JPH0729866B2 - Surface modification method of silicon nitride sintered body and joining method of sintered body - Google Patents

Surface modification method of silicon nitride sintered body and joining method of sintered body

Info

Publication number
JPH0729866B2
JPH0729866B2 JP3081230A JP8123091A JPH0729866B2 JP H0729866 B2 JPH0729866 B2 JP H0729866B2 JP 3081230 A JP3081230 A JP 3081230A JP 8123091 A JP8123091 A JP 8123091A JP H0729866 B2 JPH0729866 B2 JP H0729866B2
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
nitride sintered
glass
glass layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3081230A
Other languages
Japanese (ja)
Other versions
JPH04295078A (en
Inventor
隆介 牛越
和宏 ▲のぼり▼
裕介 新居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3081230A priority Critical patent/JPH0729866B2/en
Publication of JPH04295078A publication Critical patent/JPH04295078A/en
Publication of JPH0729866B2 publication Critical patent/JPH0729866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒化珪素焼結体の表面
改質方法に関し、更にはこれを応用した、窒化珪素焼結
体の他の焼結体への接合方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for modifying the surface of a silicon nitride sintered body, and further relates to a method for applying the same to a method for joining a silicon nitride sintered body to another sintered body.

【0002】[0002]

【従来の技術】従来、窒化珪素焼結体の表面にガラス層
を形成し、表面改質する方法としては、窒化珪素焼結体
を酸化雰囲気中で加熱し、この焼結体の表面に、SiO2
びAl2O3 、MgO 、CeO 、CaO 等からなる粒界相成分ガラ
ス層を形成する技術がある。しかし、この方法では、む
ろん酸化雰囲気中で窒化珪素焼結体を加熱する必要があ
る。従って、窒化珪素焼結体中に金属を埋設した製品に
ついては、金属が酸化されるため、適用できない。ま
た、酸化雰囲気中で窒化珪素焼結体を加熱処理する過程
で、焼結体の表面に一旦緻密な酸化被膜が形成される
と、その段階で酸化反応が停止するので、ガラス層の厚
さはある程度以上大きくならない。例えば、100℃の酸
化雰囲気では3μm が最大であった。
2. Description of the Related Art Conventionally, as a method of forming a glass layer on the surface of a silicon nitride sintered body and modifying the surface, the silicon nitride sintered body is heated in an oxidizing atmosphere, and the surface of this sintered body is heated. There is a technique for forming a grain boundary phase component glass layer composed of SiO 2 and Al 2 O 3 , MgO, CeO 2, CaO and the like. However, this method requires heating the silicon nitride sintered body in an oxidizing atmosphere. Therefore, the product in which the metal is embedded in the silicon nitride sintered body cannot be applied because the metal is oxidized. In addition, in the process of heat-treating a silicon nitride sintered body in an oxidizing atmosphere, once a dense oxide film is formed on the surface of the sintered body, the oxidation reaction stops at that stage. Does not grow larger than a certain amount. For example, in the oxidizing atmosphere at 100 ° C., 3 μm was the maximum.

【0003】また、化学的気相成長(CVD)法によっ
て窒化珪素焼結体の表面に酸化珪素膜を付着させる方法
がある。この方法によれば、酸化珪素膜の膜厚を変える
ことができる。しかし、この方法では、窒化珪素焼結体
の表面と酸化珪素膜との間に拡散層がないので、酸化珪
素膜の密着力が低い。また、窒化珪素焼結体を酸化雰囲
気中で加熱する必要がある。またCVD法によるため、
高コストであり、生産性が低い。
There is also a method of depositing a silicon oxide film on the surface of a silicon nitride sintered body by a chemical vapor deposition (CVD) method. According to this method, the film thickness of the silicon oxide film can be changed. However, in this method, since there is no diffusion layer between the surface of the silicon nitride sintered body and the silicon oxide film, the adhesion of the silicon oxide film is low. Further, it is necessary to heat the silicon nitride sintered body in an oxidizing atmosphere. Also, because it is based on the CVD method,
High cost and low productivity.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、窒化
珪素焼結体を酸化雰囲気中で加熱処理する必要がなく、
また焼結体表面のガラス層の厚さを変えることができ、
かつガラス層の窒化珪素焼結体への付着力を大きくでき
るような、窒化珪素焼結体の表面改質方法を提供するこ
とである。
The object of the present invention is to eliminate the need to heat-treat a silicon nitride sintered body in an oxidizing atmosphere.
You can also change the thickness of the glass layer on the surface of the sintered body,
Another object of the present invention is to provide a method for modifying the surface of a silicon nitride sintered body, which can increase the adhesion of the glass layer to the silicon nitride sintered body.

【0005】[0005]

【課題を解決するための手段】本発明は、ガラス質成分
を含有する窒化珪素焼結体を、塩素とフッ素との少なく
とも一方の元素を有する化合物を含んだエッチングガス
に曝露し、次いでこの窒化珪素焼結体を熱処理してこの
焼結体の表面にガラス層を生成させる、窒化珪素焼結体
の表面改質方法に係るものである。
According to the present invention, a silicon nitride sintered body containing a glassy component is exposed to an etching gas containing a compound containing at least one element of chlorine and fluorine, and then this nitriding is performed. The present invention relates to a method for modifying the surface of a silicon nitride sintered body, in which a silicon sintered body is heat-treated to form a glass layer on the surface of the sintered body.

【0006】また、本発明においては、上記の表面改質
方法を応用し新規な、窒化珪素焼結体の接合方法を提供
する。即ち、本発明は、ガラス質成分を含有する第一の
窒化珪素焼結体を、塩素とフッ素との少なくとも一方の
元素を有する化合物を含んだエッチングガスに曝露し、
第一の窒化珪素焼結体のエッチング面を第二の焼結体の
表面に当接させ、次いでこれらの焼結体を熱処理して少
なくとも第一の窒化珪素焼結体のエッチング面にガラス
層を生成させ、第一の窒化珪素焼結体と第二の焼結体を
接合する、窒化珪素焼結体の接合方法に係るものであ
る。
Further, the present invention provides a novel method for joining silicon nitride sintered bodies by applying the above-mentioned surface modification method. That is, the present invention, the first silicon nitride sintered body containing a glassy component is exposed to an etching gas containing a compound having at least one element of chlorine and fluorine,
The etched surface of the first sintered silicon nitride is brought into contact with the surface of the second sintered body, and then these sintered bodies are heat-treated to form a glass layer on at least the etched surface of the first sintered silicon nitride. The present invention relates to a method for joining a silicon nitride sintered body, in which the first silicon nitride sintered body and the second sintered body are joined together.

【0007】[0007]

【実施例】図1(a), (b)は、本発明によって窒化珪素焼
結体の表面を改質するプロセスを示す断面図、図2、図
3、図4は、各工程における窒化珪素焼結体の表面状態
を示す模式断面図である。まず、図1(a) に示すよう
な、断面略正方形の窒化珪素焼結体1を準備する。この
表面においては、図2に示すように、多数の窒化珪素粒
子4の隙間に、粒界ガラス相5が形成されている。この
粒界ガラス相5の成分は、主として焼結助剤や他の添加
剤からなっており、具体的には、Al2O3 、MgO 、SiO2
CeO2、ZrO2、SrO 、Y2O3、Yb2O3 等からなっている。
1 (a) and 1 (b) are sectional views showing a process for modifying the surface of a silicon nitride sintered body according to the present invention, and FIGS. 2, 3 and 4 show silicon nitride in each step. It is a schematic cross section which shows the surface state of a sintered compact. First, a silicon nitride sintered body 1 having a substantially square cross section as shown in FIG. 1 (a) is prepared. On this surface, as shown in FIG. 2, a grain boundary glass phase 5 is formed in the gaps between the large number of silicon nitride particles 4. The components of the grain boundary glass phase 5 are mainly composed of sintering aids and other additives, and specifically, Al 2 O 3 , MgO, SiO 2 ,
It is composed of CeO 2 , ZrO 2 , SrO 2 , Y 2 O 3 and Yb 2 O 3 .

【0008】この窒化珪素焼結体1を、塩素とフッ素と
の少なくとも一方の元素を有するエッチングガスに曝露
する。このエッチングガスとしては、例えば、NF3,CF4,
ClF3, WF6, SF6, HF , HCl, F2 等を例示できる。該ガ
スによるエッチングでは、加熱、プラズマ等によりガス
の活性化を行い、エッチングレートを向上させることが
できる。このようにして窒化珪素焼結体1の表面をエッ
チングすると、その表面部分においては粒界ガラス相5
の成分はかなり残る。これに対し、エッチングガス中に
酸素が含まれていなければ、焼結体表面の窒化珪素粒子
はエッチングにより飛散し、エッチングガス中に酸素が
含まれていれば、珪素成分の一部が酸化珪素となって残
る。この結果、図1(a) に示すように、窒化珪素焼結体
1の表面に、非常に多孔質のむしろ粉状のガラス成分層
2が露出する。このガラス成分層2は、前記した各種ガ
ラス成分からなる。このガラス成分層2を拡大すると、
図3に示すような孔の多い状態となっている。
This silicon nitride sintered body 1 is exposed to an etching gas containing at least one element of chlorine and fluorine. As this etching gas, for example, NF 3 , CF 4,
Examples include ClF 3, WF 6, SF 6, HF , HCl, F 2 . In the etching with the gas, the gas can be activated by heating, plasma or the like to improve the etching rate. When the surface of the silicon nitride sintered body 1 is thus etched, the grain boundary glass phase 5 is formed in the surface portion.
Ingredients of remain. On the other hand, if the etching gas does not contain oxygen, the silicon nitride particles on the surface of the sintered body are scattered by etching, and if the etching gas contains oxygen, part of the silicon component is silicon oxide. Remains. As a result, as shown in FIG. 1 (a), a very porous rather powdery glass component layer 2 is exposed on the surface of the silicon nitride sintered body 1. The glass component layer 2 is made of the various glass components described above. Expanding this glass component layer 2,
As shown in FIG. 3, there are many holes.

【0009】次いで、この窒化珪素焼結体1を熱処理す
る。この熱処理において、ガラス成分層2を軟化させ、
図1(b) に示すように、窒化珪素焼結体1の表面に、緻
密で強固なガラス層3を生成させる。上記熱処理は、好
ましくは、1200〜1800℃で行う。こうして生成したガラ
ス層3において、図4に示すように、ガラス成分が緻密
化している。
Next, the silicon nitride sintered body 1 is heat-treated. In this heat treatment, the glass component layer 2 is softened,
As shown in FIG. 1B, a dense and strong glass layer 3 is formed on the surface of the silicon nitride sintered body 1. The heat treatment is preferably performed at 1200 to 1800 ° C. In the glass layer 3 thus generated, the glass component is densified as shown in FIG.

【0010】こうした表面改質方法によれば、窒化珪素
焼結体1を酸化雰囲気中で加熱しないので、窒化珪素焼
結体1中に金属を埋設しても、この埋設金属が劣化しに
くい。また、エッチングガスの種類や条件、エッチング
時間を変えることで、ガラス成分層2の厚さを変えるこ
とができ、これによって最終的にガラス層3の厚さを変
えることができる。しかも、ガラス成分層2は、元来が
窒化珪素焼結体1の材質中に含まれていたものであるか
ら、基材1との連続性が良く、熱処理時に焼結体中へと
拡散する。従って、こうしたガラス成分の拡散により、
窒化珪素焼結体1へのガラス層3の密着強度が大きくな
る。
According to this surface modification method, since the silicon nitride sintered body 1 is not heated in an oxidizing atmosphere, even if a metal is embedded in the silicon nitride sintered body 1, the embedded metal is less likely to deteriorate. Further, the thickness of the glass component layer 2 can be changed by changing the type and conditions of the etching gas and the etching time, and thus the thickness of the glass layer 3 can be finally changed. Moreover, since the glass component layer 2 was originally contained in the material of the silicon nitride sintered body 1, it has good continuity with the base material 1 and diffuses into the sintered body during heat treatment. . Therefore, due to the diffusion of these glass components,
The adhesion strength of the glass layer 3 to the silicon nitride sintered body 1 is increased.

【0011】次に、本発明を窒化珪素焼結体と他の焼結
体との接合に適用した実施例について述べる。まず、図
5(a) に示すように、第一の窒化珪素焼結体1Aを、塩素
とフッ素との少なくとも一方の元素を有する化合物を含
んだエッチングガスに曝露し、窒化珪素焼結体1Aの表面
にガラス成分層2を生成させる。次いで、窒化珪素焼結
体1Aの表面に、第二の焼結体1Bを当接させる。この後、
窒化珪素焼結体1A, 1Bを前記のように加熱処理し、図5
(B) に示すように、ガラス層3を生成させる。この際
に、ガラス層3が焼結体1Bに対して強固に付着し、この
結果、第一の窒化珪素焼結体1Aと第二の窒化珪素焼結体
1Bとが強固に結合される。ガラス層3と第二の焼結体1B
との界面においては、第二の焼結体1Bの方へとガラス成
分が拡散するので、ガラス層3と第二の焼結体1Bとの接
合強度が大きい。なお、図5の例では、焼結体1Aの表面
にガラス層3を生成させたが、焼結体1Bとして窒化珪素
焼結体を用いた際には、焼結体1Bの表面にも上記のよう
にしてガラス層を生成させてよい。
Next, an embodiment in which the present invention is applied to the joining of a silicon nitride sintered body and another sintered body will be described. First, as shown in FIG. 5 (a), the first silicon nitride sintered body 1A is exposed to an etching gas containing a compound having at least one element of chlorine and fluorine to expose the silicon nitride sintered body 1A. The glass component layer 2 is formed on the surface of the. Next, the second sintered body 1B is brought into contact with the surface of the silicon nitride sintered body 1A. After this,
The silicon nitride sintered bodies 1A and 1B were heat-treated as described above, and
As shown in (B), the glass layer 3 is formed. At this time, the glass layer 3 adheres firmly to the sintered body 1B, and as a result, the first silicon nitride sintered body 1A and the second silicon nitride sintered body are
1B is firmly bonded. Glass layer 3 and second sintered body 1B
At the interface between and, since the glass component diffuses toward the second sintered body 1B, the bonding strength between the glass layer 3 and the second sintered body 1B is large. In addition, in the example of FIG. 5, the glass layer 3 was formed on the surface of the sintered body 1A, but when a silicon nitride sintered body is used as the sintered body 1B, the glass layer 3 is also formed on the surface of the sintered body 1B. The glass layer may be formed as described above.

【0012】次いで、実際に接合を行った例について述
べる。図5(a), (b)において説明した手順に従い、第一
の窒化珪素焼結体1Aと第二の窒化珪素焼結体1Bとを接合
した。ただし、各焼結体1A, 1B中には、ガラス質成分と
して、Si3N4 、SiO2、Yb2O3 、Y2O3を含有させた。各窒
化珪素焼結体1A, 1Bの形状は、一辺20mmの立方体とし
た。エッチングガスはClF3 100%のガスを用い、圧力を
10torrとし、ガスの流量を100 SCCMとし、エッチング時
の温度を200 ℃とし、エッチング時間を1時間とした。
エッチングにより形成されたガラス成分層2の厚さは、
10〜15μm であった。また、第一の窒化珪素焼結体1Aの
表面分析を行い、エッチングの後にSi成分が減少してい
ることを、エネルギー分散X線分光法によって測定、確
認した。形成されたガラス成分層2にAl2O3 、MgO 、Si
O2、CeO2、ZrO2、SrO 、Y2O3、Yb2O3 、Si3N4 、B2O3
のガラス成分をさらに添加して、成分調整を行うことも
可能である。尚、ガラス成分の添加の方法としては、パ
ウダーの塗布や、シート状成形物による添加等が可能で
ある。
Next, an example of actual joining will be described. According to the procedure described in FIGS. 5A and 5B, the first silicon nitride sintered body 1A and the second silicon nitride sintered body 1B were joined. However, Si 3 N 4 , SiO 2 , Yb 2 O 3 , and Y 2 O 3 were contained as glassy components in each of the sintered bodies 1A and 1B. The shape of each of the silicon nitride sintered bodies 1A and 1B was a cube having a side of 20 mm. The etching gas is ClF 3 100% gas and the pressure is
The gas flow rate was 100 SCCM, the etching temperature was 200 ° C., and the etching time was 1 hour.
The thickness of the glass component layer 2 formed by etching is
It was 10 to 15 μm. Further, the surface analysis of the first silicon nitride sintered body 1A was performed, and it was measured and confirmed by energy dispersive X-ray spectroscopy that the Si component was reduced after etching. Al 2 O 3 , MgO, Si is formed on the formed glass component layer 2.
It is also possible to adjust the components by further adding glass components such as O 2 , CeO 2 , ZrO 2 , SrO 2 , Y 2 O 3 , Yb 2 O 3 , Si 3 N 4 and B 2 O 3 . As a method of adding the glass component, powder coating, addition by a sheet-shaped molded product, or the like is possible.

【0013】そして、窒化珪素焼結体1Aと1Bとを当接さ
せた状態で、1600℃で1時間熱処理し、図5(b) に示す
接合体を得た。この接合体から、3×4×40mmのサンプ
ルを切り出し、JISの四点曲げ試験によって接合強度
を測定した。この結果、接合強度は、600 MPa ±120 MP
a (10点の測定値) となった。また、ガラス層3の膜厚
は、8〜12μm であった。
Then, with the silicon nitride sintered bodies 1A and 1B in contact with each other, heat treatment was carried out at 1600 ° C. for 1 hour to obtain a joined body shown in FIG. 5 (b). A sample of 3 × 4 × 40 mm was cut out from this bonded body, and the bonding strength was measured by a JIS four-point bending test. As a result, the joint strength is 600 MPa ± 120 MP
It became a (measurement value of 10 points). The thickness of the glass layer 3 was 8 to 12 μm.

【0014】次に、本発明を、窒化珪素製ヒーターに適
用した例について説明する。先に、本発明者は、特願平
2−190699号明細書(1990年7月20日出
願)において、図6に示したような加熱装置を提案し
た。まず、この加熱装置6の概略についてここで述べ
る。容器20の内部にはガス供給孔18からガスが供給さ
れ、吸引孔19から真空ポンプにより内部の空気が排出さ
れる。円筒状支持部11B と円盤状ヒーター部11A とを接
合して一体化し、円筒状支持部11B と容器20との間を気
密にシールする。円盤状ヒーター部11A は、緻密でガス
タイトな窒化珪素焼結体の内部にタングステン、モリブ
デン、白金系等の抵抗発熱体9をスパイラル状に埋設し
てなり、その端部には電極端子8を介して電力が供給さ
れ、ウエハー加熱面を例えば最高1100℃程度にまで加熱
することができる。現在ウエハーは例えば4〜8インチ
であるが、ウエハー加熱面はこのウエハーの全体を加熱
しうるだけの大きさとする。
Next, an example in which the present invention is applied to a heater made of silicon nitride will be described. Previously, the present inventor has proposed a heating device as shown in FIG. 6 in Japanese Patent Application No. 2-190699 (filed on July 20, 1990). First, an outline of the heating device 6 will be described here. Gas is supplied to the inside of the container 20 from the gas supply hole 18, and the air inside is discharged from the suction hole 19 by a vacuum pump. The cylindrical support portion 11B and the disc-shaped heater portion 11A are joined and integrated, and the cylindrical support portion 11B and the container 20 are hermetically sealed. The disc-shaped heater portion 11A is formed by burying a resistance heating element 9 made of tungsten, molybdenum, platinum or the like in a spiral shape inside a dense and gas-tight silicon nitride sintered body, and an electrode terminal 8 is interposed at an end thereof. Power is supplied to heat the wafer heating surface up to, for example, about 1100 ° C. Currently, the wafer is, for example, 4 to 8 inches, but the wafer heating surface is large enough to heat the entire wafer.

