JP2016058748A - Electrostatic chuck device - Google Patents

Electrostatic chuck device Download PDF

Info

Publication number
JP2016058748A
JP2016058748A JP2015231095A JP2015231095A JP2016058748A JP 2016058748 A JP2016058748 A JP 2016058748A JP 2015231095 A JP2015231095 A JP 2015231095A JP 2015231095 A JP2015231095 A JP 2015231095A JP 2016058748 A JP2016058748 A JP 2016058748A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
temperature
adhesive
electrostatic
chuck portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015231095A
Other languages
Japanese (ja)
Inventor
佐藤 隆
Takashi Sato
隆 佐藤
和典 石村
Kazunori Ishimura
和典 石村
竜二 早原
Ryuji Hayahara
竜二 早原
剛志 渡辺
Tsuyoshi Watanabe
剛志 渡辺
小坂井 守
Mamoru Kosakai
守 小坂井
圭 古内
Kei Furuuchi
圭 古内
義明 森谷
Yoshiaki Moriya
義明 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Publication of JP2016058748A publication Critical patent/JP2016058748A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrostatic chuck device capable of improving voltage resistance by preventing insulation destruction between an electrostatic chuck part and a base part for temperature adjustment, improving uniformity in in-plane temperature of a plate-like sample placement surface in the electrostatic chuck part, and improving voltage resistance of a heating member provided in the electrostatic chuck part.SOLUTION: An electrostatic chuck device 1 comprises: an electrostatic chuck part 2 a surface of which serves as a placement surface for placing a plate-like sample W thereon and which incorporates an internal electrode 13 for electrostatic adsorption; and a base part 3 for temperature adjustment which adjusts the electrostatic chuck part 2 to desired temperature. A heater element 5 is adhered through a sheet-like adhesion material 4 to a bottom face of the electrostatic chuck part 2, the electrostatic chuck part 2 to which the heater element 5 is adhered and the base part 3 for temperature adjustment are adhered and integrated through an organic adhesive layer 8 and a sheet-like insulation member 7. The heater element 5 is formed from mutually independent two or more heater patterns.SELECTED DRAWING: Figure 1

Description

本発明は、静電チャック装置に関し、さらに詳しくは、半導体ウエハ等の板状試料を静電気力により吸着固定する際に好適に用いられ、半導体製造プロセスにおける物理気相成長法(PVD)や化学気相成長法(CVD)による成膜処理、プラズマエッチング等のエッチング処理、露光処理等の各種工程においても、板状試料を載置する載置面における面内温度の均一性を高めることが可能であり、さらには、加熱部材の耐電圧性を高めることが可能な静電チャック装置に関するものである。   The present invention relates to an electrostatic chuck device, and more particularly, is used suitably when a plate-like sample such as a semiconductor wafer is adsorbed and fixed by electrostatic force, and is used in physical vapor deposition (PVD) and chemical vapor deposition in a semiconductor manufacturing process. It is possible to increase the uniformity of the in-plane temperature on the mounting surface on which the plate-like sample is placed in various processes such as film formation by phase growth (CVD), etching such as plasma etching, and exposure. In addition, the present invention relates to an electrostatic chuck device that can increase the voltage resistance of a heating member.

近年、半導体製造プロセスにおいては、素子の高集積化や高性能化に伴い、微細加工技術の更なる向上が求められている。この半導体製造プロセスの中でもエッチング技術は、微細加工技術の重要な一つであり、近年では、エッチング技術の内でも、高効率かつ大面積の微細加工が可能なプラズマエッチング技術が主流となっている。
このプラズマエッチング技術はドライエッチング技術の一種であり、加工対象となる固体材料の上にレジストでマスクパターンを形成し、この固体材料を真空中に支持した状態で、この真空中に反応性ガスを導入し、この反応性ガスに高周波の電界を印加することにより、加速された電子がガス分子と衝突してプラズマ状態となり、このプラズマから発生するラジカル(フリーラジカル)とイオンを固体材料と反応させて反応生成物として取り除くことにより、固体材料に微細パターンを形成する技術である。
In recent years, in semiconductor manufacturing processes, further improvement of microfabrication technology has been demanded along with higher integration and higher performance of elements. In this semiconductor manufacturing process, the etching technique is an important one of the microfabrication techniques. In recent years, the plasma etching technique capable of high-efficiency and large-area microfabrication has become the mainstream among the etching techniques. .
This plasma etching technique is a kind of dry etching technique. A mask pattern is formed with a resist on a solid material to be processed, and this solid material is supported in a vacuum. By introducing and applying a high-frequency electric field to this reactive gas, the accelerated electrons collide with gas molecules to form a plasma state, and radicals (free radicals) and ions generated from this plasma react with the solid material. This is a technique for forming a fine pattern in a solid material by removing it as a reaction product.

一方、原料ガスをプラズマの働きで化合させ、得られた化合物を基板の上に堆積させる薄膜成長技術の一つとしてプラズマCVD法がある。この方法は、原料分子を含むガスに高周波の電界を印加することによりプラズマ放電させ、このプラズマ放電にて加速された電子によって原料分子を分解させ、得られた化合物を堆積させる成膜方法である。低温では熱的励起だけでは起こらなかった反応も、プラズマ中では、系内のガスが相互に衝突し活性化されラジカルとなるので、可能となる。
プラズマエッチング装置、プラズマCVD装置等のプラズマを用いた半導体製造装置においては、従来から、試料台に簡単にウエハを取付け、固定するとともに、このウエハを所望の温度に維持する装置として静電チャック装置が使用されている。
On the other hand, there is a plasma CVD method as one of thin film growth techniques in which source gases are combined by the action of plasma and the obtained compound is deposited on a substrate. This method is a film forming method in which plasma discharge is performed by applying a high-frequency electric field to a gas containing source molecules, source molecules are decomposed by electrons accelerated by the plasma discharge, and the obtained compound is deposited. . Reactions that did not occur only at thermal excitation at low temperatures are also possible in the plasma because the gases in the system collide with each other and are activated to become radicals.
2. Description of the Related Art Conventionally, in a semiconductor manufacturing apparatus using plasma such as a plasma etching apparatus and a plasma CVD apparatus, an electrostatic chuck apparatus is used as an apparatus for simply mounting and fixing a wafer on a sample stage and maintaining the wafer at a desired temperature. Is used.

ところで、従来のプラズマエッチング装置では、静電チャック装置に固定されたウエハにプラズマを照射すると、このウエハの表面温度が上昇する。そこで、この表面温度の上昇を抑えるために、静電チャック装置の温度調整用ベース部に水等の冷却媒体を循環させてウエハを下側から冷却しているが、この際、ウエハの面内で温度分布が発生する。例えば、ウエハの中心部では温度が高くなり、縁辺部では温度が低くなる。
また、プラズマエッチング装置の構造や方式の違い等により、ウエハの面内温度分布に差が生じる。
By the way, in the conventional plasma etching apparatus, when the wafer fixed to the electrostatic chuck apparatus is irradiated with plasma, the surface temperature of the wafer rises. Therefore, in order to suppress the rise in the surface temperature, a cooling medium such as water is circulated through the temperature adjustment base portion of the electrostatic chuck device to cool the wafer from the lower side. A temperature distribution occurs. For example, the temperature increases at the center of the wafer and decreases at the edge.
In addition, a difference occurs in the in-plane temperature distribution of the wafer due to differences in the structure and method of the plasma etching apparatus.

そこで、静電チャック部と温度調整用ベース部との間にヒータ部材を取り付けたヒータ機能付き静電チャック装置が提案されている(特許文献1)。
このヒータ機能付き静電チャック装置は、ウエハ内に局所的に温度分布を作ることができるので、ウエハの面内温度分布を膜堆積速度やプラズマエッチング速度に合わせて設定することにより、ウエハ上へのパターン形成などの局所的な膜形成や局所的なプラズマエッチングを効率よく行なうことができる。
Thus, an electrostatic chuck device with a heater function in which a heater member is attached between the electrostatic chuck portion and the temperature adjusting base portion has been proposed (Patent Document 1).
Since this electrostatic chuck device with a heater function can create a temperature distribution locally within the wafer, the wafer surface temperature distribution can be set on the wafer by setting it according to the film deposition rate and plasma etching rate. Thus, local film formation such as pattern formation and local plasma etching can be performed efficiently.

静電チャック装置にヒータを取り付ける方法としては、セラミック製の静電チャックにヒータを内蔵する方法、静電チャックの吸着面の裏側、すなわちセラミック板状体の裏面にスクリーン印刷法にてヒータ材料を所定のパターンにて塗布し加熱硬化させることにより、ヒータを取り付ける方法、あるいは、このセラミック板状体の裏面に金属箔やシート状導電材料を貼着することにより、ヒータを取り付ける方法、等がある。
そして、このヒータ内蔵あるいはヒータを取り付けた静電チャック部と温度調整用ベース部とを有機系接着剤を用いて接着一体化することで、ヒータ機能付き静電チャック装置が得られる。
As a method of attaching the heater to the electrostatic chuck device, a heater material is incorporated in a ceramic electrostatic chuck, or the heater material is applied to the back side of the electrostatic chuck adsorption surface, that is, the back surface of the ceramic plate by screen printing. There is a method of attaching a heater by applying in a predetermined pattern and heating and curing, or a method of attaching a heater by sticking a metal foil or a sheet-like conductive material on the back surface of the ceramic plate-like body, etc. .
Then, the electrostatic chuck device with a heater function can be obtained by bonding and integrating the electrostatic chuck portion with a built-in heater or attached with the heater and the temperature adjusting base portion using an organic adhesive.

特開2008−300491号公報JP 2008-300491 A

ところで、上述した従来の静電チャックの吸着面の裏側、すなわちセラミック板状体の裏面にスクリーン印刷法にてヒータ材料を所定のパターンにて塗布し加熱硬化させることにより、ヒータを取り付ける方法、あるいは、このセラミック板状体の裏面に金属箔やシート状導電材料を貼着する方法によるヒータ機能付き静電チャック装置では、静電チャック部と温度調整用ベース部とを有機系接着剤を用いて接着一体化した場合、有機系接着剤層にポアと称する微細空孔が生じたり、あるいは有機系接着剤層と静電チャック部及び温度調整用ベース部との間にハジキと称する未接着部分が生じたりすると、ヒータに電圧を印加した場合に、静電チャック部と温度調整用ベース部とが導通(ショート不良)してしまい、絶縁破壊が生じる虞があるという問題点があった。
また、接着層の厚みにより絶縁性を確保する場合、この有機系接着剤層の厚みを薄くすることが難しく、しかも、この有機系接着剤層の厚みにばらつきが生じるために、静電チャック部のウエハを載置する面の面内温度を十分に均一にすることができないという問題点があった。
By the way, a method of attaching a heater by applying a heater material in a predetermined pattern by screen printing on the back side of the suction surface of the conventional electrostatic chuck described above, that is, the back side of the ceramic plate, or by heating and curing, or In the electrostatic chuck device with a heater function by a method of sticking a metal foil or a sheet-like conductive material on the back surface of the ceramic plate-like body, an organic adhesive is used to connect the electrostatic chuck portion and the temperature adjustment base portion. When bonded and integrated, fine pores called pores are formed in the organic adhesive layer, or unbonded parts called repellants are formed between the organic adhesive layer, the electrostatic chuck portion, and the temperature adjusting base portion. If a voltage is applied to the heater, the electrostatic chuck part and the temperature adjustment base part may become conductive (short circuit failure), which may cause dielectric breakdown. There is a problem in that.
In addition, when ensuring insulation by the thickness of the adhesive layer, it is difficult to reduce the thickness of the organic adhesive layer, and the thickness of the organic adhesive layer varies. There is a problem that the in-plane temperature of the surface on which the wafer is placed cannot be made sufficiently uniform.

また、金属箔やシート状導電材料を用いたヒータ機能付き静電チャック装置では、ヒータパタンとして金属箔やシート状導電材料が貼着された部分とヒータパタンが無い部分で段差を生じ、シート状接着材のみで冷却ベースと接着した場合、ヒータの凹凸をカバーすることができなくなり、接着層に空孔等が生じ易く、熱可塑性を有するシート状接着剤を用いた場合でもヒータがある部分と無い部分の境界において空孔を生じ、放電及び剥離の危険を有するとともに、ヒータと冷却ベース間の熱伝達のバラツキによる静電チャックの面内温度分布の制御性が低下するという問題点を有していた。   Moreover, in the electrostatic chuck device with a heater function using a metal foil or a sheet-like conductive material, a step is generated between the portion where the metal foil or the sheet-like conductive material is pasted as the heater pattern and the portion where there is no heater pattern. If it is bonded only to the cooling base, it will not be possible to cover the unevenness of the heater, and voids etc. will easily occur in the adhesive layer, and even if a thermoplastic sheet-like adhesive is used, there are parts with and without a heater As a result, there is a problem in that a hole is formed at the boundary of the substrate and there is a risk of electric discharge and separation, and the controllability of the in-plane temperature distribution of the electrostatic chuck is deteriorated due to variations in heat transfer between the heater and the cooling base. .

本発明は、上記の事情に鑑みてなされたものであって、静電チャック部と温度調整用ベース部との間の絶縁破壊を防止すると共に耐電圧性を向上させ、さらには、静電チャック部の板状試料の載置面の面内温度の均一性を向上させると共に、静電チャック部と温度調整用ベース部との間により均一に電圧が印加されることで、静電チャック部に設けられた加熱部材の耐電圧性を向上させることができる静電チャック装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and prevents dielectric breakdown between the electrostatic chuck portion and the temperature adjusting base portion and improves the voltage resistance. This improves the uniformity of the in-plane temperature of the mounting surface of the plate-like sample at the same time and applies a more uniform voltage between the electrostatic chuck and the temperature adjusting base to It is an object of the present invention to provide an electrostatic chuck device capable of improving the voltage resistance of a provided heating member.

本発明者等は、上記の課題を解決するべく鋭意検討を行った結果、静電チャック部の載置面と反対側の主面に、接着材を介して薄厚の加熱部材を接着し、温度調整用ベース部の静電チャック部側の面の全体または一部分をシート状またはフィルム状の絶縁材により被覆し、この静電チャック部と温度調整用ベース部とを液状接着剤を硬化してなる絶縁性の有機系接着剤層を介して接着一体化すれば、静電チャック部と温度調整用ベース部との間の絶縁破壊を防止すると共に耐電圧性を向上させることができ、さらには、この静電チャック部の載置面の面内温度の均一性を向上させることができ、この加熱部材の耐電圧性をも向上させることができることを知見し、本発明を完成するに到った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors bonded a thin heating member to the main surface opposite to the mounting surface of the electrostatic chuck portion through an adhesive, The whole or part of the surface of the adjustment base portion on the electrostatic chuck portion side is covered with a sheet-like or film-like insulating material, and the electrostatic chuck portion and the temperature adjustment base portion are cured with a liquid adhesive. Adhesion and integration through an insulating organic adhesive layer can prevent dielectric breakdown between the electrostatic chuck portion and the temperature adjusting base portion and improve the voltage resistance. It has been found that the uniformity of the in-plane temperature of the mounting surface of the electrostatic chuck portion can be improved and the withstand voltage of the heating member can be improved, and the present invention has been completed. .

すなわち、本発明の請求項1記載の静電チャック装置は、一主面を板状試料を載置する載置面とするとともに静電吸着用内部電極を内蔵した静電チャック部と、この静電チャック部を所望の温度に調整する温度調整用ベース部とを備え、前記静電チャック部の前記載置面と反対側の主面には、接着材を介して加熱部材が接着され、前記温度調整用ベース部の前記静電チャック部側の面の全体または一部分は、シート状またはフィルム状の絶縁材により被覆され、これら加熱部材が接着された静電チャック部と、シート状またはフィルム状の絶縁材により被覆された温度調整用ベース部とは、液状接着剤を硬化してなる絶縁性の有機系接着剤層を介して接着一体化され、前記加熱部材は、相互に独立した2つ以上のヒーターパターンからなるヒータエレメントであることを特徴とする。   In other words, the electrostatic chuck device according to claim 1 of the present invention has an electrostatic chuck portion in which one main surface is a mounting surface on which a plate-like sample is mounted and an internal electrode for electrostatic adsorption is built in, and the static chuck device. A temperature adjusting base portion for adjusting the electric chuck portion to a desired temperature, and a heating member is bonded to a main surface opposite to the placement surface of the electrostatic chuck portion via an adhesive, The whole or part of the surface of the temperature adjusting base portion on the electrostatic chuck portion side is covered with a sheet-like or film-like insulating material, and the heating chuck is bonded to the electrostatic chuck portion, and the sheet-like or film-like surface. The temperature adjusting base portion covered with the insulating material is bonded and integrated through an insulating organic adhesive layer formed by curing a liquid adhesive, and the heating members are two independent from each other. A heater consisting of the above heater pattern. Characterized in that it is a data element.

この静電チャック装置では、静電チャック部と記温度調整用ベース部とを、液状接着剤を硬化してなる絶縁性の有機系接着剤層を介して接着一体化したことにより、絶縁性の有機系接着剤層が静電チャック部と温度調整用ベース部との間の絶縁を良好に維持する。これにより、静電チャック部と温度調整用ベース部との間に導通(ショート不良)が生じる虞がなくなり、その結果、静電チャック部と温度調整用ベース部との間に絶縁破壊が生じる虞もなくなり、これらの間の耐電圧性が向上する。   In this electrostatic chuck apparatus, the electrostatic chuck portion and the temperature adjusting base portion are bonded and integrated through an insulating organic adhesive layer formed by curing a liquid adhesive, thereby providing an insulating property. The organic adhesive layer maintains good insulation between the electrostatic chuck portion and the temperature adjusting base portion. As a result, there is no possibility of conduction (short circuit failure) between the electrostatic chuck portion and the temperature adjustment base portion, and as a result, there is a risk of dielectric breakdown between the electrostatic chuck portion and the temperature adjustment base portion. The withstand voltage between them is improved.

また、静電チャック部の載置面と反対側の主面に、接着材を介して加熱部材を接着するとともに、温度調整用ベース部の静電チャック部側の面の全体または一部分をシート状またはフィルム状の絶縁材により被覆したことにより、静電チャック部と加熱部材との間隔及び加熱部材と温度調整用ベース部との間隔が一定に保持され、静電チャック部の載置面における面内温度の均一性が高まると共に、この加熱部材と温度調整用ベース部の耐電圧性がより向上する。   In addition, a heating member is bonded to the main surface opposite to the mounting surface of the electrostatic chuck portion through an adhesive, and the entire or part of the surface of the temperature adjusting base portion on the electrostatic chuck portion side is formed into a sheet shape. Alternatively, by covering with a film-like insulating material, the interval between the electrostatic chuck portion and the heating member and the interval between the heating member and the temperature adjusting base portion are kept constant, and the surface on the mounting surface of the electrostatic chuck portion The uniformity of the internal temperature is increased, and the voltage resistance of the heating member and the temperature adjusting base is further improved.

さらに、加熱部材が接着された静電チャック部と温度調整用ベース部との間に絶縁性の有機系接着剤層を介在させたことにより、載置される板状試料を急速に昇降温させた場合においても、この有機系接着剤層が静電チャック部に対して急激な膨張・収縮を緩和する緩衝層として機能し、静電チャック部にクラックや欠け等が発生するのを防止する。これにより、静電チャック部の耐久性が向上する。   In addition, an insulating organic adhesive layer is interposed between the electrostatic chuck portion to which the heating member is bonded and the temperature adjusting base portion, so that the plate-like sample to be placed can be rapidly raised and lowered. Even in this case, the organic adhesive layer functions as a buffer layer that relieves rapid expansion / contraction of the electrostatic chuck portion, and prevents the electrostatic chuck portion from being cracked or chipped. Thereby, the durability of the electrostatic chuck portion is improved.

請求項2記載の静電チャック装置は、一主面を板状試料を載置する載置面とするとともに静電吸着用内部電極を内蔵した静電チャック部と、この静電チャック部を所望の温度に調整する温度調整用ベース部とを備え、前記静電チャック部の前記載置面と反対側の主面には、接着材を介して加熱部材が接着され、前記温度調整用ベース部の前記静電チャック部側の面の全体または一部分は、シート状またはフィルム状の絶縁材により被覆され、これら加熱部材が接着された静電チャック部と、シート状またはフィルム状の絶縁材により被覆された温度調整用ベース部とは、液状接着剤を硬化してなるヤング率が1GPa以下の絶縁性の有機系接着剤層を介して接着一体化されていることを特徴とする。   The electrostatic chuck device according to claim 2 is an electrostatic chuck portion in which one principal surface is a mounting surface on which a plate-like sample is placed and an internal electrode for electrostatic adsorption is built in, and the electrostatic chuck portion is desired. A temperature adjusting base portion for adjusting the temperature of the electrostatic chuck portion, and a heating member is bonded to a main surface opposite to the mounting surface of the electrostatic chuck portion via an adhesive, and the temperature adjusting base portion The entire surface or part of the surface of the electrostatic chuck portion is covered with a sheet-like or film-like insulating material, and the electrostatic chuck portion to which these heating members are bonded, and the sheet-like or film-like insulating material. The temperature-adjusting base portion is characterized by being bonded and integrated through an insulating organic adhesive layer having a Young's modulus of 1 GPa or less obtained by curing a liquid adhesive.

請求項3記載の静電チャック装置は、請求項1または2記載の静電チャック装置において、前記接着材は、硬化後のヤング率が8MPa以下のシリコーン系またはアクリル系の接着材であることを特徴とする。
この静電チャック装置では、接着材を、硬化後のヤング率が8MPa以下のシリコーン系またはアクリル系の接着材としたことにより、静電チャック部およびヒータ部の熱応力が軽減され、耐久性がさらに向上する。
The electrostatic chuck device according to claim 3 is the electrostatic chuck device according to claim 1 or 2, wherein the adhesive is a silicone-based or acrylic-based adhesive having a Young's modulus after curing of 8 MPa or less. Features.
In this electrostatic chuck device, the adhesive is made of a silicone or acrylic adhesive having a Young's modulus after curing of 8 MPa or less, so that the thermal stress of the electrostatic chuck portion and the heater portion is reduced and durability is improved. Further improve.

請求項4記載の静電チャック装置は、請求項1ないし3のいずれか1項記載の静電チャック装置において、前記加熱部材は、非磁性金属薄板をフォトリソグラフィー法によりエッチング加工してなることを特徴とする。   The electrostatic chuck device according to claim 4 is the electrostatic chuck device according to any one of claims 1 to 3, wherein the heating member is formed by etching a non-magnetic metal thin plate by a photolithography method. Features.

請求項5記載の静電チャック装置は、請求項1ないし4のいずれか1項記載の静電チャック装置において、前記シート状またはフィルム状の絶縁材は、シート状またはフィルム状の接着材により前記温度調整用ベース部に接着されていることを特徴とする。
この静電チャック装置では、シート状またはフィルム状の絶縁材を、シート状またはフィルム状の接着材を用いて温度調整用ベース部に接着したことにより、温度調整用ベース部の静電チャック部側の絶縁性が保たれるとともに、接着材の厚みが一定とされることとなり、静電チャック部の載置面における面内温度の均一性が高まる。
The electrostatic chuck device according to claim 5 is the electrostatic chuck device according to any one of claims 1 to 4, wherein the sheet-like or film-like insulating material is formed by a sheet-like or film-like adhesive. It is characterized in that it is bonded to a temperature adjusting base part.
In this electrostatic chuck device, a sheet-like or film-like insulating material is bonded to a temperature-adjusting base portion using a sheet-like or film-like adhesive, so that the temperature-adjusting base portion of the electrostatic chuck portion side Thus, the insulating property is maintained, and the thickness of the adhesive is made constant, so that the uniformity of the in-plane temperature on the mounting surface of the electrostatic chuck portion is increased.

請求項6記載の静電チャック装置は、請求項1ないし5のいずれか1項記載の静電チャック装置において、前記接着材の厚みのばらつきは、10μm以下であることを特徴とする。
この静電チャック装置では、接着材の厚みのばらつきを10μm以下としたことにより、静電チャック部と加熱部材との間隔が10μm以下の精度で制御されることとなり、この加熱部材により加熱される板状試料の面内温度の均一性が向上する。
The electrostatic chuck device according to a sixth aspect is the electrostatic chuck device according to any one of the first to fifth aspects, wherein the thickness variation of the adhesive is 10 μm or less.
In this electrostatic chuck device, since the variation in the thickness of the adhesive is set to 10 μm or less, the distance between the electrostatic chuck portion and the heating member is controlled with an accuracy of 10 μm or less, and the heating member is heated. The uniformity of the in-plane temperature of the plate sample is improved.

請求項7記載の静電チャック装置は、請求項1ないし6のいずれか1項記載の静電チャック装置において、前記静電チャック部は、一主面を前記載置面とした載置板と、該載置板と一体化され該載置板を支持する支持板と、これら載置板と支持板との間に設けられた前記静電吸着用内部電極とを備え、前記載置板は、酸化アルミニウム−炭化ケイ素複合焼結体または酸化イットリウム焼結体からなることを特徴とする。
この静電チャック装置では、載置板を、酸化アルミニウム−炭化ケイ素複合焼結体または酸化イットリウム焼結体としたことにより、腐食性ガス及びそのプラズマに対する耐久性が向上し、機械的強度も保持される。
The electrostatic chuck device according to claim 7 is the electrostatic chuck device according to any one of claims 1 to 6, wherein the electrostatic chuck portion includes a mounting plate having one main surface as the mounting surface described above. A mounting plate that is integrated with the mounting plate and supports the mounting plate, and the electrostatic adsorption internal electrode provided between the mounting plate and the supporting plate, It consists of an aluminum oxide-silicon carbide composite sintered body or an yttrium oxide sintered body.
In this electrostatic chuck device, the mounting plate is made of an aluminum oxide-silicon carbide composite sintered body or an yttrium oxide sintered body, thereby improving the durability against corrosive gas and its plasma and maintaining the mechanical strength. Is done.

本発明の請求項1記載の静電チャック装置によれば、静電チャック部の他の主面にシート状またはフィルム状の接着材を介して加熱部材を接着し、この加熱部材が接着された静電チャック部と絶縁性シートにより全面もしくは部分的に被覆された温度調整用ベースとを液状接着剤を硬化してなる絶縁性の有機系接着剤層を介して接着一体化したので、この絶縁部材により静電チャック部と温度調整用ベース部との間の絶縁を良好に維持することができ、その結果、絶縁破壊を防止することができる。よって、静電チャック部と温度調整用ベース部との間の耐電圧性を向上させることができる。   According to the electrostatic chuck device of the first aspect of the present invention, the heating member is bonded to the other main surface of the electrostatic chuck portion via the sheet-like or film-like adhesive, and the heating member is bonded. The electrostatic chuck part and the temperature adjustment base covered entirely or partially with an insulating sheet are bonded and integrated through an insulating organic adhesive layer formed by curing a liquid adhesive. The insulation between the electrostatic chuck portion and the temperature adjusting base portion can be satisfactorily maintained by the member, and as a result, dielectric breakdown can be prevented. Therefore, the voltage resistance between the electrostatic chuck portion and the temperature adjusting base portion can be improved.

本発明の請求項2記載の静電チャック装置によれば、静電チャック部の他の主面にシート状またはフィルム状の接着材を介して加熱部材を接着し、この加熱部材が接着された静電チャック部と絶縁性シートにより全面もしくは部分的に被覆された温度調整用ベースとを液状接着剤を硬化してなるヤング率が1GPa以下の絶縁性の有機系接着剤層を介して接着一体化したので、この絶縁部材により静電チャック部と温度調整用ベース部との間の絶縁を良好に維持することができ、その結果、絶縁破壊を防止することができる。よって、静電チャック部と温度調整用ベース部との間の耐電圧性を向上させることができる。   According to the electrostatic chuck device of claim 2 of the present invention, the heating member is bonded to the other main surface of the electrostatic chuck portion via the sheet-like or film-like adhesive, and the heating member is bonded. The electrostatic chuck part and the temperature adjustment base covered entirely or partially with an insulating sheet are bonded and integrated through an insulating organic adhesive layer having a Young's modulus of 1 GPa or less obtained by curing a liquid adhesive. As a result, the insulation between the electrostatic chuck portion and the temperature adjusting base portion can be satisfactorily maintained by the insulating member, and as a result, dielectric breakdown can be prevented. Therefore, the voltage resistance between the electrostatic chuck portion and the temperature adjusting base portion can be improved.

また、静電チャック部の他の主面にシート状またはフィルム状の接着材を介して加熱部材を接着したので、静電チャック部と加熱部材との間隔を一定に保持することができ、静電チャック部の載置面における面内温度の均一性を向上させることができる。また、この加熱部材と温度調整用ベース部との間の耐電圧を向上させることができ、温度調整用ベース部をプラズ用電極として使用する場合においも、より高い電圧を温度調整用ベース部に印加することができる。   In addition, since the heating member is bonded to the other main surface of the electrostatic chuck portion via a sheet-like or film-like adhesive, the distance between the electrostatic chuck portion and the heating member can be kept constant, and static The uniformity of the in-plane temperature on the mounting surface of the electric chuck portion can be improved. In addition, the withstand voltage between the heating member and the temperature adjusting base can be improved, and even when the temperature adjusting base is used as a plasma electrode, a higher voltage is applied to the temperature adjusting base. Can be applied.

また、静電チャック部と温度調整用ベース部との間に有機系接着剤層を介在させたので、この有機系接着剤層が静電チャック部に対して急激な膨張・収縮を緩和する緩衝層として機能することとなり、したがって、静電チャック部にクラックや欠け等が発生するのを防止することができ、静電チャック部の耐久性を向上させることができる。   In addition, since an organic adhesive layer is interposed between the electrostatic chuck portion and the temperature adjustment base portion, the organic adhesive layer is a buffer that alleviates rapid expansion / contraction of the electrostatic chuck portion. Therefore, the electrostatic chuck portion can be prevented from being cracked or chipped, and the durability of the electrostatic chuck portion can be improved.

さらに、静電チャック部を構成する載置板を、酸化アルミニウム−炭化ケイ素複合焼結体または酸化イットリウム焼結体としたので、腐食性ガス及びそのプラズマに対する耐久性を向上させることができ、機械的強度も十分に保持することができる。   Furthermore, since the mounting plate constituting the electrostatic chuck portion is made of the aluminum oxide-silicon carbide composite sintered body or the yttrium oxide sintered body, the durability against the corrosive gas and its plasma can be improved. Sufficient strength can be maintained.

本発明の一実施形態の静電チャック装置を示す断面図である。It is sectional drawing which shows the electrostatic chuck apparatus of one Embodiment of this invention. 本発明の一実施形態の静電チャック装置のヒータエレメントのヒーターパターンの一例を示す平面図である。It is a top view which shows an example of the heater pattern of the heater element of the electrostatic chuck apparatus of one Embodiment of this invention. 実施例の静電チャック装置の冷却時のシリコンウエハの面内温度分布を示す図である。It is a figure which shows the in-plane temperature distribution of the silicon wafer at the time of cooling of the electrostatic chuck apparatus of an Example. 実施例の静電チャック装置の50℃に保持した時のシリコンウエハの面内温度分布を示す図である。It is a figure which shows the in-plane temperature distribution of the silicon wafer when hold | maintaining at 50 degreeC of the electrostatic chuck apparatus of an Example. 実施例の静電チャック装置の昇温時のシリコンウエハの面内温度分布を示す図である。It is a figure which shows the in-plane temperature distribution of the silicon wafer at the time of temperature rising of the electrostatic chuck apparatus of an Example.

本発明の静電チャック装置を実施するための形態について、図面に基づき説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The form for implementing the electrostatic chuck apparatus of this invention is demonstrated based on drawing.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

図1は、本発明の一実施形態の静電チャック装置を示す断面図であり、この静電チャック装置1は、円板状の静電チャック部2と、この静電チャック部2を所望の温度に調整する厚みのある円板状の温度調整用ベース部3と、静電チャック部2の下面(他の主面)に接着された所定のパターンを有する接着材4と、接着材4の下面に接着された該接着材4と同形状のパターンのヒータエレメント5と、温度調整用ベース部3の上面に接着材6を介して接着された絶縁部材7と、静電チャック部2の下面のヒータエレメント5と温度調整用ベース部3上の絶縁部材7とを対向させた状態でこれらを接着一体化する有機系接着剤層8とにより主として構成されている。   FIG. 1 is a cross-sectional view showing an electrostatic chuck device according to an embodiment of the present invention. The electrostatic chuck device 1 includes a disk-shaped electrostatic chuck portion 2 and a desired electrostatic chuck portion 2. A thick disc-shaped temperature adjusting base portion 3 to be adjusted to the temperature, an adhesive material 4 having a predetermined pattern adhered to the lower surface (other main surface) of the electrostatic chuck portion 2, and an adhesive material 4 The heater element 5 having the same shape as the adhesive 4 bonded to the lower surface, the insulating member 7 bonded to the upper surface of the temperature adjusting base portion 3 via the adhesive 6, and the lower surface of the electrostatic chuck portion 2 The heater element 5 and the insulating member 7 on the temperature adjusting base 3 are opposed to each other, and are mainly composed of an organic adhesive layer 8 for bonding and integrating them.

静電チャック部2は、上面が半導体ウエハ等の板状試料Wを載置する載置面とされた載置板11と、この載置板11と一体化され該載置板11を支持する支持板12と、これら載置板11と支持板12との間に設けられた静電吸着用内部電極13及び静電吸着用内部電極13の周囲を絶縁する絶縁材層14と、支持板12を貫通するようにして設けられ静電吸着用内部電極13に直流電圧を印加する給電用端子15とにより構成されている。   The electrostatic chuck portion 2 has a mounting plate 11 whose upper surface is a mounting surface on which a plate-like sample W such as a semiconductor wafer is mounted, and is integrated with the mounting plate 11 to support the mounting plate 11. The support plate 12, the electrostatic adsorption internal electrode 13 provided between the mounting plate 11 and the support plate 12, the insulating material layer 14 insulating the periphery of the electrostatic adsorption internal electrode 13, and the support plate 12 And a power feeding terminal 15 that applies a DC voltage to the electrostatic adsorption internal electrode 13.

これら載置板11および支持板12は、重ね合わせた面の形状を同じくする円板状のもので、酸化アルミニウム−炭化ケイ素(Al−SiC)複合焼結体、酸化アルミニウム(Al)焼結体、窒化アルミニウム(AlN)焼結体、酸化イットリウム(Y)焼結体等の機械的な強度を有し、かつ腐食性ガス及びそのプラズマに対する耐久性を有する絶縁性のセラミックス焼結体からなるものである。
この載置板11の載置面には、直径が板状試料の厚みより小さい突起部16が複数個形成され、これらの突起部16が板状試料Wを支える構成になっている。
The mounting plate 11 and the support plate 12 have a disk shape with the same shape of the stacked surfaces, and are an aluminum oxide-silicon carbide (Al 2 O 3 —SiC) composite sintered body, aluminum oxide (Al 2). Insulation having mechanical strength such as O 3 ) sintered body, aluminum nitride (AlN) sintered body, yttrium oxide (Y 2 O 3 ) sintered body, and durability against corrosive gas and its plasma Made of a sintered ceramic.
A plurality of projections 16 having a diameter smaller than the thickness of the plate-like sample are formed on the placement surface of the placement plate 11, and these projections 16 support the plate-like sample W.

これら載置板11、支持板12、静電吸着用内部電極13及び絶縁材層14の合計の厚み、即ち、静電チャック部2の厚みは0.7mm以上かつ3.0mm以下が好ましい。その理由は、静電チャック部2の厚みが0.7mmを下回ると、静電チャック部2の機械的強度を確保することができず、一方、静電チャック部2の厚みが3.0mmを上回ると、静電チャック部2の熱容量が大きくなり過ぎて、載置される板状試料Wの熱応答性が劣化し、さらには、静電チャック部の横方向の熱伝達の増加により、板状試料Wの面内温度を所望の温度パターンに維持することが困難になるからである。   The total thickness of the mounting plate 11, the support plate 12, the electrostatic adsorption internal electrode 13 and the insulating material layer 14, that is, the thickness of the electrostatic chuck portion 2 is preferably 0.7 mm or more and 3.0 mm or less. The reason is that if the thickness of the electrostatic chuck portion 2 is less than 0.7 mm, the mechanical strength of the electrostatic chuck portion 2 cannot be ensured, while the thickness of the electrostatic chuck portion 2 is 3.0 mm. If the upper limit is exceeded, the heat capacity of the electrostatic chuck portion 2 becomes too large, the thermal response of the plate-like sample W to be placed deteriorates, and further, the heat transfer in the lateral direction of the electrostatic chuck portion increases, This is because it becomes difficult to maintain the in-plane temperature of the sample W in a desired temperature pattern.

特に、載置板11の厚みは、0.3mm以上かつ2.0mm以下が好ましい。その理由は、載置板11の厚みが0.3mmを下回ると、静電吸着用内部電極13に印加された電圧により放電する危険性が高まり、一方、2.0mmを超えると、板状試料Wを十分に吸着固定することができず、したがって、板状試料Wを十分に加熱することが困難となるからである。   In particular, the thickness of the mounting plate 11 is preferably 0.3 mm or more and 2.0 mm or less. The reason is that if the thickness of the mounting plate 11 is less than 0.3 mm, the risk of discharge is increased due to the voltage applied to the internal electrode 13 for electrostatic adsorption. This is because W cannot be sufficiently adsorbed and fixed, and thus it is difficult to sufficiently heat the plate-like sample W.

静電吸着用内部電極13は、電荷を発生させて静電吸着力で板状試料を固定するための静電チャック用電極として用いられるもので、その用途によって、その形状や、大きさが適宜調整される。
この静電吸着用内部電極13は、酸化アルミニウム−炭化タンタル(Al−Ta)導電性複合焼結体、酸化アルミニウム−タングステン(Al−W)導電性複合焼結体、酸化アルミニウム−炭化ケイ素(Al−SiC)導電性複合焼結体、窒化アルミニウム−タングステン(AlN−W)導電性複合焼結体、窒化アルミニウム−タンタル(AlN−Ta)導電性複合焼結体、酸化イットリウム−モリブデン(Y−Mo)導電性複合焼結体等の導電性セラミックス、あるいは、タングステン(W)、タンタル(Ta)、モリブデン(Mo)等の高融点金属により形成されている。
The internal electrode 13 for electrostatic adsorption is used as an electrode for an electrostatic chuck for generating a charge and fixing a plate-like sample with an electrostatic adsorption force. Adjusted.
The internal electrode 13 for electrostatic adsorption is composed of an aluminum oxide-tantalum carbide (Al 2 O 3 —Ta 4 C 5 ) conductive composite sintered body, an aluminum oxide-tungsten (Al 2 O 3 —W) conductive composite sintered body. body, aluminum oxide - silicon carbide (Al 2 O 3 -SiC) conductive composite sintered body, an aluminum nitride - tungsten (AlN-W) conductive composite sintered body, an aluminum nitride - tantalum (AlN-Ta) conductive composite With sintered ceramics, conductive ceramics such as yttrium oxide-molybdenum (Y 2 O 3 -Mo) conductive composite sintered bodies, or high melting point metals such as tungsten (W), tantalum (Ta), and molybdenum (Mo) Is formed.

この静電吸着用内部電極13の厚みは、特に限定されるものではないが、0.1μm以上かつ100μm以下が好ましく、特に好ましくは5μm以上かつ20μm以下である。
その理由は、厚みが0.1μmを下回ると、充分な導電性を確保することができず、一方、厚みが100μmを越えると、この静電吸着用内部電極13と載置板11及び支持板12との間の熱膨張率差に起因して、この静電吸着用内部電極13と載置板11及び支持板12との接合界面にクラックが入り易くなるからである。
このような厚みの静電吸着用内部電極13は、スパッタ法や蒸着法等の成膜法、あるいはスクリーン印刷法等の塗工法により容易に形成することができる。
The thickness of the electrostatic attraction internal electrode 13 is not particularly limited, but is preferably 0.1 μm or more and 100 μm or less, and particularly preferably 5 μm or more and 20 μm or less.
The reason is that if the thickness is less than 0.1 μm, sufficient conductivity cannot be ensured. On the other hand, if the thickness exceeds 100 μm, the electrostatic adsorption internal electrode 13, the mounting plate 11, and the support plate This is because, due to the difference in thermal expansion coefficient between the internal electrode 13 for electrostatic attraction and the mounting plate 11 and the support plate 12, cracks are likely to occur.
The electrostatic adsorption internal electrode 13 having such a thickness can be easily formed by a film forming method such as a sputtering method or a vapor deposition method, or a coating method such as a screen printing method.

絶縁材層14は、静電吸着用内部電極13を囲繞して腐食性ガス及びそのプラズマから静電吸着用内部電極13を保護するとともに、載置板11と支持板12との境界部、すなわち静電吸着用内部電極13以外の外周部領域を接合一体化するものであり、載置板11及び支持板12を構成する材料と同一組成または主成分が同一の絶縁材料により構成されている。   The insulating material layer 14 surrounds the electrostatic adsorption internal electrode 13 to protect the electrostatic adsorption internal electrode 13 from corrosive gas and its plasma, and at the boundary between the mounting plate 11 and the support plate 12, that is, The outer peripheral region other than the internal electrode 13 for electrostatic attraction is joined and integrated, and is composed of the same composition or the main component of the same material as that of the mounting plate 11 and the support plate 12 and the same insulating material.

給電用端子15は、静電吸着用内部電極13に直流電圧を印加するために設けられた棒状のもので、この給電用端子15の材料としては、耐熱性に優れた導電性材料であれば特に制限されるものではないが、熱膨張係数が静電吸着用内部電極13及び支持板12の熱膨張係数に近似したものが好ましく、例えば、静電吸着用内部電極13を構成している導電性セラミックス、あるいは、タングステン(W)、タンタル(Ta)、モリブデン(Mo)、ニオブ(Nb)、コバール合金等の金属材料が好適に用いられる。   The power feeding terminal 15 is a rod-shaped one provided to apply a DC voltage to the electrostatic adsorption internal electrode 13. The material of the power feeding terminal 15 is a conductive material having excellent heat resistance. Although not particularly limited, it is preferable that the coefficient of thermal expansion approximates the coefficient of thermal expansion of the electrostatic adsorption internal electrode 13 and the support plate 12, for example, the conductive material constituting the electrostatic adsorption internal electrode 13. Or metal materials such as tungsten (W), tantalum (Ta), molybdenum (Mo), niobium (Nb), and Kovar alloy are preferably used.

この給電用端子15は、絶縁性を有する碍子17により温度調整用ベース部3に対して絶縁されている。
そして、この給電用端子15は支持板12に接合一体化され、さらに、載置板11と支持板12とは、静電吸着用内部電極13及び絶縁材層14により接合一体化されて静電チャック部2を構成している。
The power feeding terminal 15 is insulated from the temperature adjusting base portion 3 by an insulator 17 having an insulating property.
The power supply terminal 15 is joined and integrated with the support plate 12, and the mounting plate 11 and the support plate 12 are joined and integrated by the electrostatic adsorption internal electrode 13 and the insulating material layer 14. The chuck part 2 is configured.

温度調整用ベース部3は、静電チャック部2を所望の温度に調整するためのもので、厚みのある円板状のものである。
この温度調整用ベース部3としては、例えば、その内部に水を循環させる流路(図示略)が形成された水冷ベース等が好適である。
この温度調整用ベース部3を構成する材料としては、熱伝導性、導電性、加工性に優れた金属、またはこれらの金属を含む複合材であれば特に制限はなく、例えば、アルミニウム(Al)、アルミニウム合金、銅(Cu)、銅合金、ステンレス鋼(SUS) 等が好適に用いられる。この温度調整用ベース部3の少なくともプラズマに曝される面は、アルマイト処理が施されているか、あるいはアルミナ等の絶縁膜が成膜されていることが好ましい。
The temperature adjusting base portion 3 is for adjusting the electrostatic chuck portion 2 to a desired temperature, and has a thick disk shape.
As this temperature adjustment base part 3, for example, a water-cooled base in which a flow path (not shown) for circulating water is formed is suitable.
The material constituting the temperature adjusting base 3 is not particularly limited as long as it is a metal excellent in thermal conductivity, conductivity, and workability, or a composite material containing these metals. For example, aluminum (Al) Aluminum alloy, copper (Cu), copper alloy, stainless steel (SUS) and the like are preferably used. It is preferable that at least the surface of the temperature adjusting base portion 3 exposed to the plasma is anodized or an insulating film such as alumina is formed.

接着材4は、ポリイミド樹脂、シリコーン樹脂、エポキシ樹脂等の耐熱性及び絶縁性を有し後述するヒータエレメント5と同一のパターン形状のシート状またはフィルム状の接着性樹脂であり、厚みは5μm〜100μmが好ましく、より好ましくは10μm〜50μmである。この接着材4の面内の厚みのバラツキは10μm以内が好ましい。
ここで、接着材4の面内の厚みのバラツキが10μmを超えると、静電チャック部2とヒータエレメント5との面内間隔に10μmを超えるバラツキが生じ、その結果、ヒータエレメント5から静電チャック部2に伝達される熱の面内均一性が低下し、静電チャック部2の載置面における面内温度が不均一となるので、好ましくない。
The adhesive 4 is a sheet-like or film-like adhesive resin having the same pattern shape as the heater element 5 described later, which has heat resistance and insulation properties such as polyimide resin, silicone resin, and epoxy resin, and has a thickness of 5 μm to 5 μm. 100 micrometers is preferable, More preferably, they are 10 micrometers-50 micrometers. The in-plane thickness variation of the adhesive 4 is preferably within 10 μm.
Here, if the in-plane thickness variation of the adhesive 4 exceeds 10 μm, the in-plane spacing between the electrostatic chuck portion 2 and the heater element 5 exceeds 10 μm. Since the in-plane uniformity of the heat transmitted to the chuck portion 2 is reduced and the in-plane temperature on the mounting surface of the electrostatic chuck portion 2 becomes non-uniform, it is not preferable.

ヒータエレメント5は、支持板12の下面に接着材4を介して配設されたもので、例えば、図2に示すように、相互に独立した2つのヒータ、すなわち中心部に形成された内ヒータ5aと、この内ヒータ5aの周縁部外方に環状に形成された外ヒータ5bとにより構成され、これら内ヒータ5a及び外ヒータ5b各々の両端部の給電用端子との接続位置21それぞれには、図1に示す給電用端子22が接続され、この給電用端子22は、絶縁性を有する碍子23により温度調整用ベース部3に対して絶縁されている。   The heater element 5 is disposed on the lower surface of the support plate 12 with an adhesive 4 interposed therebetween. For example, as shown in FIG. 2, two heaters independent from each other, that is, an inner heater formed in the center portion. 5a and an outer heater 5b formed annularly on the outer periphery of the inner heater 5a. Each of the connection positions 21 to the power supply terminals at both ends of the inner heater 5a and the outer heater 5b is respectively 1 is connected, and the power supply terminal 22 is insulated from the temperature adjusting base portion 3 by an insulator 23 having an insulating property.

これら内ヒータ5a及び外ヒータ5bは、それぞれが、幅の狭い帯状の金属材料を蛇行させたパターンを軸を中心として、この軸の回りに繰り返し配置し、かつ隣接するパターン同士を接続することで、1つの連続した帯状のヒーターパターンとされている。
このヒータエレメント5では、これら内ヒータ5a及び外ヒータ5bをそれぞれ独立に制御することにより、載置板11の載置面に静電吸着により固定されている板状試料Wの面内温度分布を精度良く制御するようになっている。
Each of the inner heater 5a and the outer heater 5b has a pattern in which a narrow band-shaped metal material meanders is repeatedly arranged around the axis, and adjacent patterns are connected to each other. One continuous belt-like heater pattern is formed.
In the heater element 5, the in-plane temperature distribution of the plate-like sample W fixed to the mounting surface of the mounting plate 11 by electrostatic adsorption is controlled by independently controlling the inner heater 5a and the outer heater 5b. It is designed to control with high accuracy.

このヒータエレメント5のヒーターパターンは、上記のように相互に独立した2つ以上のヒーターパターンにより構成してもよく、また、1つのヒーターパターンにより構成してもよいが、上記の内ヒータ5a及び外ヒータ5bのようにヒータエレメント5を相互に独立した2つ以上のヒーターパターンにより構成すると、これら相互に独立したヒーターパターンを個々に制御することにより、処理中の板状試料Wの温度を自由に制御することができるので、好ましい。   The heater pattern of the heater element 5 may be constituted by two or more heater patterns independent from each other as described above, or may be constituted by one heater pattern. When the heater element 5 is composed of two or more heater patterns independent of each other like the outer heater 5b, the temperature of the plate-like sample W being processed can be freely controlled by individually controlling these mutually independent heater patterns. It is preferable because it can be controlled.

このヒータエレメント5は、厚みが0.2mm以下、好ましくは0.1mm以下の一定の厚みを有する非磁性金属薄板、例えば、チタン(Ti)薄板、タングステン(W)薄板、モリブデン(Mo)薄板等をフォトリソグラフィー法により、所望のヒーターパターンにエッチング加工することで形成される。
ここで、ヒータエレメント5の厚みを0.2mm以下とした理由は、厚みが0.2mmを超えると、ヒータエレメント5のパターン形状が板状試料Wの温度分布として反映され、板状試料Wの面内温度を所望の温度パターンに維持することが困難になるからである。
The heater element 5 has a constant thickness of 0.2 mm or less, preferably 0.1 mm or less, such as a non-magnetic metal thin plate, such as a titanium (Ti) thin plate, a tungsten (W) thin plate, a molybdenum (Mo) thin plate, or the like. Is formed by etching into a desired heater pattern by photolithography.
Here, the reason why the thickness of the heater element 5 is set to 0.2 mm or less is that when the thickness exceeds 0.2 mm, the pattern shape of the heater element 5 is reflected as the temperature distribution of the plate-like sample W. This is because it becomes difficult to maintain the in-plane temperature in a desired temperature pattern.

また、ヒータエレメント5を非磁性金属で形成すると、静電チャック装置1を高周波雰囲気中で用いてもヒータエレメントが高周波により自己発熱せず、したがって、板状試料Wの面内温度を所望の一定温度または一定の温度パターンに維持することが容易となるので好ましい。
また、一定の厚みの非磁性金属薄板を用いてヒータエレメント5を形成すると、ヒータエレメント5の厚みが加熱面全域で一定となり、さらに発熱量も加熱面全域で一定となるので、静電チャック部2の載置面における温度分布を均一化することができる。
Further, when the heater element 5 is formed of a nonmagnetic metal, the heater element does not self-heat due to the high frequency even when the electrostatic chuck device 1 is used in a high frequency atmosphere, and therefore the in-plane temperature of the plate-like sample W is kept at a desired constant level. Since it becomes easy to maintain temperature or a fixed temperature pattern, it is preferable.
Further, when the heater element 5 is formed using a non-magnetic metal thin plate having a constant thickness, the thickness of the heater element 5 is constant over the entire heating surface, and the amount of heat generation is also constant over the entire heating surface. The temperature distribution on the two mounting surfaces can be made uniform.

このヒータエレメント5では、これら内ヒータ5a及び外ヒータ5bをそれぞれ独立に制御することにより、このヒータエレメント5のヒーターパターンを板状試料Wに反映され難くすることができる。したがって、載置板11の載置面に静電吸着により固定されている板状試料Wの面内温度分布を所望の温度パターンに精度良く制御することができる。   In the heater element 5, the inner heater 5a and the outer heater 5b are independently controlled, so that the heater pattern of the heater element 5 can be made difficult to be reflected in the plate-like sample W. Therefore, the in-plane temperature distribution of the plate-like sample W fixed to the placement surface of the placement plate 11 by electrostatic adsorption can be accurately controlled to a desired temperature pattern.

接着材6は、温度調整用ベース部3の上面に絶縁部材7を接着するためのもので、接着材4と同様、ポリイミド樹脂、シリコーン樹脂、エポキシ樹脂等の耐熱性及び絶縁性を有するシート状またはフィルム状の接着性樹脂であり、厚みは5μm〜100μmが好ましく、より好ましくは10μm〜50μmである。
この接着材6の面内の厚みのバラツキは10μm以内が好ましい。
ここで、接着材6の面内の厚みのバラツキが10μmを超えると、温度調整用ベース部3と絶縁部材7との間隔に10μmを超えるバラツキが生じ、その結果、温度調整用ベース部3による静電チャック部2の温度制御の面内均一性が低下し、静電チャック部2の載置面における面内温度が不均一となるので、好ましくない。
The adhesive 6 is for adhering the insulating member 7 to the upper surface of the temperature adjusting base 3, and like the adhesive 4, it is a sheet having heat resistance and insulating properties such as polyimide resin, silicone resin, and epoxy resin. Alternatively, it is a film-like adhesive resin, and the thickness is preferably 5 μm to 100 μm, more preferably 10 μm to 50 μm.
The in-plane thickness variation of the adhesive 6 is preferably within 10 μm.
Here, when the variation in the in-plane thickness of the adhesive 6 exceeds 10 μm, the distance between the temperature adjusting base 3 and the insulating member 7 exceeds 10 μm. As a result, the temperature adjusting base 3 In-plane uniformity of temperature control of the electrostatic chuck portion 2 is lowered, and the in-plane temperature on the mounting surface of the electrostatic chuck portion 2 becomes non-uniform, which is not preferable.

絶縁部材7は、ポリイミド樹脂、シリコーン樹脂、エポキシ樹脂等の絶縁性及び耐電圧性を有するフィルム状またはシート状の樹脂であり、この絶縁部材7の面内の厚みのバラツキは10μm以内が好ましい。
ここで、絶縁部材7の面内の厚みのバラツキが10μmを超えると、厚みの大小により温度分布に高低の差が生じ、その結果、絶縁部材7の厚み調整による温度制御に悪影響を及ぼすので、好ましくない。
The insulating member 7 is a film-like or sheet-like resin having insulation properties and voltage resistance such as polyimide resin, silicone resin, epoxy resin, etc., and the variation in the thickness of the insulating member 7 is preferably within 10 μm.
Here, if the in-plane thickness variation of the insulating member 7 exceeds 10 μm, a difference in temperature distribution occurs depending on the thickness, and as a result, the temperature control by adjusting the thickness of the insulating member 7 is adversely affected. It is not preferable.

この絶縁部材7の熱伝導率は、0.05W/mk以上かつ0.5W/mk以下が好ましく、より好ましくは0.1W/mk以上かつ0.25W/mk以下である。
ここで、熱伝導率が0.1W/mk未満であると、静電チャック部2から温度調整用ベース部への絶縁部材7を介しての熱伝達が難くなり、冷却速度が低下するので好ましくなく、一方、熱伝導率が1W/mkを超えると、ヒータ部から温度調整用ベース部3への絶縁部材7を介しての熱伝達が増加し、昇温速度が低下するので好ましくない。
The thermal conductivity of the insulating member 7 is preferably 0.05 W / mk or more and 0.5 W / mk or less, more preferably 0.1 W / mk or more and 0.25 W / mk or less.
Here, if the thermal conductivity is less than 0.1 W / mk, it is difficult to transfer heat from the electrostatic chuck portion 2 to the temperature adjusting base portion via the insulating member 7 and the cooling rate is decreased. On the other hand, if the thermal conductivity exceeds 1 W / mk, heat transfer from the heater portion to the temperature adjusting base portion 3 through the insulating member 7 is increased, and the rate of temperature increase is not preferable.

有機系接着剤層8は、静電チャック部2の下面に接着材4を介して接着されたヒータエレメント5と温度調整用ベース部3上に接着材6を介して接着された絶縁部材7とを対向させた状態で、これらを接着一体化するとともに、熱応力の緩和作用を有するもので、この有機系接着剤層8の厚みは50μm以上かつ500μm以下であることが好ましい。   The organic adhesive layer 8 includes a heater element 5 bonded to the lower surface of the electrostatic chuck portion 2 via an adhesive 4 and an insulating member 7 bonded to the temperature adjusting base portion 3 via an adhesive 6. The organic adhesive layer 8 preferably has a thickness of 50 μm or more and 500 μm or less.

ここで、この有機系接着剤層8の厚みを上記の範囲とした理由は、この有機系接着剤層8の厚みが50μmを下回ると、静電チャック部2と温度調整用ベース部3との間の熱伝導性は良好となるものの、熱応力緩和が不充分となり、割れやクラックが生じ易くなるからであり、一方、有機系接着剤層8の厚みが500μmを超えると、静電チャック部2と温度調整用ベース部3との間の熱伝導性を十分確保することができなくなるからである。   Here, the reason why the thickness of the organic adhesive layer 8 is in the above range is that when the thickness of the organic adhesive layer 8 is less than 50 μm, the electrostatic chuck portion 2 and the temperature adjusting base portion 3 Although the thermal conductivity between them becomes good, the thermal stress relaxation becomes insufficient, and cracks and cracks are likely to occur. On the other hand, if the thickness of the organic adhesive layer 8 exceeds 500 μm, the electrostatic chuck portion This is because sufficient thermal conductivity between the temperature adjusting base 2 and the temperature adjusting base 3 cannot be ensured.

この有機系接着剤層8は、例えば、シリコーン系樹脂組成物を加熱硬化した硬化体またはアクリル樹脂で形成されている。
シリコーン系樹脂組成物は、耐熱性、弾性に優れた樹脂であり、シロキサン結合(Si−O−Si)を有するケイ素化合物である。このシリコーン系樹脂組成物は、例えば、下記の式(1)または式(2)の化学式で表すことができる。
The organic adhesive layer 8 is formed of, for example, a cured body obtained by heat-curing a silicone resin composition or an acrylic resin.
The silicone resin composition is a resin excellent in heat resistance and elasticity, and is a silicon compound having a siloxane bond (Si—O—Si). This silicone resin composition can be represented, for example, by the chemical formula of the following formula (1) or formula (2).

Figure 2016058748
但し、Rは、Hまたはアルキル基(C2n+1−:nは整数)である。
Figure 2016058748
Here, R is, H or an alkyl group (C n H 2n + 1 - : n is an integer) is.

Figure 2016058748
但し、Rは、Hまたはアルキル基(C2n+1−:nは整数)である。
Figure 2016058748
Here, R is, H or an alkyl group (C n H 2n + 1 - : n is an integer) is.

このようなシリコーン樹脂としては、特に、熱硬化温度が70℃〜140℃のシリコーン樹脂が好ましい。
ここで、熱硬化温度が70℃を下回ると、静電チャック部2の支持板12及びヒータエレメント5と、温度調整用ベース部3及び絶縁部材7とを対向させた状態で接合する際に、接合過程で硬化が始まってしまい、作業性に劣ることとなるので好ましくない。一方、熱硬化温度が140℃を超えると、静電チャック部2の支持板12及びヒータエレメント5と、温度調整用ベース部3及び絶縁部材7との熱膨張差が大きく、静電チャック部2の支持板12及びヒータエレメント5と、温度調整用ベース部3及び絶縁部材7との間の応力が増加し、これらの間で剥離が生じる虞があるので好ましくない。
As such a silicone resin, a silicone resin having a thermosetting temperature of 70 ° C. to 140 ° C. is particularly preferable.
Here, when the thermosetting temperature is lower than 70 ° C., when joining the support plate 12 and the heater element 5 of the electrostatic chuck portion 2 with the temperature adjusting base portion 3 and the insulating member 7 facing each other, Curing starts in the joining process, and workability is inferior. On the other hand, when the thermosetting temperature exceeds 140 ° C., the difference in thermal expansion between the support plate 12 and the heater element 5 of the electrostatic chuck portion 2, the temperature adjusting base portion 3 and the insulating member 7 is large, and the electrostatic chuck portion 2. The stress between the support plate 12 and the heater element 5, the temperature adjusting base portion 3 and the insulating member 7 increases, and there is a possibility that peeling may occur between them.

このシリコーン樹脂としては、硬化後のヤング率が8MPa以下の樹脂が好ましい。ここで、硬化後のヤング率が8MPaを超えると、有機系接着剤層8に昇温、降温の熱サイクルが負荷された際に、支持板12と温度調整用ベース部3との熱膨張差を吸収することができず、有機系接着剤層8の耐久性が低下するので、好ましくない。   The silicone resin is preferably a resin having a Young's modulus after curing of 8 MPa or less. Here, when the Young's modulus after curing exceeds 8 MPa, the thermal expansion difference between the support plate 12 and the temperature-adjusting base portion 3 when the organic adhesive layer 8 is subjected to a temperature cycle of increasing and decreasing temperatures. Cannot be absorbed, and the durability of the organic adhesive layer 8 is lowered, which is not preferable.

この有機系接着剤層8には、平均粒径が1μm以上かつ10μm以下の無機酸化物、無機窒化物、無機酸窒化物からなるフィラー、例えば、窒化アルミニウム(AlN)粒子の表面に酸化ケイ素(SiO)からなる被覆層が形成された表面被覆窒化アルミニウム(AlN)粒子が含有されていることが好ましい。
この表面被覆窒化アルミニウム(AlN)粒子は、シリコーン樹脂の熱伝導性を改善するために混入されたもので、その混入率を調整することにより、有機系接着剤層8の熱伝達率を制御することができる。
The organic adhesive layer 8 has a filler made of an inorganic oxide, inorganic nitride, or inorganic oxynitride having an average particle diameter of 1 μm or more and 10 μm or less, for example, silicon oxide (AlN) particles on the surface of aluminum oxide (AlN) particles. it is preferred that the surface-coated aluminum nitride coating layer made of SiO 2) was formed (AlN) particles are contained.
The surface-coated aluminum nitride (AlN) particles are mixed to improve the thermal conductivity of the silicone resin, and the heat transfer rate of the organic adhesive layer 8 is controlled by adjusting the mixing rate. be able to.

すなわち、表面被覆窒化アルミニウム(AlN)粒子の混入率を高めることにより、有機系接着剤層8を構成する有機系接着剤の熱伝達率を大きくすることができる。
また、窒化アルミニウム(AlN)粒子の表面に酸化ケイ素(SiO)からなる被覆層が形成されているので、表面被覆が施されていない単なる窒化アルミニウム(AlN)粒子と比較して優れた耐水性を有している。したがって、シリコーン系樹脂組成物を主成分とする有機系接着剤層8の耐久性を確保することができ、その結果、静電チャック装置1の耐久性を飛躍的に向上させることができる。
That is, by increasing the mixing rate of the surface-coated aluminum nitride (AlN) particles, the heat transfer rate of the organic adhesive constituting the organic adhesive layer 8 can be increased.
In addition, since a coating layer made of silicon oxide (SiO 2 ) is formed on the surface of aluminum nitride (AlN) particles, it has superior water resistance compared to simple aluminum nitride (AlN) particles that are not surface-coated. have. Therefore, the durability of the organic adhesive layer 8 containing the silicone resin composition as a main component can be secured, and as a result, the durability of the electrostatic chuck device 1 can be dramatically improved.

また、この表面被覆窒化アルミニウム(AlN)粒子は、窒化アルミニウム(AlN)粒子の表面が、優れた耐水性を有する酸化ケイ素(SiO)からなる被覆層により被覆されているので、窒化アルミニウム(AlN)が大気中の水により加水分解される虞が無く、窒化アルミニウム(AlN)の熱伝達率が低下する虞もなく、有機系接着剤層8の耐久性が向上する。
なお、この表面被覆窒化アルミニウム(AlN)粒子は、半導体ウエハ等の板状試料Wへの汚染源となる虞もなく、この点からも好ましいフィラーということができる。
Further, since the surface-coated aluminum nitride (AlN) particles are coated with a coating layer made of silicon oxide (SiO 2 ) having excellent water resistance, the surface of the aluminum nitride (AlN) particles is aluminum nitride (AlN). ) Is not hydrolyzed by water in the atmosphere, the heat transfer rate of aluminum nitride (AlN) is not lowered, and the durability of the organic adhesive layer 8 is improved.
The surface-coated aluminum nitride (AlN) particles do not have a risk of becoming a contamination source for the plate-like sample W such as a semiconductor wafer, and can be said to be a preferable filler from this point.

この表面被覆窒化アルミニウム(AlN)粒子は、被覆層中のSiとシリコーン系樹脂組成物とにより強固な結合状態を得ることが可能であるから、有機系接着剤層8の伸び性を向上させることが可能である。これにより、静電チャック部2の支持板12の熱膨張率と温度調整用ベース部3の熱膨張率との差に起因する熱応力を緩和することができ、静電チャック部2と温度調整用ベース部3とを精度よく、強固に接着することができる。また、使用時の熱サイクル負荷に対する耐久性が充分となるので、静電チャック装置1の耐久性が向上する。   Since the surface-coated aluminum nitride (AlN) particles can obtain a strong bonded state by Si in the coating layer and the silicone-based resin composition, the stretchability of the organic adhesive layer 8 is improved. Is possible. Thereby, the thermal stress resulting from the difference between the thermal expansion coefficient of the support plate 12 of the electrostatic chuck part 2 and the thermal expansion coefficient of the temperature adjusting base part 3 can be alleviated. The base part 3 for use can be bonded firmly with high accuracy. Moreover, since the durability against the thermal cycle load during use is sufficient, the durability of the electrostatic chuck device 1 is improved.

この表面被覆窒化アルミニウム(AlN)粒子の平均粒径は、1μm以上かつ10μm以下が好ましく、より好ましくは2μm以上かつ5μm以下である。
ここで、この表面被覆窒化アルミニウム(AlN)粒子の平均粒径が1μmを下回ると、粒子同士の接触が不十分となり、結果的に熱伝達率が低下する虞があり、また、粒径が細か過ぎると、取扱等の作業性の低下を招くこととなり、好ましくない。一方、平均粒径が10μmを越えると、接着層の厚みにばらつきが生じ易くなるので好ましくない。
The average particle diameter of the surface-coated aluminum nitride (AlN) particles is preferably 1 μm or more and 10 μm or less, more preferably 2 μm or more and 5 μm or less.
Here, when the average particle size of the surface-coated aluminum nitride (AlN) particles is less than 1 μm, the contact between the particles becomes insufficient, and as a result, the heat transfer rate may be lowered, and the particle size is small. If it is too much, workability such as handling is reduced, which is not preferable. On the other hand, if the average particle diameter exceeds 10 μm, the thickness of the adhesive layer tends to vary, which is not preferable.

また、この有機系接着剤層8は、ヤング率が1GPa以下で、柔軟性(ショア硬さがA100以下)を有する熱硬化型アクリル樹脂接着剤で形成されていてもよい。この場合は、フィラーは含有していてもよく、含有していなくともよい。   Further, the organic adhesive layer 8 may be formed of a thermosetting acrylic resin adhesive having a Young's modulus of 1 GPa or less and flexibility (Shore hardness of A100 or less). In this case, the filler may or may not be contained.

次に、この静電チャック装置1の製造方法について説明する。
まず、酸化アルミニウム−炭化ケイ素(Al−SiC)複合焼結体または酸化イットリウム(Y)焼結体により板状の載置板11及び支持板12を作製する。この場合、炭化ケイ素粉末及び酸化アルミニウム粉末を含む混合粉末または酸化イットリウム粉末を所望の形状に成形し、その後、例えば1400℃〜2000℃の温度、非酸化性雰囲気、好ましくは不活性雰囲気下にて所定時間、焼成することにより、載置板11及び支持板12を得ることができる。
Next, a method for manufacturing the electrostatic chuck device 1 will be described.
First, the plate-shaped mounting plate 11 and the support plate 12 are produced from an aluminum oxide-silicon carbide (Al 2 O 3 —SiC) composite sintered body or an yttrium oxide (Y 2 O 3 ) sintered body. In this case, a mixed powder containing silicon carbide powder and aluminum oxide powder or yttrium oxide powder is formed into a desired shape, and then, for example, at a temperature of 1400 ° C. to 2000 ° C. in a non-oxidizing atmosphere, preferably an inert atmosphere. The mounting plate 11 and the support plate 12 can be obtained by baking for a predetermined time.

次いで、支持板12に、給電用端子15を嵌め込み保持するための固定孔を複数個形成する。
次いで、給電用端子15を、支持板12の固定孔に密着固定し得る大きさ、形状となるように作製する。この給電用端子15の作製方法としては、例えば、給電用端子15を導電性複合焼結体とした場合、導電性セラミックス粉末を、所望の形状に成形して加圧焼成する方法等が挙げられる。
Next, a plurality of fixing holes for fitting and holding the power supply terminals 15 are formed in the support plate 12.
Next, the power supply terminal 15 is fabricated so as to have a size and shape that can be tightly fixed to the fixing hole of the support plate 12. As a method for producing the power supply terminal 15, for example, when the power supply terminal 15 is made of a conductive composite sintered body, a method of forming a conductive ceramic powder into a desired shape and pressurizing and firing can be cited. .

このとき、給電用端子15に用いられる導電性セラミックス粉末としては、静電吸着用内部電極13と同様の材質からなる導電性セラミックス粉末が好ましい。
また、給電用端子15を金属とした場合、高融点金属を用い、研削法、粉末治金等の金属加工法等により形成する方法等が挙げられる。
At this time, the conductive ceramic powder used for the power feeding terminal 15 is preferably a conductive ceramic powder made of the same material as the internal electrode 13 for electrostatic adsorption.
In addition, when the power supply terminal 15 is made of metal, a method of using a refractory metal and a metal working method such as a grinding method or powder metallurgy, or the like can be used.

次いで、給電用端子15が嵌め込まれた支持板12の表面の所定領域に、給電用端子15に接触するように、上記の導電性セラミックス粉末等の導電材料を有機溶媒に分散した静電吸着用内部電極形成用塗布液を塗布し、乾燥して、静電吸着用内部電極形成層とする。
この塗布法としては、均一な厚さに塗布する必要があることから、スクリーン印刷法等を用いることが望ましい。また、他の方法としては、蒸着法あるいはスパッタリング法により上記の高融点金属の薄膜を成膜する方法、上記の導電性セラミックスあるいは高融点金属からなる薄板を配設して静電吸着用内部電極形成層とする方法等がある。
Next, for electrostatic adsorption, a conductive material such as the conductive ceramic powder is dispersed in an organic solvent so as to come into contact with the power supply terminal 15 in a predetermined region on the surface of the support plate 12 in which the power supply terminal 15 is fitted. An internal electrode forming coating solution is applied and dried to form an electrostatic adsorption internal electrode forming layer.
As this coating method, it is desirable to use a screen printing method or the like because it is necessary to apply the film to a uniform thickness. Other methods include forming a thin film of the above-mentioned refractory metal by vapor deposition or sputtering, or arranging an electroconductive ceramic or refractory metal thin plate to provide an internal electrode for electrostatic adsorption. There is a method of forming a formation layer.

また、支持板12上の静電吸着用内部電極形成層を形成した領域以外の領域に、絶縁性、耐腐食性、耐プラズマ性を向上させるために、載置板11及び支持板12と同一組成または主成分が同一の粉末材料を含む絶縁材層を形成する。この絶縁材層は、例えば、載置板11及び支持板12と同一組成または主成分が同一の絶縁材料粉末を有機溶媒に分散した塗布液を、上記所定領域にスクリーン印刷等で塗布し、乾燥することにより形成することができる。   Further, in order to improve insulation, corrosion resistance, and plasma resistance in a region other than the region where the internal electrode forming layer for electrostatic attraction is formed on the support plate 12, the same as the mounting plate 11 and the support plate 12. An insulating material layer including a powder material having the same composition or main component is formed. For example, the insulating material layer is formed by applying a coating liquid in which an insulating material powder having the same composition or the same main component as the mounting plate 11 and the support plate 12 is dispersed in an organic solvent by screen printing or the like, and drying Can be formed.

次いで、支持板12上の静電吸着用内部電極形成層及び絶縁材層の上に載置板11を重ね合わせ、次いで、これらを高温、高圧下にてホットプレスして一体化する。このホットプレスにおける雰囲気は、真空、あるいはAr、He、N2等の不活性雰囲気が好ましい。また、ホットプレスにおける一軸加圧の際の圧力は5〜10MPaが好ましく、温度は1400℃〜1850℃が好ましい。   Next, the mounting plate 11 is overlaid on the electrostatic adsorption internal electrode forming layer and the insulating material layer on the support plate 12, and these are then integrated by hot pressing under high temperature and high pressure. The atmosphere in this hot press is preferably a vacuum or an inert atmosphere such as Ar, He, or N2. Moreover, the pressure in the case of uniaxial pressurization in a hot press is preferably 5 to 10 MPa, and the temperature is preferably 1400 ° C to 1850 ° C.

このホットプレスにより、静電吸着用内部電極形成層は焼成されて導電性複合焼結体からなる静電吸着用内部電極13となる。同時に、支持板12及び載置板11は、絶縁材層14を介して接合一体化される。
また、給電用端子15は、高温、高圧下でのホットプレスで再焼成され、支持板12の固定孔に密着固定される。
そして、これら接合体の上下面、外周およびガス穴等を機械加工し、静電チャック部2とする。
By this hot pressing, the internal electrode forming layer for electrostatic adsorption is fired to become the internal electrode 13 for electrostatic adsorption made of a conductive composite sintered body. At the same time, the support plate 12 and the mounting plate 11 are joined and integrated through the insulating material layer 14.
In addition, the power supply terminal 15 is refired by hot pressing under high temperature and high pressure, and is closely fixed to the fixing hole of the support plate 12.
Then, the upper and lower surfaces, outer periphery, gas holes, and the like of these joined bodies are machined to form an electrostatic chuck portion 2.

次いで、この静電チャック部2の支持板12の表面(下面)の所定の領域に、ポリイミド樹脂、シリコーン樹脂、エポキシ樹脂等の耐熱性及び絶縁性を有しかつヒータエレメント5と同一のパターン形状のシート状またはフィルム状の接着性樹脂を貼着し、接着材4とする。
この接着材4は、支持板12の表面(下面)に、ポリイミド樹脂、シリコーン樹脂、エポキシ樹脂等の耐熱性及び絶縁性を有する接着性樹脂シートまたは接着性樹脂フィルムを貼着し、このシートまたはフィルムにヒータエレメント5と同一のパターンを形成することによっても作製することができる。
Next, a predetermined region on the surface (lower surface) of the support plate 12 of the electrostatic chuck portion 2 has heat resistance and insulation properties such as polyimide resin, silicone resin, epoxy resin, etc. and has the same pattern shape as the heater element 5. A sheet-like or film-like adhesive resin is pasted to obtain an adhesive 4.
This adhesive 4 is made by sticking an adhesive resin sheet or adhesive resin film having heat resistance and insulation properties such as polyimide resin, silicone resin, epoxy resin, etc. on the surface (lower surface) of the support plate 12, and this sheet or It can also be produced by forming the same pattern as the heater element 5 on the film.

次いで、この接着材4上に、厚みが0.2mm以下、好ましくは0.1mm以下の一定の厚みを有する、例えば、チタン(Ti)薄板、タングステン(W)薄板、モリブデン(Mo)薄板等の非磁性金属薄板を貼着し、この非磁性金属薄板をフォトリソグラフィー法により、所望のヒーターパターンにエッチング加工し、ヒータエレメント5とする。
これにより、支持板12の表面(下面)に所望のヒーターパターンを有するヒータエレメント5が接着材4を介して形成されたヒータエレメント付き静電チャック部が得られる。
Next, the adhesive 4 has a constant thickness of 0.2 mm or less, preferably 0.1 mm or less, such as a titanium (Ti) thin plate, a tungsten (W) thin plate, a molybdenum (Mo) thin plate, or the like. A nonmagnetic metal thin plate is attached, and the nonmagnetic metal thin plate is etched into a desired heater pattern by a photolithography method to obtain a heater element 5.
Thereby, the electrostatic chuck part with a heater element in which the heater element 5 having a desired heater pattern is formed on the surface (lower surface) of the support plate 12 via the adhesive 4 is obtained.

次いで、所定の大きさ及び形状の給電用端子22を作製する。この給電用端子22の作製方法は、上述した給電用端子15の作製方法と同様、例えば、給電用端子22を導電性複合焼結体とした場合、導電性セラミックス粉末を、所望の形状に成形して加圧焼成する方法等が挙げられる。
また、給電用端子22を金属とした場合、高融点金属を用い、研削法、粉末治金等の金属加工法等により形成する方法等が挙げられる。
Next, a power supply terminal 22 having a predetermined size and shape is produced. The method for producing the power supply terminal 22 is similar to the method for producing the power supply terminal 15 described above. For example, when the power supply terminal 22 is a conductive composite sintered body, the conductive ceramic powder is formed into a desired shape. And press firing.
In addition, when the power feeding terminal 22 is made of metal, a method of using a refractory metal and a metal working method such as a grinding method or powder metallurgy, or the like can be used.

一方、アルミニウム(Al)、アルミニウム合金、銅(Cu)、銅合金、ステンレス鋼(SUS) 等からなる金属材料に機械加工を施し、必要に応じて、この金属材料の内部に水を循環させる流路等を形成し、さらに、給電用端子15及び碍子17を嵌め込み保持するための固定孔と、給電用端子22及び碍子23を嵌め込み保持するための固定孔とを形成し、温度調整用ベース部3とする。
この温度調整用ベース部3の少なくともプラズマに曝される面には、アルマイト処理を施すか、あるいはアルミナ等の絶縁膜を成膜することが好ましい。
On the other hand, a metal material made of aluminum (Al), aluminum alloy, copper (Cu), copper alloy, stainless steel (SUS), etc. is machined, and water is circulated inside the metal material as necessary. Forming a path and the like, and further forming a fixing hole for fitting and holding the power supply terminal 15 and the insulator 17, and a fixing hole for fitting and holding the power supply terminal 22 and the insulator 23, and a temperature adjusting base portion 3.
It is preferable that at least the surface exposed to the plasma of the temperature adjusting base portion 3 is subjected to alumite treatment or an insulating film such as alumina is formed.

次いで、温度調整用ベース部3の静電チャック部2との接合面を、例えばアセトンを用いて脱脂、洗浄し、この接合面上の所定位置に、ポリイミド樹脂、シリコーン樹脂、エポキシ樹脂等の耐熱性及び絶縁性を有するシート状またはフィルム状の接着性樹脂を貼着し、接着材6とする。
次いで、この接着材6上に、この接着材6と同一の平面形状のポリイミド樹脂、シリコーン樹脂、エポキシ樹脂等の絶縁性及び耐電圧性を有するフィルム状またはシート状の樹脂を貼着し、絶縁部材7とする。
Next, the joint surface of the temperature adjusting base portion 3 with the electrostatic chuck portion 2 is degreased and washed using, for example, acetone, and a heat-resistant material such as polyimide resin, silicone resin, epoxy resin, or the like is placed at a predetermined position on the joint surface. A sheet-like or film-like adhesive resin having adhesiveness and insulating properties is pasted to obtain an adhesive 6.
Next, a film-like or sheet-like resin having insulating properties and voltage resistance such as a polyimide resin, a silicone resin, and an epoxy resin having the same planar shape as that of the adhesive material 6 is stuck on the adhesive material 6 and insulated. This is member 7.

次いで、接着材6及び絶縁部材7が積層された温度調整用ベース部3上の所定領域に、例えば、シリコーン系樹脂組成物からなる接着剤を塗布する。この接着剤の塗布量は、静電チャック部2と温度調整用ベース部3とがスペーサにより一定の間隔を保持した状態で接合一体化できるように、所定量の範囲内とする。
この接着剤の塗布方法としては、ヘラ等を用いて手動で塗布する他、バーコート法、スクリーン印刷法等が挙げられるが、温度調整用ベース部3上の所定領域に精度良く形成する必要があることから、スクリーン印刷法等を用いることが好ましい。
Next, an adhesive made of, for example, a silicone-based resin composition is applied to a predetermined region on the temperature adjustment base portion 3 on which the adhesive 6 and the insulating member 7 are laminated. The amount of the adhesive applied is set within a predetermined range so that the electrostatic chuck portion 2 and the temperature adjusting base portion 3 can be joined and integrated with the spacer kept at a constant interval.
Examples of the method for applying the adhesive include manual application using a spatula and the like, as well as a bar coating method, a screen printing method, and the like. For this reason, it is preferable to use a screen printing method or the like.

塗布後、静電チャック部2と温度調整用ベース部3とを接着剤を介して重ね合わせる。
この際、立設した給電用端子15及び碍子17と、給電用端子22及び碍子23を、温度調整用ベース部3中に穿孔された給電用端子収容孔(図示略)に挿入し嵌め込む。
次いで、静電チャック部2と温度調整用ベース部3との間隔がスペーサの厚みになるまで落し込み、押し出された余分な接着剤を除去する。
After the application, the electrostatic chuck portion 2 and the temperature adjusting base portion 3 are superposed via an adhesive.
At this time, the erected power supply terminal 15 and the insulator 17 and the power supply terminal 22 and the insulator 23 are inserted and fitted into a power supply terminal accommodation hole (not shown) drilled in the temperature adjusting base portion 3.
Subsequently, the electrostatic chuck part 2 and the temperature adjusting base part 3 are dropped until the distance between the electrostatic chuck part 2 and the temperature adjusting base part 3 reaches the thickness of the spacer, and the extruded excess adhesive is removed.

以上により、静電チャック部2及び温度調整用ベース部3は、接着材6、絶縁部材7及び有機系接着剤層8を介して接合一体化され、本実施形態の静電チャック装置1が得られることとなる。   As described above, the electrostatic chuck portion 2 and the temperature adjusting base portion 3 are joined and integrated through the adhesive 6, the insulating member 7, and the organic adhesive layer 8, and the electrostatic chuck device 1 of the present embodiment is obtained. Will be.

このようにして得られた静電チャック装置1は、ヒータエレメント5がシート状またはフィルム状の接着材4を介して接着された静電チャック部2と、温度調整用ベース部3とを、有機系接着剤層8及びシート状またはフィルム状の絶縁部材7を介して接着一体化したので、静電チャック部2と温度調整用ベース部3との間の絶縁を良好に維持することができる。したがって、静電チャック部2と温度調整用ベース部3との間の耐電圧性を向上させることができる。   The electrostatic chuck device 1 obtained in this way includes an electrostatic chuck portion 2 to which a heater element 5 is bonded via a sheet-like or film-like adhesive 4 and a temperature adjusting base portion 3. Since the adhesive is integrated through the system adhesive layer 8 and the sheet-like or film-like insulating member 7, the insulation between the electrostatic chuck portion 2 and the temperature adjusting base portion 3 can be maintained well. Therefore, the voltage resistance between the electrostatic chuck portion 2 and the temperature adjusting base portion 3 can be improved.

また、静電チャック部2にシート状またはフィルム状の接着材4を介してヒータエレメント5を接着したので、静電チャック部2の載置面における面内温度の均一性を高めることができ、ヒータエレメント5の耐電圧性をより向上させることができる。
さらに、ヒータエレメント5が接着された静電チャック部2と温度調整用ベース部3との間に有機系接着剤層8を介在させたので、この有機系接着剤層8が静電チャック部2に対して急激な膨張・収縮を緩和する緩衝層として機能することで、静電チャック部2におけるクラックや欠け等を防止することができ、したがって、静電チャック部2の耐久性を向上させることができる。
Further, since the heater element 5 is bonded to the electrostatic chuck portion 2 via the sheet-like or film-like adhesive 4, the uniformity of the in-plane temperature on the mounting surface of the electrostatic chuck portion 2 can be improved. The withstand voltage of the heater element 5 can be further improved.
Further, since the organic adhesive layer 8 is interposed between the electrostatic chuck portion 2 to which the heater element 5 is bonded and the temperature adjusting base portion 3, the organic adhesive layer 8 serves as the electrostatic chuck portion 2. By functioning as a buffer layer that relieves sudden expansion / contraction, it is possible to prevent cracks, chips, etc. in the electrostatic chuck portion 2, and thus improve the durability of the electrostatic chuck portion 2. Can do.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited by these Examples.

「実施例1」
(静電チャック装置の作製)
公知の方法により、内部に厚み20μmの静電吸着用内部電極13が埋設された静電チャック部2を作製した。
この静電チャック部2の載置板11は、炭化ケイ素を8.5質量%含有する酸化アルミニウム−炭化ケイ素複合焼結体であり、直径は298mm、厚みは0.5mmの円板状であった。また、この載置板11の静電吸着面を、高さが40μmの多数の突起部16を形成することで凹凸面とし、これらの突起部16の頂面を板状試料Wの保持面とし、凹部と静電吸着された板状試料Wとの間に形成される溝に冷却ガスを流すことができるようにした。
"Example 1"
(Production of electrostatic chuck device)
An electrostatic chuck portion 2 in which an internal electrode 13 for electrostatic attraction having a thickness of 20 μm was embedded was produced by a known method.
The mounting plate 11 of the electrostatic chuck portion 2 is an aluminum oxide-silicon carbide composite sintered body containing 8.5% by mass of silicon carbide, and has a disk shape with a diameter of 298 mm and a thickness of 0.5 mm. It was. Further, the electrostatic chucking surface of the mounting plate 11 is formed as a concavo-convex surface by forming a large number of projections 16 having a height of 40 μm, and the top surface of these projections 16 is used as a holding surface for the plate-like sample W. The cooling gas can be made to flow in a groove formed between the recess and the electrostatically adsorbed plate-like sample W.

また、支持板12も載置板11と同様、炭化ケイ素を8.5質量%含有する酸化アルミニウム−炭化ケイ素複合焼結体であり、直径は298mm、厚みは2mmの円板状であった。
これら載置板11及び支持板12を接合一体化することにより、静電チャック部2の全体の厚みは2.5mmとなっていた。
Similarly to the mounting plate 11, the support plate 12 is an aluminum oxide-silicon carbide composite sintered body containing 8.5% by mass of silicon carbide, and has a disk shape with a diameter of 298 mm and a thickness of 2 mm.
By joining and integrating the mounting plate 11 and the support plate 12, the entire thickness of the electrostatic chuck portion 2 was 2.5 mm.

一方、直径350mm、高さ30mmのアルミニウム製の温度調整用ベース部3を、機械加工により作製した。この温度調整用ベース部3の内部には冷媒を循環させる流路(図示略)を形成した。
また、幅2000μm、長さ2000μm、高さ200μmの角形状のスペーサを、酸化アルミニウム焼結体にて作製した。
On the other hand, an aluminum temperature adjusting base 3 having a diameter of 350 mm and a height of 30 mm was produced by machining. A flow path (not shown) for circulating the refrigerant was formed inside the temperature adjusting base 3.
In addition, a square spacer having a width of 2000 μm, a length of 2000 μm, and a height of 200 μm was fabricated using an aluminum oxide sintered body.

次いで、この静電チャック部2の支持板12の表面(下面)を、アセトンを用いて脱脂、洗浄し、この表面の所定の領域に、厚み20μmのエポキシ樹脂からなるシート接着剤を貼着し、接着材4とした。
次いで、この接着材4上に、厚みが100μmのチタン(Ti)薄板を載置した。次いで、真空中、150℃にて加圧保持し、静電チャック部2とチタン(Ti)薄板とを接着固定した。
Next, the surface (lower surface) of the support plate 12 of the electrostatic chuck unit 2 is degreased and washed with acetone, and a sheet adhesive made of an epoxy resin having a thickness of 20 μm is attached to a predetermined region of the surface. Adhesive 4 was obtained.
Next, a titanium (Ti) thin plate having a thickness of 100 μm was placed on the adhesive 4. Subsequently, the pressure was held at 150 ° C. in a vacuum, and the electrostatic chuck portion 2 and a titanium (Ti) thin plate were bonded and fixed.

次いで、チタン(Ti)薄板をフォトリソグラフィー法により、図2に示すヒータパターンにエッチング加工し、ヒータエレメント5とした。また、このヒータエレメント5に、チタン製の給電用端子22を溶接法を用いて立設した。
これにより、ヒータエレメント付き静電チャック部が得られた。
Next, the titanium (Ti) thin plate was etched into the heater pattern shown in FIG. In addition, a power feeding terminal 22 made of titanium was erected on the heater element 5 using a welding method.
Thereby, the electrostatic chuck part with a heater element was obtained.

次いで、温度調整用ベース部3の静電チャック部2との接合面を、アセトンを用いて脱脂、洗浄し、この接合面上の所定位置に、接着材6として厚み20μmのエポキシ樹脂からなるシート接着剤を貼着し、次いで、このシート接着剤上に、絶縁部材7として厚み50μmのポリイミドフィルムを貼着した。   Next, the bonding surface of the temperature adjusting base portion 3 to the electrostatic chuck portion 2 is degreased and washed with acetone, and a sheet made of an epoxy resin having a thickness of 20 μm as an adhesive 6 is provided at a predetermined position on the bonding surface. An adhesive was stuck, and then a polyimide film having a thickness of 50 μm was stuck as the insulating member 7 on the sheet adhesive.

また、窒化アルミニウム(AlN)粉末に、シリコーン樹脂−窒化アルミニウム(AlN)粉末を上記の窒化アルミニウム(AlN)粉末に対して20vol%となるように混合し、この混合物に攪拌脱泡処理を施し、シリコーン系樹脂組成物を得た。
なお、窒化アルミニウム粉末は、湿式篩により選別した粒径が平均10〜20μmのものを用いた。
Moreover, the aluminum nitride (AlN) powder is mixed with a silicone resin-aluminum nitride (AlN) powder so as to be 20 vol% with respect to the aluminum nitride (AlN) powder, and the mixture is subjected to stirring and defoaming treatment. A silicone resin composition was obtained.
The aluminum nitride powder used had an average particle size of 10 to 20 μm selected by a wet sieve.

次いで、シート接着剤及びポリイミドフィルムが積層された温度調整用ベース部上に、スクリーン印刷法によりシリコーン系樹脂組成物を塗布し、次いで、静電チャック部と温度調整用ベース部とをシリコーン系樹脂組成物を介して重ね合わせた。
次いで、静電チャック部のヒータエレメントと温度調整用ベース部との間隔が角形状のスペーサの高さ、すなわち200μmになるまで落し込んだのち、110℃にて12時間保持し、シリコーン系樹脂組成物を硬化させて静電チャック部と温度調整用ベース部とを接合させ、実施例1の静電チャック装置を作製した。
Next, a silicone resin composition is applied by a screen printing method onto the temperature adjustment base portion on which the sheet adhesive and the polyimide film are laminated, and then the electrostatic chuck portion and the temperature adjustment base portion are bonded to the silicone resin. Overlaid through the composition.
Next, the distance between the heater element of the electrostatic chuck portion and the temperature adjusting base portion is lowered to the height of the square spacer, that is, 200 μm, and then held at 110 ° C. for 12 hours to obtain a silicone resin composition. The product was cured and the electrostatic chuck portion and the temperature adjusting base portion were joined together to produce the electrostatic chuck device of Example 1.

(評価)
この静電チャック装置の(1)耐電圧性、(2)シリコンウエハの面内温度制御及び昇降温特性、(3)疑似プラズマ入熱下におけるシリコンウエハの面内温度制御、それぞれについて評価した。
(Evaluation)
The electrostatic chuck apparatus was evaluated for (1) voltage resistance, (2) in-plane temperature control and temperature rise / fall characteristics of the silicon wafer, and (3) in-plane temperature control of the silicon wafer under pseudo-plasma heat input.

(1)耐電圧性
温度調整用ベース部3とヒータエレメント5との間に、1kVから1kVずつ段階的に上昇させ、最大値10kVの電圧を印加し、各電圧における漏れ電流を測定した。ここでは、温度調整用ベース部3とヒータエレメント5との間の有機系接着剤層8の厚みが100μm、200μm、300μmの3種類の静電チャック装置を作製し、それぞれの耐電圧性を評価した。
その結果、3種類の静電チャック装置共、10kVの電圧を印加した場合の漏れ電流は0.1μA以下であり、極めて良好な耐電圧性を示していた。
(1) Withstand voltage The voltage was increased from 1 kV to 1 kV stepwise between the temperature adjusting base 3 and the heater element 5, a voltage of 10 kV maximum was applied, and the leakage current at each voltage was measured. Here, three types of electrostatic chuck devices having a thickness of 100 μm, 200 μm, and 300 μm of the organic adhesive layer 8 between the temperature adjusting base portion 3 and the heater element 5 are manufactured, and each withstand voltage is evaluated. did.
As a result, the leakage current when a voltage of 10 kV was applied to the three types of electrostatic chuck devices was 0.1 μA or less, indicating extremely good voltage resistance.

(2)シリコンウエハの面内温度制御及び昇降温特性
a.静電チャック部2の載置面に直径300mmのシリコンウエハを静電吸着させ、温度調整用ベース部3の流路(図示略)に20℃の冷却水を循環させながら、シリコンウエハの中心温度が40℃となるようにヒータエレメント5の外ヒータ5b及び内ヒータ5aに通電し、このときのシリコンウエハの面内温度分布をサーモグラフィTVS−200EX(日本アビオニクス社製)を用いて測定した。その結果を図3に示す。図中、Aはシリコンウエハの一直径方向の面内温度分布を、Bはシリコンウエハの上記の一直径方向と直行する直径方向の面内温度分布を、それぞれ示している。
(2) In-plane temperature control and heating / cooling characteristics of silicon wafer a. A silicon wafer having a diameter of 300 mm is electrostatically adsorbed on the mounting surface of the electrostatic chuck unit 2, and 20 ° C. cooling water is circulated through the flow path (not shown) of the temperature adjustment base unit 3, while the center temperature of the silicon wafer is increased. The outer heater 5b and the inner heater 5a of the heater element 5 were energized so that the temperature was 40 ° C., and the in-plane temperature distribution of the silicon wafer at this time was measured using a thermography TVS-200EX (manufactured by Avionics, Japan). The result is shown in FIG. In the figure, A shows the in-plane temperature distribution in the one-diameter direction of the silicon wafer, and B shows the in-plane temperature distribution in the diametric direction perpendicular to the one-diameter direction of the silicon wafer.

次に、
b.ヒータエレメント5の外ヒータ5bの通電量を上げて、シリコンウエハ外周部の温度が60℃となるように昇温速度3.6℃/秒にて昇温させ、このときのシリコンウエハの面内温度分布をサーモグラフィTVS−200EX(日本アビオニクス社製)を用いて測定した。その結果を図4に示す。図中、Aはシリコンウエハの一直径方向の面内温度分布を、Bはシリコンウエハの上記の一直径方向と直行する直径方向の面内温度分布を、それぞれ示している。
next,
b. The energization amount of the outer heater 5b of the heater element 5 is increased, and the temperature of the outer periphery of the silicon wafer is increased at a temperature increase rate of 3.6 ° C./second so that the temperature of the outer periphery of the silicon wafer becomes 60 ° C. The temperature distribution was measured using a thermography TVS-200EX (Nippon Avionics). The result is shown in FIG. In the figure, A shows the in-plane temperature distribution in the one-diameter direction of the silicon wafer, and B shows the in-plane temperature distribution in the diametric direction perpendicular to the one-diameter direction of the silicon wafer.

さらに、
c.ヒータエレメント5の外ヒータ5bの通電を停止し、シリコンウエハ外周部の温度が30℃となるように降温速度4.0℃/秒にて降温させ、このときのシリコンウエハの面内温度分布をサーモグラフィTVS−200EX(日本アビオニクス社製)を用いて測定した。その結果を図5に示す。図中、Aはシリコンウエハの一直径方向の面内温度分布を、Bはシリコンウエハの上記の一直径方向と直行する直径方向の面内温度分布を、それぞれ示している。
further,
c. The energization of the outer heater 5b of the heater element 5 is stopped, and the temperature is lowered at 4.0 ° C./second so that the temperature of the outer peripheral portion of the silicon wafer becomes 30 ° C. The in-plane temperature distribution of the silicon wafer at this time is It measured using thermography TVS-200EX (made by Nippon Avionics). The result is shown in FIG. In the figure, A shows the in-plane temperature distribution in the one-diameter direction of the silicon wafer, and B shows the in-plane temperature distribution in the diametric direction perpendicular to the one-diameter direction of the silicon wafer.

上記のa〜cの測定結果によれば、シリコンウエハの面内温度が±20℃の範囲内で良好に制御されていることが分かった。   According to the measurement results a to c above, it was found that the in-plane temperature of the silicon wafer was well controlled within a range of ± 20 ° C.

(3)疑似プラズマ入熱下におけるシリコンウエハの面内温度制御
静電チャック装置1を真空チャンバ内に固定し、擬似プラズマ入熱下におけるシリコンウエハの面内温度を測定した。ここでは、擬似プラズマ入熱として、静電チャック装置1の載置面から40mm上部に配設され、直径が300mmの面状でありかつ外周部が内部よりも発熱量が多い外部ヒータによる加熱を用いた。なお、シリコンウエハと静電チャック部2の静電吸着面との間に形成された溝に、30torrの圧力のHeガスを流した。
(3) In-plane temperature control of silicon wafer under pseudo plasma heat input The electrostatic chuck apparatus 1 was fixed in a vacuum chamber, and the in-plane temperature of the silicon wafer under pseudo plasma heat input was measured. Here, as pseudo-plasma heat input, heating is performed by an external heater disposed 40 mm above the mounting surface of the electrostatic chuck apparatus 1 and having a surface shape with a diameter of 300 mm and an outer peripheral portion that generates more heat than the inside. Using. A He gas having a pressure of 30 torr was passed through a groove formed between the silicon wafer and the electrostatic chucking surface of the electrostatic chuck portion 2.

ここでは、まず、静電チャック部2の載置面に直径300mmのシリコンウエハを静電吸着させ、温度調整用ベース部3の流路(図示略)に20℃の冷却水を循環させながら、シリコンウエハ全域の温度が40℃となるように、ヒータエレメント5の外ヒータ5b及び内ヒータ5aに通電した。   Here, first, a silicon wafer having a diameter of 300 mm is electrostatically adsorbed on the mounting surface of the electrostatic chuck unit 2, and 20 ° C. cooling water is circulated through a flow path (not shown) of the temperature adjustment base unit 3. The outer heater 5b and the inner heater 5a of the heater element 5 were energized so that the temperature of the entire silicon wafer was 40 ° C.

次いで、
d.上記の通電状態を維持しつつ、さらに外ヒータ5bにも通電した。このときのシリコンウエハの面内温度を熱電対で測定したところ、シリコンウエハ中心部の温度は60℃、シリコンウエハ外周部の温度は70℃であった。
次いで、
e.ヒータエレメント5の内ヒータ5a及び外ヒータ5bの通電を維持したまま、ヒータエレメント5の外ヒータ5bの通電量を下げた。このときのシリコンウエハの面内温度を熱電対で測定したところ、シリコンウエハ全域において、温度は60℃と一定であった。
Then
d. The outer heater 5b was further energized while maintaining the above energized state. When the in-plane temperature of the silicon wafer at this time was measured with a thermocouple, the temperature at the center of the silicon wafer was 60 ° C., and the temperature at the outer periphery of the silicon wafer was 70 ° C.
Then
e. While the energization of the inner heater 5a and the outer heater 5b of the heater element 5 was maintained, the energization amount of the outer heater 5b of the heater element 5 was lowered. When the in-plane temperature of the silicon wafer at this time was measured with a thermocouple, the temperature was constant at 60 ° C. throughout the silicon wafer.

上記のd〜eの測定結果によれば、擬似プラズマ入熱下においても、シリコンウエハの面内温度が10℃の範囲内で良好に制御されていることが分かった。   According to the measurement results of de above, it was found that the in-plane temperature of the silicon wafer was well controlled within the range of 10 ° C. even under pseudo plasma heat input.

「実施例2」
(静電チャック装置の作製)
静電チャック部2の載置板11および支持板12を酸化イットリウム焼結体とし、静電吸着用内部電極13を酸化イットリウム−モリブデン導電性複合焼結体とした他は、実施例1に準じて、実施例2の静電チャック装置を作製した。
"Example 2"
(Production of electrostatic chuck device)
Except that the mounting plate 11 and the support plate 12 of the electrostatic chuck portion 2 are made of yttrium oxide sintered body and the electrostatic adsorption internal electrode 13 is made of yttrium oxide-molybdenum conductive composite sintered body, the same as in Example 1. Thus, the electrostatic chuck device of Example 2 was produced.

(評価)
実施例2の静電チャック装置を、実施例1に準じて評価した。
その結果、(1)耐電圧性については、10kVまたは4kVの電圧を印加した場合の漏れ電流が0.1μA以下であり、極めて良好な耐電圧性を示していた。(2)シリコンウエハの面内温度制御及び昇降温特性では、シリコンウエハの面内温度が±20℃の範囲内で良好に制御されていることが分かった。また、(3)疑似プラズマ入熱下におけるシリコンウエハの面内温度制御においても、シリコンウエハの面内温度が10℃の範囲内で良好に制御されていることが分かった。
(Evaluation)
The electrostatic chuck device of Example 2 was evaluated according to Example 1.
As a result, as for (1) withstand voltage, the leakage current when a voltage of 10 kV or 4 kV was applied was 0.1 μA or less, indicating a very good withstand voltage. (2) It was found that the in-plane temperature control and temperature rise / fall characteristics of the silicon wafer were well controlled within the range of ± 20 ° C. of the in-plane temperature of the silicon wafer. It was also found that (3) the in-plane temperature control of the silicon wafer under pseudo-plasma heat input was well controlled within the range of 10 ° C. of the silicon wafer.

「比較例1」
(静電チャック装置の作製)
静電チャック部2の支持板12の表面(下面)の所定の領域に、粘性のある液状のエポキシ樹脂からなる接着剤を塗布し、接着剤層を形成し、この接着剤層上に、厚みが100μmのチタン(Ti)薄板を接着固定した他は、実施例1に準じて、比較例1の静電チャック装置を作製した。
"Comparative Example 1"
(Production of electrostatic chuck device)
An adhesive made of a viscous liquid epoxy resin is applied to a predetermined region of the surface (lower surface) of the support plate 12 of the electrostatic chuck portion 2 to form an adhesive layer, and a thickness is formed on the adhesive layer. The electrostatic chuck device of Comparative Example 1 was produced in the same manner as Example 1 except that a 100 μm titanium (Ti) thin plate was adhered and fixed.

(評価)
比較例1の静電チャック装置を、実施例1に準じて評価した。
その結果、(1)耐電圧性については、10kVまたは4kVの電圧を印加した場合の漏れ電流が0.5μA以下であり、極めて良好な耐電圧性を示していたが、(2)シリコンウエハの面内温度制御及び昇降温特性では、シリコンウエハの面内温度が±5.0℃の範囲となっており、面内温度均一性が低下していることが分かった。また、(3)疑似プラズマ入熱下におけるシリコンウエハの面内温度制御においても、シリコンウエハの面内温度が±5.0℃の範囲となっており、面内温度均一性が低下していることが分かった。
(Evaluation)
The electrostatic chuck device of Comparative Example 1 was evaluated according to Example 1.
As a result, regarding (1) withstand voltage, the leakage current when applying a voltage of 10 kV or 4 kV was 0.5 μA or less, indicating extremely good withstand voltage. In the in-plane temperature control and the temperature rise / fall characteristics, it was found that the in-plane temperature of the silicon wafer was in the range of ± 5.0 ° C., and the in-plane temperature uniformity was reduced. Also, (3) in the in-plane temperature control of the silicon wafer under pseudo plasma heat input, the in-plane temperature of the silicon wafer is in the range of ± 5.0 ° C., and the in-plane temperature uniformity is reduced. I understood that.

「比較例2」
(静電チャック装置の作製)
温度調整用ベース部3の静電チャック部2との接合面上に、シート接着剤及びポリイミドフィルムを順次貼着しなかった他は、実施例1に準じて、比較例2の静電チャック装置を作製した。
"Comparative Example 2"
(Production of electrostatic chuck device)
The electrostatic chuck device of Comparative Example 2 according to Example 1 except that the sheet adhesive and the polyimide film were not sequentially attached onto the joint surface of the temperature adjusting base 3 with the electrostatic chuck 2. Was made.

(評価)
比較例2の静電チャック装置を、実施例1に準じて評価した。
その結果、(1)耐電圧性については、温度調整用ベース部3とヒータエレメント5との間の有機系接着剤層8の厚みが100μmでは、2.6kV〜7kVで放電が生じ、厚みが200μmでは、10kVで放電が生じ、厚みが300μmでは、10kVで放電が生じなかった。その結果、有機系接着剤層8の厚みが300μmでは極めて良好な耐電圧性を示しているが、厚みが200μm以下では10kVまたはそれ以下の電圧で放電してしまい、耐電圧性が低下していた。
(Evaluation)
The electrostatic chuck device of Comparative Example 2 was evaluated according to Example 1.
As a result, regarding (1) withstand voltage, when the thickness of the organic adhesive layer 8 between the temperature adjusting base portion 3 and the heater element 5 is 100 μm, discharge occurs at 2.6 kV to 7 kV, and the thickness is At 200 μm, discharge occurred at 10 kV, and at 300 μm, no discharge occurred at 10 kV. As a result, when the thickness of the organic adhesive layer 8 is 300 μm, the voltage resistance is extremely good. However, when the thickness is 200 μm or less, discharge occurs at a voltage of 10 kV or less, and the voltage resistance is lowered. It was.

一方、(2)シリコンウエハの面内温度制御及び昇降温特性では、シリコンウエハの面内温度が±20℃の範囲内で良好に制御されており、面内温度均一性が向上していることが分かった。また、(3)疑似プラズマ入熱下におけるシリコンウエハの面内温度制御においても、シリコンウエハの面内温度が±10℃の範囲内で良好に制御されており、面内温度均一性が向上していることが分かった。   On the other hand, (2) In the in-plane temperature control and temperature rise / fall characteristics of the silicon wafer, the in-plane temperature of the silicon wafer is well controlled within a range of ± 20 ° C., and the in-plane temperature uniformity is improved. I understood. Also, (3) in-plane temperature control of silicon wafers under pseudo plasma heat input, the in-plane temperature of silicon wafers is well controlled within the range of ± 10 ° C, improving the in-plane temperature uniformity. I found out.

1 静電チャック装置
2 静電チャック部
3 温度調整用ベース部
4 接着材
5 ヒータエレメント
5a 内ヒータ
5b 外ヒータ
6 接着材
7 絶縁部材
8 有機系接着剤層
11 載置板
12 支持板
13 静電吸着用内部電極
14 絶縁材層
15 給電用端子
16 突起部
17 碍子
21 給電用端子との接続位置
22 給電用端子
23 碍子
W 板状試料
DESCRIPTION OF SYMBOLS 1 Electrostatic chuck apparatus 2 Electrostatic chuck part 3 Temperature adjustment base part 4 Adhesive material 5 Heater element 5a Inner heater 5b Outer heater 6 Adhesive material 7 Insulating member 8 Organic adhesive layer 11 Mounting plate 12 Support plate 13 Electrostatic Internal electrode for adsorption 14 Insulating material layer 15 Terminal for feeding 16 Protrusion 17 Insulator 21 Connection position with terminal for feeding 22 Terminal for feeding 23 Insulator W Plate-like sample

Claims (7)

一主面を板状試料を載置する載置面とするとともに静電吸着用内部電極を内蔵した静電チャック部と、この静電チャック部を所望の温度に調整する温度調整用ベース部とを備え、
前記静電チャック部の前記載置面と反対側の主面には、接着材を介して加熱部材が接着され、
前記温度調整用ベース部の前記静電チャック部側の面の全体または一部分は、シート状またはフィルム状の絶縁材により被覆され、
これら加熱部材が接着された静電チャック部と、シート状またはフィルム状の絶縁材により被覆された温度調整用ベース部とは、液状接着剤を硬化してなる絶縁性の有機系接着剤層を介して接着一体化され、
前記加熱部材は、相互に独立した2つ以上のヒーターパターンからなるヒータエレメントであることを特徴とする静電チャック装置。
An electrostatic chuck portion having a main surface as a mounting surface on which a plate-like sample is placed and an internal electrode for electrostatic attraction is built in; a temperature adjustment base portion for adjusting the electrostatic chuck portion to a desired temperature; With
A heating member is bonded to the main surface opposite to the placement surface of the electrostatic chuck portion via an adhesive,
The whole or part of the surface of the temperature adjusting base portion on the electrostatic chuck portion side is covered with a sheet-like or film-like insulating material,
The electrostatic chuck portion to which these heating members are bonded and the temperature adjusting base portion covered with a sheet-like or film-like insulating material are formed by insulating organic adhesive layers formed by curing a liquid adhesive. Are bonded and integrated through
The electrostatic chuck apparatus, wherein the heating member is a heater element including two or more heater patterns independent of each other.
一主面を板状試料を載置する載置面とするとともに静電吸着用内部電極を内蔵した静電チャック部と、この静電チャック部を所望の温度に調整する温度調整用ベース部とを備え、
前記静電チャック部の前記載置面と反対側の主面には、接着材を介して加熱部材が接着され、
前記温度調整用ベース部の前記静電チャック部側の面の全体または一部分は、シート状またはフィルム状の絶縁材により被覆され、
これら加熱部材が接着された静電チャック部と、シート状またはフィルム状の絶縁材により被覆された温度調整用ベース部とは、液状接着剤を硬化してなるヤング率が1GPa以下の絶縁性の有機系接着剤層を介して接着一体化されていることを特徴とする静電チャック装置。
An electrostatic chuck portion having a main surface as a mounting surface on which a plate-like sample is placed and an internal electrode for electrostatic attraction is built in; a temperature adjustment base portion for adjusting the electrostatic chuck portion to a desired temperature; With
A heating member is bonded to the main surface opposite to the placement surface of the electrostatic chuck portion via an adhesive,
The whole or part of the surface of the temperature adjusting base portion on the electrostatic chuck portion side is covered with a sheet-like or film-like insulating material,
The electrostatic chuck portion to which these heating members are bonded and the temperature adjusting base portion covered with a sheet-like or film-like insulating material are insulative having a Young's modulus of 1 GPa or less obtained by curing a liquid adhesive. An electrostatic chuck device characterized by being bonded and integrated through an organic adhesive layer.
前記接着材は、硬化後のヤング率が8MPa以下のシリコーン系またはアクリル系の接着材であることを特徴とする請求項1または2記載の静電チャック装置。   The electrostatic chuck apparatus according to claim 1, wherein the adhesive is a silicone or acrylic adhesive having a Young's modulus after curing of 8 MPa or less. 前記加熱部材は、非磁性金属薄板をフォトリソグラフィー法によりエッチング加工してなることを特徴とする請求項1ないし3のいずれか1項記載の静電チャック装置。   4. The electrostatic chuck apparatus according to claim 1, wherein the heating member is formed by etching a nonmagnetic metal thin plate by a photolithography method. 前記シート状またはフィルム状の絶縁材は、シート状またはフィルム状の接着材により前記温度調整用ベース部に接着されていることを特徴とする請求項1ないし4のいずれか1項記載の静電チャック装置。   5. The electrostatic according to claim 1, wherein the sheet-like or film-like insulating material is bonded to the temperature-adjusting base portion with a sheet-like or film-like adhesive. 6. Chuck device. 前記接着材の厚みのばらつきは、10μm以下であることを特徴とする請求項1ないし5のいずれか1項記載の静電チャック装置。   The electrostatic chuck apparatus according to claim 1, wherein a variation in thickness of the adhesive is 10 μm or less. 前記静電チャック部は、一主面を前記載置面とした載置板と、該載置板と一体化され該載置板を支持する支持板と、これら載置板と支持板との間に設けられた前記静電吸着用内部電極とを備え、
前記載置板は、酸化アルミニウム−炭化ケイ素複合焼結体または酸化イットリウム焼結体からなることを特徴とする請求項1ないし6のいずれか1項記載の静電チャック装置。
The electrostatic chuck portion includes a mounting plate having one main surface as the mounting surface, a support plate integrated with the mounting plate and supporting the mounting plate, and the mounting plate and the support plate. An internal electrode for electrostatic attraction provided therebetween,
7. The electrostatic chuck device according to claim 1, wherein the mounting plate is made of an aluminum oxide-silicon carbide composite sintered body or an yttrium oxide sintered body.
JP2015231095A 2010-01-29 2015-11-26 Electrostatic chuck device Pending JP2016058748A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010018210 2010-01-29
JP2010018210 2010-01-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013246024A Division JP5846186B2 (en) 2010-01-29 2013-11-28 Electrostatic chuck device and method of manufacturing electrostatic chuck device

Publications (1)

Publication Number Publication Date
JP2016058748A true JP2016058748A (en) 2016-04-21

Family

ID=50783759

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013246024A Active JP5846186B2 (en) 2010-01-29 2013-11-28 Electrostatic chuck device and method of manufacturing electrostatic chuck device
JP2015231095A Pending JP2016058748A (en) 2010-01-29 2015-11-26 Electrostatic chuck device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013246024A Active JP5846186B2 (en) 2010-01-29 2013-11-28 Electrostatic chuck device and method of manufacturing electrostatic chuck device

Country Status (1)

Country Link
JP (2) JP5846186B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113430A (en) * 2016-10-28 2018-07-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Stress-balanced electrostatic substrate carrier with contact
JP2020088304A (en) * 2018-11-30 2020-06-04 新光電気工業株式会社 Substrate fixing device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6442296B2 (en) * 2014-06-24 2018-12-19 東京エレクトロン株式会社 Mounting table and plasma processing apparatus
JP6463936B2 (en) * 2014-10-01 2019-02-06 日本特殊陶業株式会社 Manufacturing method of parts for semiconductor manufacturing equipment
JP6172301B2 (en) * 2014-11-20 2017-08-02 住友大阪セメント株式会社 Electrostatic chuck device
JP6449916B2 (en) * 2015-01-29 2019-01-09 京セラ株式会社 Sample holder
JP6708518B2 (en) * 2016-08-09 2020-06-10 新光電気工業株式会社 Substrate fixing device and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347352A (en) * 1992-06-15 1993-12-27 Tokyo Electron Ltd Electrostatic chuck device and manufacture thereof
JP2003168725A (en) * 2001-11-30 2003-06-13 Kyocera Corp Wafer support member and its manufacturing method
JP2005093919A (en) * 2003-09-19 2005-04-07 Ngk Insulators Ltd Electrostatic chuck and manufacturing method thereof
JP2007194320A (en) * 2006-01-18 2007-08-02 Sumitomo Osaka Cement Co Ltd Electrostatic chuck device
JP2007279733A (en) * 2006-04-03 2007-10-25 Komico Co Ltd Electrostatic chuck, electrostatic chuck device, and glass substrate joining device
JP2007294852A (en) * 2006-03-29 2007-11-08 Shinko Electric Ind Co Ltd Electrostatic chuck
JP2008300491A (en) * 2007-05-30 2008-12-11 Sumitomo Osaka Cement Co Ltd Electrostatic chuck
JP2009071023A (en) * 2007-09-13 2009-04-02 Tomoegawa Paper Co Ltd Adhesive sheet for electrostatic chuck equipment, and electrostatic chuck equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2521471B2 (en) * 1987-05-14 1996-08-07 富士通株式会社 Electrostatic suction device
JP3208029B2 (en) * 1994-11-22 2001-09-10 株式会社巴川製紙所 Electrostatic chuck device and manufacturing method thereof
JP3978011B2 (en) * 2001-10-31 2007-09-19 京セラ株式会社 Wafer mounting stage
JP2003258065A (en) * 2002-02-27 2003-09-12 Kyocera Corp Wafer-mounting stage
JP4349952B2 (en) * 2004-03-24 2009-10-21 京セラ株式会社 Wafer support member and manufacturing method thereof
US8038796B2 (en) * 2004-12-30 2011-10-18 Lam Research Corporation Apparatus for spatial and temporal control of temperature on a substrate
JP4811790B2 (en) * 2006-02-20 2011-11-09 Toto株式会社 Electrostatic chuck

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05347352A (en) * 1992-06-15 1993-12-27 Tokyo Electron Ltd Electrostatic chuck device and manufacture thereof
JP2003168725A (en) * 2001-11-30 2003-06-13 Kyocera Corp Wafer support member and its manufacturing method
JP2005093919A (en) * 2003-09-19 2005-04-07 Ngk Insulators Ltd Electrostatic chuck and manufacturing method thereof
JP2007194320A (en) * 2006-01-18 2007-08-02 Sumitomo Osaka Cement Co Ltd Electrostatic chuck device
JP2007294852A (en) * 2006-03-29 2007-11-08 Shinko Electric Ind Co Ltd Electrostatic chuck
JP2007279733A (en) * 2006-04-03 2007-10-25 Komico Co Ltd Electrostatic chuck, electrostatic chuck device, and glass substrate joining device
JP2008300491A (en) * 2007-05-30 2008-12-11 Sumitomo Osaka Cement Co Ltd Electrostatic chuck
JP2009071023A (en) * 2007-09-13 2009-04-02 Tomoegawa Paper Co Ltd Adhesive sheet for electrostatic chuck equipment, and electrostatic chuck equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113430A (en) * 2016-10-28 2018-07-19 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Stress-balanced electrostatic substrate carrier with contact
JP2020088304A (en) * 2018-11-30 2020-06-04 新光電気工業株式会社 Substrate fixing device
JP7329917B2 (en) 2018-11-30 2023-08-21 新光電気工業株式会社 Substrate fixing device

Also Published As

Publication number Publication date
JP2014078731A (en) 2014-05-01
JP5846186B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5423632B2 (en) Electrostatic chuck device
JP6052169B2 (en) Electrostatic chuck device
JP5994772B2 (en) Electrostatic chuck device
JP5163349B2 (en) Electrostatic chuck device
JP6064908B2 (en) Electrostatic chuck device
JP5846186B2 (en) Electrostatic chuck device and method of manufacturing electrostatic chuck device
JP6119430B2 (en) Electrostatic chuck device
JP6380177B2 (en) Electrostatic chuck device
JP5522220B2 (en) Electrostatic chuck device
JP6244804B2 (en) Electrostatic chuck device
JP5982887B2 (en) Electrostatic chuck device
JP5504924B2 (en) Electrostatic chuck device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170509