JP3545866B2 - Wafer holding device - Google Patents

Wafer holding device Download PDF

Info

Publication number
JP3545866B2
JP3545866B2 JP1491096A JP1491096A JP3545866B2 JP 3545866 B2 JP3545866 B2 JP 3545866B2 JP 1491096 A JP1491096 A JP 1491096A JP 1491096 A JP1491096 A JP 1491096A JP 3545866 B2 JP3545866 B2 JP 3545866B2
Authority
JP
Japan
Prior art keywords
plate
cylindrical body
stress relaxation
wafer holding
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1491096A
Other languages
Japanese (ja)
Other versions
JPH09213775A (en
Inventor
博範 井之上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP1491096A priority Critical patent/JP3545866B2/en
Publication of JPH09213775A publication Critical patent/JPH09213775A/en
Application granted granted Critical
Publication of JP3545866B2 publication Critical patent/JP3545866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体や液晶の製造装置において、半導体ウェハや液晶用ガラス等のウェハを保持・加工するために使用するウェハ保持装置に関する。
【0002】
【従来の技術】
半導体製造工程で、半導体ウェハに成膜を施すPVD装置、CVD装置や、そのウェハに微細加工処理を施すドライエッチング装置において、ウェハはチャンバー内でサセプターや静電チャック等に保持され、このチャンバー内を真空、高温に保持して加工が行われている。
【0003】
例えば図3に示すウェハ保持装置は、サセプターと呼ばれる板状体11にウェハ30を載置する載置面11aを形成し、その内部に発熱抵抗体12を備えている。また、板状体11の下面側に、気密封止用の筒体13のフランジ部13aをロウ材14によって気密接合し、この筒体13の下端に備えたフランジ部13bをOリング17を介してチャンバー18の底面に気密接合している。
【0004】
また、上記筒体13内側の板状体11の下面には、発熱抵抗体12への通電端子21や、熱電対等の板状体11の温度検出素子22、あるいは測温用光ファイバー等のウェハ30の温度検出素子23等を備えており、これらの導線が筒体13の内側を通って外側へ導出される。
【0005】
このウェハ保持装置を使用する場合は、板状体11にウェハ30を載置しておいて、チャンバー18の内部を真空にし、発熱抵抗体12及び温度検出素子22、23によって、ウェハ30が一定温度となるように加熱しながら各種加工を行う。
【0006】
この時、筒体13の上下端はそれぞれ気密接合してあるため、この筒体13の内側は、チャンバー18の内部と完全に遮断することができる。即ち、チャンバー18の内部は10−9torr/sec以下程度の高真空、高温とし、腐食性ガスを導入するが、筒体13の内側は外部と連通した大気雰囲気とすることができる。
【0007】
そのため、温度検出素子22、23や通電端子21等の部材がチャンバー18内部の高温で腐食性の雰囲気に曝されることがなく、耐久性を高くできるとともに、チャンバー18の内部に不純物やパーティクルが混入することを防止できるのである。
【0008】
また、上記板状体11の材質として、近年、アルミナや窒化アルミニウム等のセラミックスが用いられ、一方上記筒体13は金属で形成されており、熱膨張差を緩和するために、筒体13の肉厚を0.1〜2mm程度と薄くすることが行われている。
【0009】
【発明が解決しようとする課題】
ところで、半導体製造工程では、100〜300℃、さらには600℃程度の高温条件でウェハ30を加工することが多く、上記ウェハ保持装置のチャンバー18内部は常温から上記加工温度の間での熱サイクルが加わることになる。
【0010】
そのため、この熱サイクルによる繰り返し応力が、筒体13と板状体11とのロウ材14による接合部に集中して発生することによって、図4(A)(B)に示すように筒体13のフランジ部13aがクリープ変形して接合部に隙間が生じてしまうという不都合があった。その結果、数サイクルから数十サイクルの使用で、ガスリークが発生し、半導体製造装置に要求される高真空状態を維持できなくなるという問題があった。
【0011】
なお、この問題を解決するために、筒体13としてセラミック製板状体11と熱膨張が近似した金属を用いたり、ロウ材14として熱膨張差を緩和できるような低ヤング率のロウを用いる等の対策が提案されている。
【0012】
しかし、筒体13やロウ材14はチャンバー18内の雰囲気に曝されることから、
▲1▼処理工程で用いられる腐食性ガスに対する耐食性があること、
▲2▼高温の真空雰囲気で溶融、液化反応を生じないこと
が求められており、そのため、一般的な低熱膨張金属が使用できなかった。例えばW,Mo等は耐酸化性が悪く、ロウ材との反応性が高い。また、Ti,Cr,Re等は腐食性ガスに対する耐食性が悪くチャンバー18内の環境を悪化させるため使用できなかった。
【0013】
【課題を解決するための手段】
そこで本発明は、ウェハの載置面を有するセラミックス製板状体の下面に、真空気密用筒体のフランジ部を接合するとともに、該フランジ部の下面に応力緩和リングを接合してウェハ保持装置を構成したことを特徴とする。
【0014】
即ち、セラミックス製の板状体と金属製の筒体を接合し、温度変化があった場合、熱膨張差に伴ってヤング率の低い筒体のフランジ部に変形が生じやすいが、本発明ではフランジ部の下方に応力緩和リングを接合して、フランジを両側から拘束し、変形を防止するようにしたものである。
【0015】
また本発明は、ウェハの載置面を有するセラミックス製板状体の下面に、該板状体と同程度の熱膨張率を有するセラミックス製の真空気密用筒体を気密接合してウェハ保持装置を構成したことを特徴とする。
【0016】
即ち、筒体を板状体と同程度の熱膨張率を有するセラミックスとすることによって、熱膨張差をなくすとともに、筒体自体の変形を防止するようにしたものである。
【0017】
【発明の実施の形態】
以下本発明のウェハ保持装置の実施形態を図によって説明する(従来例と同一部分は同一符号で表す)。
【0018】
図1に示すウェハ保持装置は、サセプターと呼ばれるセラミックス製の板状体11にウェハ30を載置する載置面11aを形成し、その内部に発熱抵抗体12を備えている。また、板状体11の下面側に、気密封止用の金属製筒体13のフランジ部13aをロウ材14によって気密接合し、このフランジ部13aの下面にロウ材15によって応力緩和リング16を接合してある。さらに、筒体13の下端に備えたフランジ部13bはOリング17を介してチャンバー18の底面に気密接合している。
【0019】
また、上記筒体13内側の板状体11の下面には、発熱抵抗体12への通電端子21や、熱電対等の板状体11の温度検出素子22等を備えており、これらの導線が筒体13の内側を通って外側へ導出される。
【0020】
このウェハ保持装置を使用する場合は、板状体11にウェハ30を載置しておいて、チャンバー18の内部を真空にし、発熱抵抗体12及び温度検出素子22、23によって、ウェハ30が一定温度となるように加熱しながら各種加工を行う。
【0021】
この時、筒体13の上下端はそれぞれ気密接合してあるため、この筒体13の内側は、チャンバー18の内部と完全に遮断することができる。即ち、チャンバー18の内部は10−9torr/sec以下程度の高真空、高温とし、腐食性ガスを導入するが、筒体13の内側は外部と連通した大気雰囲気とすることができる。
【0022】
そのため、温度検出素子22、23や通電端子21等の部材がチャンバー18内部の高温で腐食性の雰囲気に曝されることがなく、耐久性を高くできるとともに、チャンバー18の内部に不純物やパーティクルが混入することを防止できるのである。
【0023】
また本発明では、筒体13のフランジ部13aの下面に応力緩和リング16を接合したことによって、熱サイクルが加わってもこの接合部に隙間が生じにくくすることができる。
【0024】
即ち、上記接合部を図2(A)に拡大して示すように、セラミックス製の板状体11の下面にメタライズ層を形成しておいて、ロウ材14によって金属製の筒体13のフランジ部13aを接合する。また該フランジ部の反対側の下面には、ロウ材15を介して断面が四角形状の応力緩和リング16を接合してある。
【0025】
そのため、熱サイクルが加わったときに、熱膨張差が生じても筒体13のフランジ部13aが板状体11と応力緩和リング16で挟まれて拘束されているために、変形することを防止できる。その結果、ロウ材14部分に隙間が生じにくく、ガスリークの発生を防止できるのである。
【0026】
なお応力緩和リング16の材質としては、金属やセラミックス等を用いることができるが、上記のような効果を奏するためには、板状体11と熱膨張率が近似したものを用いる必要があり、具体的には板状体11との熱膨張率差が2×10−6/℃以下のものが好ましい。特に、板状体11と同じ主成分のセラミックスを用いれば最適である。
【0027】
また、応力緩和リング16の厚みtは1mm以上とすることが好ましい。これは、厚みtが1mm未満では、フランジ部13aの変形を防止する効果が乏しいためである。
【0028】
さらに、他の実施形態として、図2(B)に示すように、筒体13のフランジ部13aを外側と内側の両方に延びる形状として、ロウ材14による接合部の幅を大きくすることもできる。この場合は、応力緩和リング16は、筒体13の外側(真空側)又は内側(大気側)のいずれか一方又は両方に備えれば良い。
【0029】
以上の実施例において、板状体11を成すセラミックスとしては、Al,AlN,ZrO,SiC,Si等の一種以上を主成分とするセラミックスを用いる。これらの中でも特に耐プラズマ性の点から、99重量%以上のAlを主成分としSiO,MgO,CaO等の焼結助剤を含有するアルミナセラミックスや、AlNを主成分とし周期律表2a族元素酸化物や3a族元素酸化物を0.5〜20重量%の範囲で含有する窒化アルミニウム質セラミックス、あるいは99重量%以上のAlNを主成分とする高純度窒化アルミニウム質セラミックスのいずれかが好適である。
【0030】
したがって、応力緩和リング16の材質としても、上記板状体11と同様のセラミックスを用いることが好ましい。
【0031】
また、筒体13の材質としては耐食性が高く、上記板状体11との熱膨張率差が6×10−6/℃以下の金属を用いる。これは、熱膨張率差が6×10−6/℃を超えると、ロウ付け直後にセラミックスの接合界面にクラックが生じやすくなるためである。具体的には、Fe−Ni−Co合金、Fe−Ni合金等を用いれば良い。
【0032】
さらに、ロウ材14、15の材質としては、高温中で溶融、液化を生じないものを用い、具体的にはAg−Cu系、Ti−Cu−Ag系等のロウを用いる。
【0033】
次に本発明の他の実施形態を説明する。
【0034】
以上の例では筒体13を金属で形成したが、筒体13をセラミックスで形成することもできる。即ち、図3に示すような構造のウェハ保持装置において、筒体13をセラミックスで形成し、そのフランジ部13aとセラミックス製板状体11の下面とをロウ材14によって接合することもできる。
【0035】
このようにすれば、熱サイクルが加わっても筒体13が変形することがなく、接合部に隙間が生じることを防止できる。なお、このような効果を奏するためには、筒体13を成すセラミックスとして、板状体11との熱膨張率差が2×10−6/℃以下のものを用いることが好ましく、特に板状体11と同じ主成分のセラミックスを用いれば最適である。
【0036】
【実施例】
実施例1
本発明実施例として、図1に示すウェハ保持装置を試作した。
【0037】
板状体11は直径8インチ(約200mm)の円板状で、AlN含有量99.9重量%以上の高純度窒化アルミニウム質セラミックスで形成した。上記AlNの一次原料をメタノールに混合し一次粉砕調合して平均粒径1μmとした後、10%の有機バインダーを添加し二次調合スラリーとした。このスラリーをスプレードライヤーにて造粒し、所定の造粒粉体を作製した。この造粒粉体を0.8tonでCIP成形した後、さらに切削加工により所定の寸法に加工した。この後、500℃の酸化雰囲気にて脱脂を行い、N雰囲気にて2000℃、5時間の焼成を行った。得られた焼結体は比重が3.26g/cmと理論密度に対して充分な焼結密度を有しており、その熱膨張率は5×10−6/℃であった。
【0038】
また、筒体13は、筒部の直径が150mmで、肉厚0.5mmとし、その材質は、
Fe−Ni−Co合金 熱膨張率 8×10−6/℃
Fe−Ni合金 熱膨張率11×10−6/℃
ステンレス(SUS304)熱膨張率13.5×10−6/℃
タングステン(W) 熱膨張率 5.2×10−6/℃
の4種類の金属を用いた。
【0039】
さらに、応力緩和リング16は、上記板状体11と同じ窒化アルミニウム質セラミックスで形成し、幅は5mm、厚みtは0.5、1、5、10mmの4種類のものを用意した。
【0040】
上記板状体11、筒体13、応力緩和リング16をロウ付けで接合する際は、予め板状体11と応力緩和リング16の所定箇所にCu−Ag−Ti系のロウ材を用いて800℃で表面にメタライズ層を形成し、この表面にNiメッキを施した。一方筒体13のフランジ部13aにもNiメッキを施した。これらに対し、ロウ材14、15としてAg−Cu系のロウを用いて850℃の真空中でロウ付けを行った。
【0041】
また比較例として、応力緩和リング16を接合しないものも用意した。
【0042】
これらのウェハ保持装置を用いて、実際のPVD装置中で、常温から550℃の熱サイクルを加えた後の接合部のリークの有無を調べる実験を行った。
【0043】
まず、応力緩和リング16の厚みtを5mmとし、筒体13の材質を変化させ、50サイクルの熱サイクルを加えた場合の結果を表1に示す。この結果より、応力緩和リング16を備えないものは、接合部に隙間が発生して、リークが生じたのに対し、本発明実施例である応力緩和リング16を備えたものでは、リークが生じなかった。
【0044】
ただし、筒体13としてステンレスを用いたものでは、板状体11との熱膨張率差が6×10−6/℃を超えるため、ロウ付け後にクラックが発生してしまった。また、筒体13としてタングステンを用いたものでは、耐食性が悪く実用上使用不可能であった。
【0045】
【表1】

Figure 0003545866
【0046】
次に、筒体13としてFe−Ni−Co合金を用い、応力緩和リング16の厚みtを変化させたものについて、リークが発生するまでの熱サイクル数を求める実験を行った。
【0047】
結果は表2に示す通り、厚みtが1mm以上あれば50サイクル以上の耐久性がり、5mm以上あれば200サイクル以上の耐久性があることが判った。
【0048】
【表2】
Figure 0003545866
【0049】
実施例2
次に、板状体11と応力緩和リング16をアルミナセラミックスで形成し、その他は実施例1と同様にしてウェハ保持装置を試作した。
【0050】
板状体11及び応力緩和リング16は、Al99.9重量%以上のアルミナ原料を用いて、一次原料を水に混合して一次粉砕調合し、平均粒径0.5μm以下とした後、10%の有機バインダーを添加し二次調合スラリーとした。このスラリーをスプレードライヤーで造粒し、所定の造粒粉体を作製した。この造粒粉体を0.8tonでCIP成形した後、切削加工により所定の寸法に加工した。この成形体を酸化雰囲気中約1800℃、5時間の条件で焼成した。得られた焼結体の比重は3.9g/cmとその理論密度に対して充分な焼結密度を有しており、熱膨張率は7.1×10−6/℃であった。
【0051】
また、筒体13の材質は、
Fe−Ni−Co合金 熱膨張率 8×10−6/℃
Fe−Ni合金 熱膨張率11×10−6/℃
ステンレス(SUS304)熱膨張率13.5×10−6/℃
モリブデン(Mo) 熱膨張率 5.8×10−6/℃
の4種類の金属を用いた。
【0052】
板状体11、筒体13、応力緩和リング16をロウ付けで接合する際は、予め板状体11と応力緩和リング16の所定箇所にMo−Mn系のロウ材を用いて1100℃で表面にメタライズ層を形成し、この表面にNiメッキを施した。一方筒体13のフランジ部13aにもNiメッキを施した。これらに対し、ロウ材14、15としてAg−Cu系のロウを用いて850℃の真空中でロウ付けを行った。
【0053】
また比較例として、応力緩和リング16を接合しないものも用意した。
【0054】
これらのウェハ保持装置を用いて、実際のPVD装置中で、常温から550℃の熱サイクルを加えた後の接合部のリークの有無を調べる実験を行った。
【0055】
まず、応力緩和リング16の厚みtを5mmとし、筒体13の材質を変化させ、50サイクルの熱サイクルを加えた場合の結果を表3に示す。この結果より、応力緩和リング16を備えないものは、接合部に隙間が発生して、リークが生じたのに対し、本発明実施例である応力緩和リング16を備えたものでは、リークが生じなかった。
【0056】
ただし、筒体13としてステンレスを用いたものでは、板状体11との熱膨張率差が6×10−6/℃を超えるため、ロウ付け後にクラックが発生してしまった。また、筒体13としてモリブデンを用いたものでは、耐食性が悪く実用上使用不可能であった。
【0057】
【表3】
Figure 0003545866
【0058】
次に、筒体13としてFe−Ni−Co合金を用い、応力緩和リング16の厚みtを変化させたものについて、リークが発生するまでの熱サイクル数を求める実験を行った。
【0059】
結果は表4に示す通り、厚みtが1mm以上あれば50サイクル以上の耐久性がり、5mm以上あれば200サイクル以上の耐久性があることが判った。
【0060】
【表4】
Figure 0003545866
【0061】
【発明の効果】
以上のように本発明によれば、ウェハの載置面を有するセラミックス製板状体の下面に、真空気密用筒体のフランジ部を接合するとともに、該フランジ部の下面に応力緩和リングを接合してウェハ保持装置を構成したことによって、熱サイクルが加わっても筒体のフランジ部が変形しにくいことから、板状体との接合部がガスリークを起こさず、長期間良好に使用することができる。
【図面の簡単な説明】
【図1】本発明のウェハ保持装置を示す断面図である。
【図2】本発明のウェハ保持装置における板状体と筒体との接合部を示す拡大断面図である。
【図3】従来のウェハ保持装置を示す断面図である。
【図4】従来のウェハ保持装置における板状体と筒体との接合部を示す拡大断面図である。
【符号の説明】
11:板状体
11a:載置面
12:発熱抵抗体
13:筒体
13a:フランジ部
14:ロウ材
15:ロウ材
16:応力緩和リング
17:Oリング
18:チャンバー
21:通電端子
22:温度検出素子
30:ウェハ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wafer holding device used for holding and processing semiconductor wafers and wafers such as liquid crystal glass in a semiconductor or liquid crystal manufacturing apparatus.
[0002]
[Prior art]
2. Description of the Related Art In a semiconductor manufacturing process, in a PVD apparatus, a CVD apparatus for forming a film on a semiconductor wafer, and a dry etching apparatus for performing a fine processing on the wafer, the wafer is held in a chamber by a susceptor or an electrostatic chuck. Is maintained at a high vacuum and high temperature.
[0003]
For example, the wafer holding device shown in FIG. 3 has a mounting surface 11 a on which a wafer 30 is mounted on a plate-like body 11 called a susceptor, and includes a heating resistor 12 inside thereof. Further, a flange portion 13a of a cylinder 13 for hermetic sealing is hermetically joined to a lower surface side of the plate-like body 11 by a brazing material 14, and a flange portion 13b provided at a lower end of the cylinder 13 is connected via an O-ring 17. And is hermetically bonded to the bottom surface of the chamber 18.
[0004]
Further, on the lower surface of the plate-shaped body 11 inside the cylindrical body 13, a current-carrying terminal 21 to the heating resistor 12, a temperature detecting element 22 of the plate-shaped body 11 such as a thermocouple, or a wafer 30 such as an optical fiber for temperature measurement. , And these conducting wires pass through the inside of the cylindrical body 13 and are led out.
[0005]
When this wafer holding device is used, the wafer 30 is placed on the plate-like body 11, the inside of the chamber 18 is evacuated, and the heating resistor 12 and the temperature detecting elements 22 and 23 keep the wafer 30 constant. Various processes are performed while heating to the temperature.
[0006]
At this time, since the upper and lower ends of the cylindrical body 13 are air-tightly joined, the inside of the cylindrical body 13 can be completely shut off from the inside of the chamber 18. That is, the inside of the chamber 18 is set to a high vacuum and high temperature of about 10 −9 torr / sec or less and a corrosive gas is introduced, but the inside of the cylindrical body 13 can be set to an atmospheric atmosphere communicating with the outside.
[0007]
Therefore, members such as the temperature detecting elements 22 and 23 and the energizing terminals 21 are not exposed to the high-temperature and corrosive atmosphere inside the chamber 18, so that the durability can be increased. It is possible to prevent mixing.
[0008]
In recent years, ceramics such as alumina and aluminum nitride have been used as the material of the plate-like body 11, while the cylinder 13 is formed of metal. The thickness is reduced to about 0.1 to 2 mm.
[0009]
[Problems to be solved by the invention]
By the way, in the semiconductor manufacturing process, the wafer 30 is often processed under a high temperature condition of about 100 to 300 ° C., and further about 600 ° C., and the inside of the chamber 18 of the wafer holding device is subjected to a thermal cycle between normal temperature and the above processing temperature. Will be added.
[0010]
Therefore, the repetitive stress due to the thermal cycle is concentrated at the joint portion between the cylindrical body 13 and the plate-shaped body 11 by the brazing material 14, and as shown in FIGS. There is an inconvenience that the flange portion 13a is creep-deformed and a gap is formed in the joint portion. As a result, there is a problem that gas leakage occurs after several cycles to several tens of cycles, and the high vacuum state required for the semiconductor manufacturing apparatus cannot be maintained.
[0011]
In order to solve this problem, a metal whose thermal expansion is similar to that of the ceramic plate 11 is used as the cylindrical body 13, or a low Young's modulus brazing that can reduce the thermal expansion difference is used as the brazing material 14. And other measures have been proposed.
[0012]
However, since the cylindrical body 13 and the brazing material 14 are exposed to the atmosphere in the chamber 18,
(1) Corrosion resistance to corrosive gas used in the treatment process,
{Circle around (2)} It is required that melting and liquefaction do not occur in a high-temperature vacuum atmosphere, so that general low thermal expansion metals cannot be used. For example, W, Mo and the like have poor oxidation resistance and high reactivity with the brazing material. Ti, Cr, Re and the like cannot be used because they have poor corrosion resistance to corrosive gas and deteriorate the environment in the chamber 18.
[0013]
[Means for Solving the Problems]
Accordingly, the present invention provides a wafer holding device in which a flange portion of a vacuum-tight cylinder is joined to the lower surface of a ceramic plate having a wafer mounting surface, and a stress relaxation ring is joined to the lower surface of the flange portion. Is constituted.
[0014]
That is, when a ceramic plate and a metal cylinder are joined, and there is a temperature change, deformation is likely to occur in the flange portion of the cylinder having a low Young's modulus due to a difference in thermal expansion. A stress relaxation ring is joined below the flange portion to restrain the flange from both sides to prevent deformation.
[0015]
Also, the present invention provides a wafer holding apparatus in which a ceramic vacuum-tight cylinder having a thermal expansion coefficient similar to that of the plate-shaped body is air-tightly joined to a lower surface of the ceramic plate-shaped body having a wafer mounting surface. Is constituted.
[0016]
In other words, the cylindrical body is made of ceramics having the same coefficient of thermal expansion as the plate-shaped body, so that the difference in thermal expansion is eliminated and the cylindrical body itself is prevented from being deformed.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a wafer holding device of the present invention will be described with reference to the drawings (the same parts as those in the conventional example are denoted by the same reference numerals).
[0018]
The wafer holding device shown in FIG. 1 has a mounting surface 11a on which a wafer 30 is mounted on a ceramic plate 11 called a susceptor, and includes a heating resistor 12 therein. A flange 13a of a metal cylinder 13 for hermetic sealing is hermetically bonded to the lower surface of the plate-like body 11 by a brazing material 14, and a stress relaxation ring 16 is braced to the lower surface of the flange 13a by a brazing material 15. They are joined. Further, a flange portion 13 b provided at a lower end of the cylindrical body 13 is air-tightly joined to a bottom surface of the chamber 18 via an O-ring 17.
[0019]
Further, on the lower surface of the plate-shaped body 11 inside the cylindrical body 13, there are provided a current-carrying terminal 21 to the heating resistor 12, a temperature detecting element 22 of the plate-shaped body 11 such as a thermocouple, and the like. It is led out through the inside of the cylinder 13.
[0020]
When this wafer holding device is used, the wafer 30 is placed on the plate-like body 11, the inside of the chamber 18 is evacuated, and the heating resistor 12 and the temperature detecting elements 22 and 23 keep the wafer 30 constant. Various processes are performed while heating to the temperature.
[0021]
At this time, since the upper and lower ends of the cylindrical body 13 are air-tightly joined, the inside of the cylindrical body 13 can be completely shut off from the inside of the chamber 18. That is, the inside of the chamber 18 is set to a high vacuum and high temperature of about 10 −9 torr / sec or less and a corrosive gas is introduced, but the inside of the cylindrical body 13 can be set to an atmospheric atmosphere communicating with the outside.
[0022]
Therefore, members such as the temperature detecting elements 22 and 23 and the energizing terminals 21 are not exposed to the high-temperature and corrosive atmosphere inside the chamber 18, so that the durability can be increased. It is possible to prevent mixing.
[0023]
Further, in the present invention, since the stress relaxation ring 16 is joined to the lower surface of the flange portion 13a of the cylindrical body 13, it is possible to make it difficult for a gap to be generated at this joint portion even when a heat cycle is applied.
[0024]
That is, as shown in an enlarged manner in FIG. 2A, a metallized layer is formed on the lower surface of the ceramic plate 11, and the brazing material 14 is used to form a flange of the metal cylinder 13. The part 13a is joined. A stress relaxation ring 16 having a square cross section is joined to the lower surface on the opposite side of the flange portion via a brazing material 15.
[0025]
Therefore, even when a difference in thermal expansion occurs when a thermal cycle is applied, the flange portion 13a of the cylindrical body 13 is restrained by being sandwiched between the plate-like body 11 and the stress relaxation ring 16, thereby preventing deformation. it can. As a result, a gap is less likely to be formed in the brazing material 14, and gas leakage can be prevented.
[0026]
In addition, as the material of the stress relaxation ring 16, a metal, a ceramic, or the like can be used. However, in order to achieve the above-described effects, it is necessary to use a material having a coefficient of thermal expansion similar to that of the plate-like body 11. Specifically, it is preferable that the difference in thermal expansion coefficient from the plate-like body 11 is 2 × 10 −6 / ° C. or less. In particular, it is optimal to use ceramics having the same main component as the plate-like body 11.
[0027]
Further, it is preferable that the thickness t of the stress relaxation ring 16 be 1 mm or more. This is because when the thickness t is less than 1 mm, the effect of preventing the deformation of the flange portion 13a is poor.
[0028]
Further, as another embodiment, as shown in FIG. 2 (B), the flange 13a of the cylindrical body 13 may be formed so as to extend to both the outside and the inside, so that the width of the joint portion by the brazing material 14 can be increased. . In this case, the stress relaxation ring 16 may be provided on one or both of the outside (vacuum side) and the inside (atmosphere side) of the cylinder 13.
[0029]
In an embodiment of the foregoing, the ceramic forming the plate-like body 11, Al 2 O 3, AlN , ZrO 2, SiC, use ceramics as a main component one or more of such Si 3 N 4. Among them, particularly from the viewpoint of plasma resistance, alumina ceramics containing 99% by weight or more of Al 2 O 3 as a main component and a sintering aid such as SiO 2 , MgO, CaO, or a periodic rule containing AlN as a main component. Either aluminum nitride ceramics containing Group 2a element oxides or Group 3a element oxides in the range of 0.5 to 20% by weight, or high-purity aluminum nitride ceramics containing 99% by weight or more of AlN as a main component. Is preferred.
[0030]
Therefore, it is preferable to use the same ceramic as that of the plate-like body 11 as the material of the stress relaxation ring 16.
[0031]
Further, as the material of the cylindrical body 13, a metal having high corrosion resistance and having a difference in thermal expansion coefficient from the plate-like body 11 of 6 × 10 −6 / ° C. or less is used. This is because if the difference in thermal expansion coefficient exceeds 6 × 10 −6 / ° C., cracks are likely to occur at the bonding interface of ceramics immediately after brazing. Specifically, an Fe—Ni—Co alloy, an Fe—Ni alloy, or the like may be used.
[0032]
Further, as the material of the brazing materials 14 and 15, a material that does not melt and liquefy at a high temperature is used, and specifically, a brazing material such as an Ag-Cu-based or Ti-Cu-Ag-based brazing material is used.
[0033]
Next, another embodiment of the present invention will be described.
[0034]
In the above example, the cylinder 13 is formed of metal, but the cylinder 13 may be formed of ceramic. That is, in the wafer holding device having the structure shown in FIG. 3, the cylindrical body 13 may be formed of ceramics, and the flange portion 13a and the lower surface of the ceramic plate-like body 11 may be joined by the brazing material 14.
[0035]
In this manner, even when a heat cycle is applied, the cylindrical body 13 is not deformed, and it is possible to prevent the formation of a gap at the joint. In order to achieve such an effect, it is preferable to use a ceramic having a coefficient of thermal expansion difference of 2 × 10 −6 / ° C. or less with respect to the plate-like body 11 as the ceramic constituting the cylindrical body 13, and particularly, a plate-like body. It is optimal to use ceramics of the same main component as the body 11.
[0036]
【Example】
Example 1
As an example of the present invention, a wafer holding device shown in FIG. 1 was prototyped.
[0037]
The plate-like body 11 was a disk having a diameter of 8 inches (about 200 mm) and was formed of a high-purity aluminum nitride ceramic having an AlN content of 99.9% by weight or more. The primary raw material of the above-mentioned AlN was mixed with methanol and firstly pulverized and mixed to obtain an average particle diameter of 1 μm, and then 10% of an organic binder was added to obtain a secondly prepared slurry. This slurry was granulated with a spray dryer to produce a predetermined granulated powder. After the granulated powder was subjected to CIP molding at 0.8 ton, it was further processed to a predetermined size by cutting. Thereafter, degreasing was performed in an oxidizing atmosphere at 500 ° C., and firing was performed at 2000 ° C. for 5 hours in an N 2 atmosphere. The obtained sintered body had a specific gravity of 3.26 g / cm 3 and a sufficient sintered density with respect to the theoretical density, and its coefficient of thermal expansion was 5 × 10 −6 / ° C.
[0038]
The cylindrical body 13 has a cylindrical portion with a diameter of 150 mm and a wall thickness of 0.5 mm.
Fe-Ni-Co alloy Thermal expansion coefficient 8 × 10 −6 / ° C
Fe-Ni alloy Thermal expansion coefficient 11 × 10 −6 / ° C
Stainless steel (SUS304) coefficient of thermal expansion 13.5 × 10 −6 / ° C
Tungsten (W) Thermal expansion coefficient 5.2 × 10 −6 / ° C
Were used.
[0039]
Further, the stress relaxation ring 16 was formed of the same aluminum nitride ceramics as the plate-like body 11, and four types having a width of 5 mm and a thickness t of 0.5, 1, 5, and 10 mm were prepared.
[0040]
When the plate-like body 11, the cylindrical body 13, and the stress relaxation ring 16 are joined by brazing, a predetermined portion of the plate-like body 11 and the stress relaxation ring 16 is previously coated with a Cu-Ag-Ti-based brazing material. A metallized layer was formed on the surface at ℃, and this surface was plated with Ni. On the other hand, the flange portion 13a of the cylindrical body 13 was also plated with Ni. Ag-Cu-based brazing materials were used as the brazing materials 14 and 15, and brazing was performed in a vacuum at 850 ° C.
[0041]
Further, as a comparative example, one in which the stress relaxation ring 16 was not joined was prepared.
[0042]
Using these wafer holding devices, an experiment was conducted in an actual PVD device to determine whether or not there was a leak at the joint after a heat cycle from room temperature to 550 ° C. was applied.
[0043]
First, Table 1 shows the results when the thickness t of the stress relaxation ring 16 was 5 mm, the material of the cylindrical body 13 was changed, and 50 thermal cycles were applied. From these results, it was found that, without the stress relaxation ring 16, a gap was generated at the joint portion and a leak occurred, whereas with the stress relaxation ring 16 according to the embodiment of the present invention, a leak occurred. Did not.
[0044]
However, in the case where stainless steel was used as the cylindrical body 13, cracks occurred after brazing because the difference in thermal expansion coefficient from the plate-like body 11 exceeded 6 × 10 −6 / ° C. In addition, when tungsten was used for the cylinder 13, the corrosion resistance was poor and it was not practically usable.
[0045]
[Table 1]
Figure 0003545866
[0046]
Next, an experiment was performed to determine the number of thermal cycles until a leak occurred for the case where the Fe-Ni-Co alloy was used as the cylindrical body 13 and the thickness t of the stress relaxation ring 16 was changed.
[0047]
As shown in Table 2, when the thickness t was 1 mm or more, the durability was 50 cycles or more, and when the thickness t was 5 mm or more, the durability was 200 cycles or more.
[0048]
[Table 2]
Figure 0003545866
[0049]
Example 2
Next, the plate-like body 11 and the stress relaxation ring 16 were formed of alumina ceramics, and the rest was made in the same manner as in the first embodiment to prototype a wafer holding device.
[0050]
The plate-like body 11 and the stress relaxation ring 16 were prepared by mixing primary raw materials with water using an alumina raw material of 99.9% by weight or more of Al 2 O 3 and then performing primary pulverization to make the average particle diameter 0.5 μm or less. Thereafter, 10% of an organic binder was added to obtain a second prepared slurry. This slurry was granulated with a spray dryer to produce a predetermined granulated powder. This granulated powder was subjected to CIP molding at 0.8 ton, and then processed to a predetermined size by cutting. This compact was fired in an oxidizing atmosphere at about 1800 ° C. for 5 hours. The specific gravity of the obtained sintered body was 3.9 g / cm 3 , which was sufficient for its theoretical density, and the coefficient of thermal expansion was 7.1 × 10 −6 / ° C.
[0051]
The material of the cylindrical body 13 is
Fe-Ni-Co alloy Thermal expansion coefficient 8 × 10 −6 / ° C
Fe-Ni alloy Thermal expansion coefficient 11 × 10 −6 / ° C
Stainless steel (SUS304) coefficient of thermal expansion 13.5 × 10 −6 / ° C
Molybdenum (Mo) Thermal expansion coefficient 5.8 × 10 −6 / ° C
Were used.
[0052]
When joining the plate-like body 11, the cylindrical body 13, and the stress relaxation ring 16 by brazing, the surface of the plate-like body 11 and the stress relaxation ring 16 should be surfaced at 1100 ° C. in advance using a Mo—Mn-based brazing material at a predetermined position. , A metallized layer was formed, and the surface thereof was plated with Ni. On the other hand, the flange portion 13a of the cylindrical body 13 was also plated with Ni. Ag-Cu-based brazing materials were used as the brazing materials 14 and 15, and brazing was performed in a vacuum at 850 ° C.
[0053]
Further, as a comparative example, one in which the stress relaxation ring 16 was not joined was prepared.
[0054]
Using these wafer holding devices, an experiment was conducted in an actual PVD device to determine whether or not there was a leak at the joint after a heat cycle from room temperature to 550 ° C. was applied.
[0055]
First, Table 3 shows the results when the thickness t of the stress relaxation ring 16 was 5 mm, the material of the cylindrical body 13 was changed, and 50 thermal cycles were applied. From these results, it was found that, without the stress relaxation ring 16, a gap was generated at the joint portion and a leak occurred, whereas with the stress relaxation ring 16 according to the embodiment of the present invention, a leak occurred. Did not.
[0056]
However, in the case where stainless steel was used as the cylindrical body 13, cracks occurred after brazing because the difference in thermal expansion coefficient from the plate-like body 11 exceeded 6 × 10 −6 / ° C. In addition, when molybdenum was used for the cylinder 13, the corrosion resistance was poor and it was not practically usable.
[0057]
[Table 3]
Figure 0003545866
[0058]
Next, an experiment was performed to determine the number of thermal cycles until a leak occurred for the case where the Fe-Ni-Co alloy was used as the cylindrical body 13 and the thickness t of the stress relaxation ring 16 was changed.
[0059]
As shown in Table 4, it was found that when the thickness t was 1 mm or more, the durability was 50 cycles or more, and when the thickness t was 5 mm or more, the durability was 200 cycles or more.
[0060]
[Table 4]
Figure 0003545866
[0061]
【The invention's effect】
As described above, according to the present invention, a flange portion of a vacuum-tight cylinder is joined to the lower surface of a ceramic plate having a wafer mounting surface, and a stress relaxation ring is joined to the lower surface of the flange portion. As a result, the flange portion of the cylindrical body is unlikely to be deformed even when a heat cycle is applied, so that the joint portion with the plate-shaped body does not cause gas leakage and can be used well for a long time. it can.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a wafer holding device of the present invention.
FIG. 2 is an enlarged cross-sectional view showing a joint between a plate-like body and a cylindrical body in the wafer holding device of the present invention.
FIG. 3 is a sectional view showing a conventional wafer holding device.
FIG. 4 is an enlarged sectional view showing a joint between a plate-shaped body and a cylindrical body in a conventional wafer holding device.
[Explanation of symbols]
11: Plate 11a: Mounting surface 12: Heating resistor 13: Cylindrical body 13a: Flange 14: Brazing material 15: Brazing material 16: Stress relaxation ring 17: O-ring 18: Chamber 21: Power supply terminal 22: Temperature Detection element 30: wafer

Claims (3)

ウェハの載置面を有するセラミックス製板状体の下面に、金属からなる真空気密用筒体のフランジ部を接合するとともに、該フランジ部の下面に上記板状体との熱膨張率差が2×10 −6 /℃以下の材質からなる応力緩和リングを接合して、該応力緩和リングと上記板状体で上記フランジ部を挟むようにしたことを特徴とするウェハ保持装置。A flange portion of a vacuum-tight cylinder made of metal is joined to the lower surface of a ceramic plate having a wafer mounting surface, and the difference in thermal expansion coefficient between the plate and the plate is 2 mm on the lower surface of the flange. A wafer holding device, wherein a stress relaxation ring made of a material having a temperature of × 10 −6 / ° C. or less is joined, and the flange portion is sandwiched between the stress relaxation ring and the plate-like body . 上記応力緩和リングの厚みが1mm以上であることを特徴とする請求項1記載のウェハ保持装置。Wafer holding apparatus according to claim 1, wherein a thickness of the stress relaxation-ring is 1mm or more. 上記筒体は、上記板状体との熱膨張率差が6×10The cylindrical body has a thermal expansion coefficient difference of 6 × 10 from the plate-like body. −6-6 /℃以下の金属からなることを特徴とする請求項1または2記載のウェハ保持装置。3. The wafer holding apparatus according to claim 1, wherein the wafer holding apparatus is made of a metal having a temperature of / ° C. or lower.
JP1491096A 1996-01-31 1996-01-31 Wafer holding device Expired - Fee Related JP3545866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1491096A JP3545866B2 (en) 1996-01-31 1996-01-31 Wafer holding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1491096A JP3545866B2 (en) 1996-01-31 1996-01-31 Wafer holding device

Publications (2)

Publication Number Publication Date
JPH09213775A JPH09213775A (en) 1997-08-15
JP3545866B2 true JP3545866B2 (en) 2004-07-21

Family

ID=11874143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1491096A Expired - Fee Related JP3545866B2 (en) 1996-01-31 1996-01-31 Wafer holding device

Country Status (1)

Country Link
JP (1) JP3545866B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210159130A1 (en) * 2019-02-15 2021-05-27 Microsemi Corporation Method for forming hermetic package for a power semiconductor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010110491A (en) * 2000-06-05 2001-12-13 김상호 Heating module of chemical vapor deposition to intercept inflowing of gas
CN100346462C (en) * 2002-04-15 2007-10-31 住友电气工业株式会社 Workpiece fixer for machining apparatus and machining apparatus using said fixer
US11557500B2 (en) 2017-10-16 2023-01-17 Applied Materials, Inc. High temperature heated support pedestal in a dual load lock configuration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210159130A1 (en) * 2019-02-15 2021-05-27 Microsemi Corporation Method for forming hermetic package for a power semiconductor
US11721600B2 (en) * 2019-02-15 2023-08-08 Microsemi Corporation Method for forming hermetic package for a power semiconductor

Also Published As

Publication number Publication date
JPH09213775A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
US7416793B2 (en) Electrostatic chuck and manufacturing method for the same, and alumina sintered member and manufacturing method for the same
JP4648030B2 (en) Yttria sintered body, ceramic member, and method for producing yttria sintered body
JP4476701B2 (en) Manufacturing method of sintered body with built-in electrode
US5665260A (en) Ceramic electrostatic chuck with built-in heater
EP1695949A1 (en) Joined body and manufacturing method for the same
JP3840990B2 (en) Semiconductor / LCD manufacturing equipment
JPH10242252A (en) Wafer heater
JP3771686B2 (en) Wafer support member
JPH0750736B2 (en) Wafer heating apparatus and manufacturing method thereof
JP3810216B2 (en) Sample heating apparatus, processing apparatus, and sample processing method using the same
US7414823B2 (en) Holder for use in semiconductor or liquid-crystal manufacturing device and semiconductor or liquid-crystal manufacturing device in which the holder is installed
JP3545866B2 (en) Wafer holding device
JP3037669B1 (en) Joint of ceramic member and metal member and wafer support member using the same
JP4703442B2 (en) Substrate heating device
JP3597936B2 (en) Wafer holding device
JP2004128232A (en) Ceramic junction, wafer holder, and semiconductor manufacturing equipment
JPH08264550A (en) Wafer heater having electrostatic attracting function
JP3720606B2 (en) Bonded body of ceramic member and metal member and wafer support member using the same
JP3941542B2 (en) Hermetic bonding structure of ceramics and metal and apparatus parts having the structure
JP4493236B2 (en) Wafer support member and manufacturing method thereof
JP2000143348A (en) Aluminum nitride sintered compact and its production and member for apparatus for producing semiconductor using the same
JPH0729866B2 (en) Surface modification method of silicon nitride sintered body and joining method of sintered body
JP3987841B2 (en) Wafer holding device
JP2003261396A (en) Plasma resistant aluminum nitride based ceramic
JPH04181725A (en) Ceramic heater for heating semiconductor wafer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040409

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees