor and its manufacturing method
JP2004128232A (en) Ceramic junction, wafer holder, and semiconductor manufacturing equipment
JP3488724B2 (en) Semiconductor wafer heating equipment
JP2005166368A (en) Heating device
JP3941542B2 (en) Hermetic bonding structure of ceramics and metal and apparatus parts having the structure
JP4443556B2 (en) Method for manufacturing sample heating apparatus
JPH09262734A (en) Wafer holding device
JP2004140347A (en) Wafer holder and semiconductor manufacturing device
JP4590393B2 (en) Substrate holder and method for manufacturing the same
JPH06268029A (en) Manufacture of heating tool for thermocompression bonding
JP2002359279A (en) Wafer support member and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060222

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees