JP3488724B2 - Semiconductor wafer heating equipment - Google Patents

Semiconductor wafer heating equipment

Info

Publication number
JP3488724B2
JP3488724B2 JP10312993A JP10312993A JP3488724B2 JP 3488724 B2 JP3488724 B2 JP 3488724B2 JP 10312993 A JP10312993 A JP 10312993A JP 10312993 A JP10312993 A JP 10312993A JP 3488724 B2 JP3488724 B2 JP 3488724B2
Authority
JP
Japan
Prior art keywords
semiconductor wafer
single crystal
heating
plate
crystal sapphire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10312993A
Other languages
Japanese (ja)
Other versions
JPH06314694A (en
Inventor
仁 阿多利
和一 口町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10312993A priority Critical patent/JP3488724B2/en
Publication of JPH06314694A publication Critical patent/JPH06314694A/en
Application granted granted Critical
Publication of JP3488724B2 publication Critical patent/JP3488724B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体の製造装置等に
おいて、シリコンウェハ等のベ−キング、加熱を行うた
めに用いられる半導体ウェハ加熱装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor wafer heating apparatus used for baking and heating a silicon wafer in a semiconductor manufacturing apparatus.

【0002】[0002]

【従来の技術】半導体製造装置において、露光装置やエ
ッチング装置等ではシリコン等の半導体ウェハをヒータ
等の加熱装置を用いて加熱する必要があるが、この場合
は常温にもまして加熱装置の純度が重要になる。これ
は、温度が上がるほど、不純物が半導体ウェハ内に拡散
しやすくなるためであり、このため、半導体ウェハの加
熱装置の材質は厳しく制限されている。
2. Description of the Related Art In a semiconductor manufacturing apparatus, it is necessary to heat a semiconductor wafer such as silicon by using a heating device such as a heater in an exposure device, an etching device and the like. In this case, the purity of the heating device is higher than room temperature. Becomes important. This is because impurities are more likely to diffuse into the semiconductor wafer as the temperature rises, and therefore the material of the heating device for the semiconductor wafer is severely limited.

【0003】一般に、半導体ウエハに接触する面の純度
については、アルカリ金属、アルカリ土類金属、重金属
などの、半導体素子に悪影響を及ばす元素を不純物と
し、これらを除いた、Si、Al、C、N、Oを主成分
として純度は、99.9%以上あることが望ましい。ゆ
えに、Fe(鉄)系のステンレス材やNi(ニッケル)
などを含む耐熱合金は使用できない。
Generally, regarding the purity of the surface in contact with a semiconductor wafer, elements such as alkali metals, alkaline earth metals, and heavy metals that adversely affect the semiconductor element are used as impurities, and Si, Al, and C are excluded. , N, O as main components, and the purity is preferably 99.9% or more. Therefore, Fe (iron) type stainless steel material and Ni (nickel)
Heat-resistant alloys containing, etc. cannot be used.

【0004】そこで、従来の半導体加熱装置としては、
光による間接のランプ加熱、または低純度のヒータ上に
高純度のアルミニウム板を介して半導体ウェハを載置
し、加熱する方法が取られている。
Therefore, as a conventional semiconductor heating device,
A method of indirectly heating the lamp by light, or placing a semiconductor wafer on a low-purity heater via a high-purity aluminum plate and heating the semiconductor wafer is used.

【0005】[0005]

【発明が解決しようとする課題】ところが、従来の光に
よる間接のランプ加熱は、放射による加熱であり、効率
的な加熱方法ではないため、300℃以上の加熱は困難
であった。また、光線を遮る障害物がランプと半導体ウ
ェハの間にあってはならず、設計路に制約を受けること
が多かった。さらに、半導体ウェハに温度分布が生じた
場合に、温度分布を縮めるようなコントロールが出来な
かった。
However, conventional indirect lamp heating by light is heating by radiation and is not an efficient heating method, so that heating at 300 ° C. or higher is difficult. Also, there should be no obstacles that block light rays between the lamp and the semiconductor wafer, and the design route was often restricted. Furthermore, when the temperature distribution occurs on the semiconductor wafer, it is impossible to control the temperature distribution to be narrowed.

【0006】また、低純度のヒータ上に高純度のアルミ
ニウム板を介して半導体ウェハを載置し、加熱する方法
では、アルミニウム板を介して加熱するため、加熱に時
間差が生じたり放熱が生じるため、均熱のコントロール
が困難であった。さらに、加熱によるアルミニウム板の
変形のため、アルミニウム板と半導体ウェハの接触圧が
変わり温度むらや半導体ウェハの反りが生じやすかっ
た。また、アルミニウム板と半導体ウェハの熱膨張率の
差から、温度上昇に伴いアルミニウム板と半導体ウェハ
が摺動し、パーティクルの発生の原因になっていた。さ
らに、これらの部品は、プラズマや弗酸などの腐食性ガ
スに晒されることが多く、アルミニウム板では腐食しや
すかった。
Further, in the method of placing a semiconductor wafer on a low-purity heater via a high-purity aluminum plate and heating it, since the heating is performed via the aluminum plate, there is a time lag in heating or heat dissipation occurs. However, it was difficult to control the soaking. Further, due to the deformation of the aluminum plate due to heating, the contact pressure between the aluminum plate and the semiconductor wafer changes, and temperature unevenness and warp of the semiconductor wafer are likely to occur. Further, due to the difference in coefficient of thermal expansion between the aluminum plate and the semiconductor wafer, the aluminum plate and the semiconductor wafer slide with each other as the temperature rises, which causes the generation of particles. Further, these parts are often exposed to corrosive gases such as plasma and hydrofluoric acid, and aluminum plates are easily corroded.

【0007】このように、従来は適当な半導体ウェハ加
熱装置がなかった。
As described above, conventionally, there is no suitable semiconductor wafer heating device.

【0008】[0008]

【課題を解決するための手段】そこで本発明は、裏面に
発熱抵抗体を備え、表面に半導体ウェハの載置面が形成
された単結晶サファイア製板状体からなる半導体ウェハ
加熱装置において、前記半導体ウェハの載置面は、平面
度1μm以下であって、前記単結晶サファイア製板状体
に直接発熱抵抗体を備えるとともに、前記発熱抵抗体を
覆うように前記単結晶サファイア製板状体がアルミナま
たは単結晶サファイアよりなるベース板または台座に取
り付けられ、該ベース板または該台座に前記発熱抵抗体
に通電するための複数の電極取出部が設けられているこ
とを特徴とするものである。さらに本発明は、前記単結
晶サファイア製板状体が前記ベース板または台座に有機
接着剤を用いて取り付けられていることを特徴とするも
のである。
SUMMARY OF THE INVENTION Therefore, the present invention provides a semiconductor wafer heating apparatus comprising a single crystal sapphire plate-shaped body having a heating resistor on its back surface and a semiconductor wafer mounting surface formed on the front surface thereof. The mounting surface of the semiconductor wafer has a flatness of 1 μm or less, the single crystal sapphire plate is directly provided with a heating resistor, and the single crystal sapphire plate is provided so as to cover the heating resistor. It is characterized in that it is attached to a base plate or a pedestal made of alumina or single crystal sapphire, and a plurality of electrode lead-out portions for energizing the heating resistor are provided on the base plate or the pedestal. Furthermore, the present invention is characterized in that the single crystal sapphire plate-shaped body is attached to the base plate or the pedestal using an organic adhesive.

【0009】[0009]

【0010】[0010]

【作用】本発明によれば、ヒータの半導体ウェハと接触
する面が単結晶サファイアから成り、99.99%以上
の高純度の単結晶サファイアを得ることは容易であるた
め、この単結晶サファイアを直接半導体ウェハに接触さ
せて加熱しても高温でウエハを汚染することがない。
According to the present invention, the surface of the heater in contact with the semiconductor wafer is made of single crystal sapphire, and it is easy to obtain high purity single crystal sapphire of 99.99% or more. Even if the semiconductor wafer is directly contacted and heated, it does not contaminate the wafer at a high temperature.

【0011】また、単結晶サファイアは常温から800
℃の高温にわたって高い絶縁性を持つため、漏れ電流が
極めて小さいヒータが得られる。これらのことから、ヒ
ータの発熱抵抗体形状の自由なパターン設計が可能とな
り、均熱のコントロールが可能である。
Also, single crystal sapphire is from room temperature to 800
Since it has a high insulating property even at a high temperature of ℃, a heater having an extremely small leakage current can be obtained. For these reasons, it is possible to freely design the shape of the heating resistor of the heater and control the soaking.

【0012】また、単結晶サファイアは常温から100
0℃に至るまでその強度を維持し、ヤング率も4.7×
105 MPaと高い値を示し、温度変化に対して安定な
ため反りなどが生じにくく常に均一にウェハに接触でき
る。さらに、単結晶サファイアは耐薬品性や対プラズマ
性に関しても優れており、エッチング装置、成膜装置等
に好適に用いることができる。
Also, single crystal sapphire has a temperature of 100 to 100
Maintains its strength up to 0 ° C and Young's modulus is 4.7 x
It shows a high value of 10 5 MPa and is stable against temperature changes so that warpage is unlikely to occur and the wafer can always be contacted uniformly. Further, single crystal sapphire is also excellent in chemical resistance and plasma resistance, and can be suitably used in etching devices, film forming devices and the like.

【0013】[0013]

【実施例】以下本発明実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0014】図1に斜視図を、図2に断面図を示すよう
に、本発明の半導体ウェハ加熱用ヒータは、単結晶サフ
ァイアから成る板状体1の裏面に発熱抵抗体2を備え、
この発熱抵抗体2を覆うように、板状体1とベース板4
を接合してなるものである。
As shown in the perspective view of FIG. 1 and the sectional view of FIG. 2, the heater for heating a semiconductor wafer of the present invention comprises a plate-shaped body 1 made of single crystal sapphire and a heating resistor 2 on the back surface thereof.
The plate-shaped body 1 and the base plate 4 are arranged so as to cover the heating resistor 2.
It is made by joining.

【0015】ここで、板状体1とベース板4の接合は、
図3に示すような接合剤3を用いることができ、この接
合材3としては、有機接着剤、無機接着剤、ガラス付
け、メタライズ、ロウ付け、活性金属法、メッキなどを
用いることができる。なお、接合剤3の選定によって使
用温度などに限定が生じるため、用途に応じた接合方法
を用いれば良い。
Here, the joining of the plate 1 and the base plate 4 is
A bonding agent 3 as shown in FIG. 3 can be used, and as this bonding material 3, an organic adhesive, an inorganic adhesive, glass attachment, metallization, brazing, an active metal method, plating or the like can be used. Since the use temperature and the like are limited depending on the selection of the bonding agent 3, a bonding method suitable for the application may be used.

【0016】また、接合剤3を用いずに、板状体1とベ
ース板4を接合することもできる。この場合はベース板
4を単結晶サファイアまたは多結晶アルミナセラミック
スで形成し、板状体1とベース板4の接合面を鏡面加工
して、高温で両者を圧着すれば、単結晶サファイア同士
または単結晶サファイアと多結晶アルミナセラミックス
との間で直接融着させることができる。
Further, the plate-shaped body 1 and the base plate 4 can be joined without using the joining agent 3. In this case, if the base plate 4 is made of single crystal sapphire or polycrystalline alumina ceramics, the joint surface of the plate body 1 and the base plate 4 is mirror-finished, and both are pressure-bonded at high temperature, the single crystal sapphires or the single crystal sapphire are bonded together. Direct fusion bonding between crystalline sapphire and polycrystalline alumina ceramics is possible.

【0017】 さらに、上記ベース板4を単結晶サファ
イアまたは多結晶アルミナセラミックスで形成された台
座5に固定して使用するが、この台座5は必ずしも必要
なものではない。
Further, the base plate 4 is used by being fixed to a pedestal 5 formed of single crystal sapphire or polycrystalline alumina ceramics, but the pedestal 5 is not always necessary.

【0018】また、上記発熱抵抗体2に通電するための
複数の電極取出部4aをベース材4に形成してあり、こ
れらの電極取出部4aを通じて発熱抵抗体2に電源7よ
り電圧を印加することによって、発熱抵抗体2が発熱
し、単結晶サファイア製の板状体1を介して載置面1a
に載置した半導体ウェハ6を加熱することができる。
A plurality of electrode lead-out portions 4a for energizing the heating resistor 2 are formed in the base material 4, and a voltage is applied from the power supply 7 to the heating resistor 2 through these electrode lead-out portions 4a. As a result, the heating resistor 2 generates heat, and the mounting surface 1a is inserted through the plate-shaped body 1 made of single crystal sapphire.
The semiconductor wafer 6 placed on the can be heated.

【0019】なお、上記板状体1の載置面1aは、平面
度1μm以下の高精度の面とすることが可能であり、そ
のため半導体ウェハ6に対して優れた均一加熱をするこ
とができる。
The mounting surface 1a of the plate-shaped body 1 can be a highly accurate surface having a flatness of 1 μm or less, and therefore the semiconductor wafer 6 can be heated uniformly and uniformly. .

【0020】また、上記発熱抵抗体2の材料としては、
タングステン(W)、白金(Pt)、ニッケル(N
i)、クロム(Cr)、窒化チタン(TiN)などやそ
の混合物が挙げられ、発熱抵抗体であれば特に材質を選
ばず、これらの発熱抵抗体2をメタライズ法等により所
定のパターンに形成すれば良い。
The material of the heating resistor 2 is as follows.
Tungsten (W), platinum (Pt), nickel (N
i), chromium (Cr), titanium nitride (TiN), and the like, and mixtures thereof. Any material can be used as long as it is a heating resistor, and these heating resistors 2 can be formed into a predetermined pattern by a metallizing method or the like. Good.

【0021】次に本発明の他の実施例を説明する。Next, another embodiment of the present invention will be described.

【0022】図4に示す半導体加熱用ヒータは、単結晶
サファイア製の板状体1と多結晶アルミナセラミックス
製のベース材4を高温融着により直接接合し、予めベー
ス板4にパターンの形状に形成しておいた隙間8に、電
極取出部4aからペーストを流し込んで焼き付けたり、
無電解メッキを施すことによって、発熱抵抗体2を形成
したものである。この半導体加熱用ヒータは、発熱抵抗
体2の形成が容易であり量産性に優れる。
In the heater for heating a semiconductor shown in FIG. 4, the plate-shaped body 1 made of single crystal sapphire and the base material 4 made of polycrystalline alumina ceramics are directly joined by high temperature fusion, and the base plate 4 is preliminarily formed into a pattern shape. The paste is poured from the electrode extraction portion 4a into the formed gap 8 and baked,
The heating resistor 2 is formed by applying electroless plating. This semiconductor heating heater is easy to form the heating resistor 2 and is excellent in mass productivity.

【0023】また、さらに他の実施例として、図5に示
すように、Mo−Mn法によるメタライズや、Ti合金
からなる活性金属を用いて単結晶サファイア製の板状体
1とベース板4を接合し、このメタライズ層または活性
金属層を発熱抵抗体2とすることも可能である。
Further, as still another embodiment, as shown in FIG. 5, the plate-like body 1 and the base plate 4 made of single crystal sapphire are prepared by metallization by the Mo--Mn method or by using an active metal made of Ti alloy. It is also possible to bond them and use this metallized layer or active metal layer as the heating resistor 2.

【0024】 さらに、本発明において発熱抵抗体2は
必ずしも単結晶サファイア製の板状体1とベース板4間
に埋設する必要はない。つまり、図6に他の実施例を示
すように、単結晶サファイア製の板状体1の載置面1a
と反対側の面に発熱抵抗体2を形成し、この下に接合剤
9を介して絶縁性のある台座5を固定することも可能で
ある。この場合、上記接合剤9としては、接着剤、ガラ
ス、シリコーン樹脂等を用いる。また、台座5として
は、アルミナの多結晶セラミック材、または単結晶サフ
ァイアを用いる。
Further, in the present invention, the heating resistor 2 does not necessarily have to be embedded between the plate-shaped body 1 made of single crystal sapphire and the base plate 4. That is, as shown in FIG. 6 as another embodiment, the mounting surface 1a of the plate-shaped body 1 made of single crystal sapphire.
It is also possible to form the heat generating resistor 2 on the surface opposite to the above and to fix the insulating pedestal 5 thereunder via the bonding agent 9. In this case, as the bonding agent 9, an adhesive, glass, silicone resin, or the like is used. Further, as the pedestal 5, a polycrystalline ceramic material of alumina or single crystal sapphire is used.

【0025】[0025]

【0026】また、以上の実施例では単結晶サファイア
製の板状体1に直接発熱抵抗体2を備えたもののみを示
したが、これに限らず、例えば発熱抵抗体を有するヒー
タを板状体1の裏面側に備えても良いことはいうまでも
ない。
Further, in the above-mentioned embodiments, only the plate-shaped body 1 made of single crystal sapphire is directly provided with the heating resistor 2, but the present invention is not limited to this, and for example, a heater having a heating resistor is plate-shaped. It goes without saying that it may be provided on the back side of the body 1.

【0027】実施例1 本発明実施例として、図4に示すヒータを試作した。単
結晶サファイア製の板状体1として、EFG(Edge
−defined Film−fed Growth)
法を用いて、6インチ幅の単結晶サファイアを引き上
げ、6インチ径、0.2mm厚みの板状体1を作製し
た。このとき作製した単結晶サファイアの物性値を表
1、純度を表2に示す。
Example 1 As an example of the present invention, a heater shown in FIG. As the plate-shaped body 1 made of single crystal sapphire, EFG (Edge) is used.
-Defined Film-fed Growth)
Using the method, a 6-inch-wide single crystal sapphire was pulled up to prepare a plate-like body 1 having a diameter of 6 inches and a thickness of 0.2 mm. The physical properties of the single crystal sapphire produced at this time are shown in Table 1, and the purity is shown in Table 2.

【0028】同様にEFG法によって単結晶サファイア
のベース板4を6インチ径、3mm厚みで作製した。こ
のベース板4に電極取出部4aを開け、目的の発熱抵抗
体形状となるように0.1mm深さで溝8を形成した
後、板状体1とベース板4の接合面を鏡面研磨し、摺合
わせた後1800℃で融着した。
Similarly, a single crystal sapphire base plate 4 having a diameter of 6 inches and a thickness of 3 mm was produced by the EFG method. The electrode lead-out portion 4a is opened in the base plate 4, a groove 8 is formed with a depth of 0.1 mm so as to have a desired heating resistor shape, and then the bonding surface between the plate-shaped body 1 and the base plate 4 is mirror-polished. After fusing, they were fused at 1800 ° C.

【0029】その後、電極取出部4aからタングステン
(W)ペーストを内部に注入し、還元雰囲気にて焼付
け、発熱抵抗体2を形成した。なお、内部抵抗2の形成
は、無電解メッキなどに依ってもよい。
Then, a tungsten (W) paste was injected into the inside from the electrode extraction portion 4a and baked in a reducing atmosphere to form the heating resistor 2. The internal resistance 2 may be formed by electroless plating or the like.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】実施例2 本発明実施例として、図5に示すヒータを試作した。実
施例1と同様の単結晶サファイア製の板状体1と、単結
晶サファイア製のベース板4を形成し、Mo−Mn法に
よるメタライズ接合を行った。この場合は、Mo−Mn
メタライズに窒化チタン(TiN)などを調合して抵抗
値を調整し、このメタライズ層自体が発熱抵抗体2とな
る。
Example 2 As an example of the present invention, a heater shown in FIG. 5 was prototyped. A single crystal sapphire plate 1 and a single crystal sapphire base plate 4 similar to those in Example 1 were formed, and metallized joining was performed by the Mo—Mn method. In this case, Mo-Mn
Titanium nitride (TiN) or the like is mixed with the metallization to adjust the resistance value, and the metallized layer itself becomes the heating resistor 2.

【0033】実施例3 図5に示すヒータとして、実施例1と同様の単結晶サフ
ァイア製の板状体1と多結晶アルミナセラミックス製の
ベース板4を形成し、Mo−Mn法によるメタライズ接
合を行った。この場合も、窒化チタン(TiN)などの
他の化合物で抵抗を調整したMo−Mnメタライズ層自
体が、発熱抵抗体2となる。
Example 3 As the heater shown in FIG. 5, a plate-like body 1 made of single crystal sapphire and a base plate 4 made of polycrystalline alumina ceramics were formed as in Example 1, and metallized joining was carried out by the Mo-Mn method. went. Also in this case, the Mo—Mn metallized layer itself whose resistance is adjusted by another compound such as titanium nitride (TiN) becomes the heating resistor 2.

【0034】[0034]

【0035】参考例 参考例として、図6に示すヒータを試作した。実施例1
と同様の単結晶サファイア製の板状体1裏面に発熱抵抗
体2として無電解メッキを施した後、表面をアルマイト
(酸化アルミニウム被膜)処理した高純度アルミニウム
の台座5に、上記板状体1をエポキシ樹脂で接着し、2
00℃以下の低温型のヒータを製作した。
Reference Example As a reference example, the heater shown in FIG. 6 was manufactured as a prototype. Example 1
A plate-like body 1 made of single crystal sapphire similar to the above is electrolessly plated as a heating resistor 2 on the back surface, and then the plate-like body 1 is placed on a pedestal 5 of high-purity aluminum whose surface is anodized (aluminum oxide film). 2 with epoxy resin
A low temperature type heater having a temperature of 00 ° C. or lower was manufactured.

【0036】実験例 上記実施例1〜3および参考例のヒータを用いてシリコ
ンウェハの加熱試験を行った。その条件としては、真空
度は10−3Torrとし、200℃、500℃まで加
熱し、その時の温度ばらつきで評価を行った。対照実験
として、ランプ加熱、およびアルミニウム板を用いた間
接加熱を評価した。
Experimental Example A silicon wafer heating test was conducted using the heaters of Examples 1 to 3 and the reference example. As the conditions, the degree of vacuum was set to 10 −3 Torr, heating was performed up to 200 ° C. and 500 ° C., and the temperature variation at that time was evaluated. As a control experiment, lamp heating and indirect heating using an aluminum plate were evaluated.

【0037】なお、ウエハに接触する面の純度について
は、アルカリ金属、アルカリ土類金属、重金属などの、
半導体素子に悪影響を及ばす元素を不純物とし、これら
を除いた、Si、Al、C、N、Oを主成分として、こ
れらの純度が99.9%以上あるかどうかで評価した。
Regarding the purity of the surface in contact with the wafer, the purity of the alkali metal, alkaline earth metal, heavy metal, etc.
An element that adversely affects the semiconductor element was used as an impurity, and Si, Al, C, N, and O, excluding these elements, were used as the main components, and the purity was evaluated based on whether they were 99.9% or more.

【0038】また、温度ばらつきは、加熱した6インチ
のウエハ上の温度を熱電対を用いて放射状に17点測定
し、その最大値と最小値の差とした。なお、温度ばらつ
きは少なくとも20℃以下でなければならず、好適には
10℃以下が望ましい。
The temperature variation was defined as the difference between the maximum and minimum values of the temperature on a heated 6-inch wafer measured radially at 17 points using a thermocouple. The temperature variation must be at least 20 ° C or less, and preferably 10 ° C or less.

【0039】[0039]

【表3】 [Table 3]

【0040】表3に見られるように、比較例では温度ば
らつきが20℃以上と大きかったのに対し、単結晶サフ
ァイアで作製した本発明のヒータを用いた場合は、いず
れも高純度で、十分な均熱特性が得られ、半導体製造装
置内の使用にも十分耐えられることがわかった。
As can be seen from Table 3, in the comparative example, the temperature variation was as large as 20 ° C. or more, while in the case of using the heater of the present invention made of single crystal sapphire, all of them were of high purity and sufficiently high. It was found that excellent soaking characteristics were obtained, and it could withstand use in semiconductor manufacturing equipment.

【0041】また、本発明のヒータにおいて、発熱抵抗
体2と半導体ウェハ6間を流れる電流を測定してみたと
ころ、この漏れ電流は数十〜数μAの電流値であり問題
とされるレベルではないことが確認された。
Further, in the heater of the present invention, when the current flowing between the heating resistor 2 and the semiconductor wafer 6 was measured, this leakage current had a current value of several tens to several μA and was at a problematic level. It was confirmed that there was not.

【0042】[0042]

【発明の効果】このように本発明によれば、裏面に発熱
抵抗体を備え、表面に半導体ウェハの載置面が形成され
た単結晶サファイア製板状体からなる半導体ウェハ加熱
装置において、前記半導体ウェハの載置面は、平面度1
μm以下であって、前記単結晶サファイア製板状体に直
接発熱抵抗体を備えるとともに、前記発熱抵抗体を覆う
ように前記単結晶サファイア製板状体がアルミナまたは
単結晶サファイアよりなるベース板または台座に取り付
けられ、該ベース板または該台座に前記発熱抵抗体に通
電するための複数の電極取出部を設けたことによって、
半導体ウェハの加熱時に必要な十分な均熱が得られ、か
つ半導体ウェハを汚染しにくい特長をもったヒータを得
ることができる。
As described above, according to the present invention, there is provided a semiconductor wafer heating apparatus comprising a single crystal sapphire plate-shaped body having a heating resistor on the back surface and a semiconductor wafer mounting surface formed on the front surface thereof. The mounting surface of the semiconductor wafer has a flatness of 1
and a base plate made of alumina or single crystal sapphire so that the single crystal sapphire plate is provided with a heating resistor directly on the single crystal sapphire plate and covers the heating resistor. By being attached to a pedestal, the base plate or the pedestal is provided with a plurality of electrode lead-out portions for energizing the heating resistor,
It is possible to obtain a heater having a feature that sufficient soaking required when heating a semiconductor wafer is obtained and that the semiconductor wafer is less likely to be contaminated.

【0043】また、漏れ電流が極めて小さいことから、
露光装置、エッチング装置等に使用されるヒータとして
好適に用いられる。さらに、特に機械的性質、摺動特性
が優れるとともに、ヒータ表面の熱膨張率を小さくでき
るため、高精度に加工したヒータを広い温度域で初期の
精度を保つことができ、加工パターンの高精度化が可能
となるなど、さまざまな特長をもった半導体ウェハ加熱
用ヒータを提供できる。
Since the leakage current is extremely small,
It is preferably used as a heater used in an exposure device, an etching device, and the like. In addition, the mechanical properties and sliding characteristics are particularly excellent, and the coefficient of thermal expansion of the heater surface can be made small, so the heater that has been processed with high accuracy can maintain the initial accuracy in a wide temperature range, and the high accuracy of the processing pattern. It is possible to provide a heater for heating a semiconductor wafer, which has various features such as being made possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体加熱用ヒータを示す斜視図であ
る。
FIG. 1 is a perspective view showing a semiconductor heating heater of the present invention.

【図2】図1中のX−X線断面図である。FIG. 2 is a sectional view taken along line XX in FIG.

【図3】図2中のA部の拡大図である。FIG. 3 is an enlarged view of part A in FIG.

【図4】本発明の半導体加熱用ヒータの他の実施例を示
す縦断面図である。
FIG. 4 is a vertical cross-sectional view showing another embodiment of the semiconductor heating heater of the present invention.

【図5】本発明の半導体加熱用ヒータの他の実施例を示
す縦断面図である。
FIG. 5 is a vertical cross-sectional view showing another embodiment of the semiconductor heating heater of the present invention.

【図6】本発明の半導体加熱用ヒータの他の実施例を示
す縦断面図である。
FIG. 6 is a vertical sectional view showing another embodiment of the semiconductor heating heater of the present invention.

【符号の説明】[Explanation of symbols]

1・・・板状体 1a・・載置面 2・・・発熱抵抗体 3・・・接合剤 4・・・ベース板 4a・・電極取出部 5・・・台座 6・・・半導体ウェハ 7・・・電源 8・・・溝 9・・・接合剤 1 ... plate-shaped body 1a ... Mounting surface 2 ... Heating resistor 3 ... Bonding agent 4 ... Base plate 4a ... Electrode extraction part 5 ... Pedestal 6 ... Semiconductor wafer 7 ... power supply 8 ... Groove 9 ... Bonding agent

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−181725(JP,A) 特開 昭59−39348(JP,A) 特開 平5−93275(JP,A) 特開 昭58−150288(JP,A) 特開 昭58−199047(JP,A) 特開 昭59−99715(JP,A) 特開 平1−289089(JP,A) 特開 平3−226986(JP,A) 特開 平3−236186(JP,A) 特開 平6−291175(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/31 H01L 21/324 H01L 21/68 C23C 14/50 ─────────────────────────────────────────────────── --- Continued from the front page (56) References JP-A-4-181725 (JP, A) JP-A-59-39348 (JP, A) JP-A-5-93275 (JP, A) JP-A-58- 150288 (JP, A) JP 58-199047 (JP, A) JP 59-99715 (JP, A) JP 1-289089 (JP, A) JP 3-226986 (JP, A) JP-A-3-236186 (JP, A) JP-A-6-291175 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/31 H01L 21/324 H01L 21/68 C23C 14/50

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】裏面に発熱抵抗体を備え、表面に半導体ウ
ェハの載置面が形成された単結晶サファイア製板状体か
らなる半導体ウェハ加熱装置において、前記半導体ウェ
ハの載置面は、平面度1μm以下であって、前記単結晶
サファイア製板状体に直接発熱抵抗体を備えるととも
に、前記発熱抵抗体を覆うように前記単結晶サファイア
製板状体がアルミナまたは単結晶サファイアよりなる
ース板または台座に取り付けられ、該ベース板または該
台座に前記発熱抵抗体に通電するための複数の電極取出
部が設けられていることを特徴とする半導体ウェハ加熱
装置。
1. A semiconductor wafer heating apparatus comprising a single crystal sapphire plate-shaped body having a heating resistor on the back surface and a semiconductor wafer mounting surface formed on the front surface, wherein the mounting surface of the semiconductor wafer is a flat surface. 1 μm or less, the single crystal sapphire plate is directly provided with a heating resistor, and the single crystal sapphire plate is made of alumina or single crystal sapphire so as to cover the heating resistor. A semiconductor wafer heating apparatus mounted on a base plate or a pedestal, wherein the base plate or the pedestal is provided with a plurality of electrode lead-out portions for energizing the heating resistors.
【請求項2】前記単結晶サファイア製板状体が前記ベー2. The single crystal sapphire plate-shaped body is the base.
ス板または台座に有機接着剤を用いて取り付けられていIt is attached to the board or pedestal using an organic adhesive.
ることを特徴とする請求項1に記載の半導体ウェハ加熱The semiconductor wafer heating according to claim 1, wherein
装置。apparatus.
JP10312993A 1993-04-28 1993-04-28 Semiconductor wafer heating equipment Expired - Lifetime JP3488724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10312993A JP3488724B2 (en) 1993-04-28 1993-04-28 Semiconductor wafer heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10312993A JP3488724B2 (en) 1993-04-28 1993-04-28 Semiconductor wafer heating equipment

Publications (2)

Publication Number Publication Date
JPH06314694A JPH06314694A (en) 1994-11-08
JP3488724B2 true JP3488724B2 (en) 2004-01-19

Family

ID=14345949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10312993A Expired - Lifetime JP3488724B2 (en) 1993-04-28 1993-04-28 Semiconductor wafer heating equipment

Country Status (1)

Country Link
JP (1) JP3488724B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844205A (en) * 1996-04-19 1998-12-01 Applied Komatsu Technology, Inc. Heated substrate support structure
US10052848B2 (en) 2012-03-06 2018-08-21 Apple Inc. Sapphire laminates
US9632537B2 (en) 2013-09-23 2017-04-25 Apple Inc. Electronic component embedded in ceramic material
US9678540B2 (en) 2013-09-23 2017-06-13 Apple Inc. Electronic component embedded in ceramic material
US9154678B2 (en) 2013-12-11 2015-10-06 Apple Inc. Cover glass arrangement for an electronic device
US9225056B2 (en) 2014-02-12 2015-12-29 Apple Inc. Antenna on sapphire structure

Also Published As

Publication number Publication date
JPH06314694A (en) 1994-11-08

Similar Documents

Publication Publication Date Title
TW541639B (en) Substrate processing apparatus
EP0628989B1 (en) Sealing device and method useful in semiconductor processing apparatus for bridging materials having a thermal expansion differential
WO2011093451A1 (en) Electrostatic chuck apparatus
US7044399B2 (en) Heating systems
JPH10242252A (en) Wafer heater
JP2016058748A (en) Electrostatic chuck device
JP3488724B2 (en) Semiconductor wafer heating equipment
US7414823B2 (en) Holder for use in semiconductor or liquid-crystal manufacturing device and semiconductor or liquid-crystal manufacturing device in which the holder is installed
EP1363316A2 (en) Ceramic susceptor
JP2005018992A (en) Electrode embedding member for plasma generator
JP2003080375A (en) Manufacturing method of semiconductor wafer supporting member joined body and semiconductor wafer supporting member joined body
JPH06291175A (en) Electrostatic chuck
JP3152898B2 (en) Aluminum nitride ceramic heater
JP3918806B2 (en) Heater member for placing object to be heated and heat treatment apparatus
JP2005166368A (en) Heating device
JP2001077185A (en) Electrostatic chuck and its manufacture
JP2002141403A (en) Wafer supporting member
JP2004363335A (en) Holder for semiconductor or liquid crystal production system and semiconductor or liquid crystal production system mounting it
JP3297571B2 (en) Electrostatic chuck
JPH08330402A (en) Semiconductor wafer holding device
JP3545866B2 (en) Wafer holding device
JPH09262734A (en) Wafer holding device
JP2003017551A (en) Wafer supporting member
JP2003188248A (en) Wafer-supporting member
JPH08162519A (en) Electrostatic chuck, and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071031

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081031

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091031

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101031

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 10

EXPY Cancellation because of completion of term