【0015】円盤状ヒーター部11A の上側には、上記し
たように円筒状支持部11B が一体化され、円筒状支持部
11B の外周面と容器20との間がO−リング10により気密
にシールされている。図中、16は水冷ジャケットであ
る。電極端子8の上側端面に給電ケーブル7が接続さ
れ、給電ケーブル7が円筒状支持部11B の筒内空間を通
って外部へ引き出されている。また、円筒状支持部11B
も窒化珪素焼結体とする。
On the upper side of the disk-shaped heater section 11A, the cylindrical support section 11B is integrated as described above, and the cylindrical support section 11B is integrated.
An O-ring 10 hermetically seals between the outer peripheral surface of 11B and the container 20. In the figure, 16 is a water cooling jacket. The power supply cable 7 is connected to the upper end surface of the electrode terminal 8, and the power supply cable 7 is drawn out through the space inside the cylinder of the cylindrical support portion 11B. In addition, the cylindrical support portion 11B
Is also a silicon nitride sintered body.

【0016】ただ、こうした加熱装置について本発明者
が検討を進めると、以下の問題があることが解った。即
ち、半導体製造時には、加熱装置6の表面が、ClF3, NF
3, CF4, HCl, HF, SF6, WF6 等のエッチングガスに曝露
され、ヒーター部11A 及び円筒状支持部11Bの表面がエ
ッチングされる。この際、前述したような機構により、
窒化珪素粒子は飛散し、粒界相のガラス成分のみが残留
した。このガラス成分2が、いわゆるパーティクルとし
て容器20内を飛散し、半導体製造装置を汚染することが
判明した。また、円筒状支持部11B と円盤状ヒーター部
11A とを一体焼結することは困難であるため、これらを
効率よく接合するための技術が要請されていた。本発明
者は、残留したガラス成分2がCl, F 系のエッチングガ
スに対して安定なことを突き止め、上記の問題を解決し
た。
However, when the inventors of the present invention proceeded to study such a heating device, it was found that the following problems were encountered. That is, at the time of semiconductor manufacturing, the surface of the heating device 6, ClF 3, NF
The surfaces of the heater portion 11A and the cylindrical support portion 11B are etched by being exposed to an etching gas such as 3 , CF 4 , HCl, HF, SF 6, WF 6 or the like. At this time, by the mechanism as described above,
The silicon nitride particles were scattered and only the glass component of the grain boundary phase remained. It was found that the glass component 2 scatters inside the container 20 as so-called particles and contaminates the semiconductor manufacturing apparatus. In addition, the cylindrical support part 11B and the disk-shaped heater part
Since it is difficult to sinter together with 11A, a technique for efficiently joining them has been required. The present inventor has found out that the residual glass component 2 is stable against Cl , F 2 -based etching gas, and solved the above problems.

【0017】即ち、まず、円盤状ヒーター部11A と円筒
状支持部11B とを別々に焼結する。ただし、本例では、
円筒状支持部11B の下端部に、リング状のフランジ部21
を設け、支持部11B とヒーター部11A との接合面積を大
きくする。円盤状ヒーター部11A を作製するには、円盤
状成形体に抵抗発熱体9と電極端子8とを埋設し、次い
でこの円盤状成形体を常圧焼結又はホットプレス焼結す
る。円筒状支持部11Bを作製するには、予め射出成形、
押し出し成形、プレス成形、静水圧プレス成形によって
成形体を作製し、これを常圧焼結する。このようにし
て、図7に示す円盤状ヒーター部11A と円筒状支持部11
B とを得る。
That is, first, the disk-shaped heater portion 11A and the cylindrical support portion 11B are separately sintered. However, in this example,
At the lower end of the cylindrical support 11B, the ring-shaped flange 21
Is provided to increase the joint area between the support portion 11B and the heater portion 11A. To manufacture the disc-shaped heater portion 11A, the resistance heating element 9 and the electrode terminal 8 are embedded in the disc-shaped molded body, and then the disc-shaped molded body is sintered under normal pressure or hot press. In order to manufacture the cylindrical support portion 11B, injection molding,
A molded body is produced by extrusion molding, press molding, and isostatic pressing, and this is sintered under normal pressure. In this way, the disc-shaped heater portion 11A and the cylindrical support portion 11 shown in FIG.
Get B and.

【0018】次いで、円盤状ヒーター部11A と円筒状支
持部11B とをエッチングガスに曝露し、エッチングガス
に対して安定なガラス成分層2を析出させる。そして、
図7において、円筒状支持部11B の下端面を、円盤状ヒ
ーター部11A の表面に当接させる。次いで、この組立体
につき、例えば、1 atmの圧力下、1600℃で1時間加熱
し、真空下1400℃で1時間加熱し、図8に示すように、
ガラス層3を生成させると共に、円筒状支持部11B と円
盤状ヒーター部11A とを接合する。この後、各電極端子
8に給電ケーブル7を接合する。
Next, the disk-shaped heater portion 11A and the cylindrical support portion 11B are exposed to the etching gas to deposit the glass component layer 2 stable to the etching gas. And
In FIG. 7, the lower end surface of the cylindrical support portion 11B is brought into contact with the surface of the disk-shaped heater portion 11A. Then, the assembly is heated, for example, at a pressure of 1 atm at 1600 ° C. for 1 hour and then under vacuum at 1400 ° C. for 1 hour, and as shown in FIG.
While forming the glass layer 3, the cylindrical support portion 11B and the disc-shaped heater portion 11A are joined together. Then, the power supply cable 7 is joined to each electrode terminal 8.

【0019】こうした製造法によれば、ガラス層3が、
円盤状ヒーター部11A と円筒状支持部11B との表面をガ
スタイトに覆う。このガラス層3の厚さは、例えば上記
の熱処理条件下で10μm 以上とすることができる。これ
により、窒化珪素焼結体によって形成された円盤状ヒー
ター部11A と円筒状支持部11B との耐食性が極めて良好
となる。しかも、ヒーター部11A と円筒状支持部11B と
の接合に際し、これらを構成する窒化珪素焼結体中に含
有されるガラス成分そのものが接合物質となるため、こ
のガラス成分がヒーター部11A と円筒状支持部11B との
内部に安定して拡散するので、両者の接合強度が高い。
According to such a manufacturing method, the glass layer 3 is
The surfaces of the disk-shaped heater portion 11A and the cylindrical support portion 11B are covered with gas tight. The thickness of the glass layer 3 can be, for example, 10 μm or more under the above heat treatment conditions. As a result, the corrosion resistance of the disc-shaped heater portion 11A and the cylindrical support portion 11B formed of the silicon nitride sintered body becomes extremely good. Moreover, when the heater portion 11A and the cylindrical support portion 11B are joined, the glass component itself contained in the silicon nitride sintered body that constitutes them becomes the joining substance, so this glass component is joined to the heater portion 11A and the cylindrical portion. Since it stably diffuses into the inside of the support portion 11B, the bonding strength between the two is high.

【0020】図6〜図8において説明した加熱装置につ
いて、更に詳しく説明する。容器20と支持部11B との間
のシールは、図6に示すO−リングの他、拡散接合、摩
擦圧接、表面にスパッタリングで金属薄膜を設けたうえ
での摩擦圧接、ガラス接合、メタルバッキング等による
ことができる。ウエハー加熱面は平滑面とすることが好
ましく、特にウエハー加熱面にウエハーが直接セットさ
れる場合には、平面度を500 μm 以下としてヒーター部
11A と接するウエハーの裏面へのデボジション用ガスの
侵入を防止する必要がある。ヒーター部11A の内部に埋
設される抵抗発熱体9としては、高融点でありしかも窒
化珪素焼結体との密着性に優れたタングステン、モリブ
デン、白金等を使用することが適当である。
The heating device described in FIGS. 6 to 8 will be described in more detail. In addition to the O-ring shown in FIG. 6, the seal between the container 20 and the supporting portion 11B may be diffusion bonding, friction welding, friction welding after a metal thin film is formed on the surface by sputtering, glass joining, metal backing, etc. You can The wafer heating surface is preferably a smooth surface. Especially when the wafer is set directly on the wafer heating surface, the flatness should be 500 μm or less and the heater part
It is necessary to prevent the invasion of the devotion gas to the back surface of the wafer in contact with 11A. As the resistance heating element 9 embedded in the heater portion 11A, it is suitable to use tungsten, molybdenum, platinum or the like which has a high melting point and is excellent in adhesion to the silicon nitride sintered body.

【0021】こうした加熱装置によれば、従来の金属ヒ
ーターの場合のような汚染や、間接加熱方式の場合のよ
うな熱効率の悪化の問題を解決できる。しかも、電極端
子8、給電ケーブル7が容器内空間17内へと露出しない
ので、これらの腐食、汚染、さらには、真空中での給電
ケーブル間又は給電ケーブル7と容器20との間の放電、
漏電のおそれがない。従って、給電ケーブル7をシール
する特別のシール構造は不要であり、また電極材料とし
てタングステン以外の高融点金属を使用できる。
According to such a heating device, it is possible to solve the problems such as the contamination as in the case of the conventional metal heater and the deterioration of the thermal efficiency as in the case of the indirect heating method. Moreover, since the electrode terminal 8 and the power supply cable 7 are not exposed to the space 17 inside the container, these are corroded and contaminated, and further, the discharge between the power supply cables in a vacuum or between the power supply cable 7 and the container 20,
There is no risk of electrical leakage. Therefore, a special sealing structure for sealing the power supply cable 7 is not necessary, and a refractory metal other than tungsten can be used as the electrode material.

【0022】また、円筒状支持部11B を容器20に対して
気密にシールすることにより、ヒーター部11A を支持す
るので、ヒーター部11A を支持するための特別な支持部
材を必要としない。従って、加熱装置全体の表面積を小
さくでき、表面吸着ガスが少なく、高真空では表面吸着
ガスを放出させる必要があることから、高真空を利用す
る半導体製造装置において有利である。
Since the heater portion 11A is supported by hermetically sealing the cylindrical support portion 11B with respect to the container 20, no special support member for supporting the heater portion 11A is required. Therefore, the surface area of the entire heating device can be reduced, the surface adsorption gas is small, and the surface adsorption gas needs to be released in high vacuum, which is advantageous in a semiconductor manufacturing apparatus utilizing high vacuum.

【0023】なお、第二の焼結体としては、窒化珪素焼
結体以外のセラミックス、例えばAl2O3 、AlN 、SiC 、
サイアロン等を使用できる。
As the second sintered body, ceramics other than the silicon nitride sintered body, such as Al 2 O 3 , AlN, SiC,
Sialon etc. can be used.

【0024】[0024]

【発明の効果】本発明によれば、ガラス質成分を含有す
る窒化珪素焼結体をエッチングガスに曝露し、次いでこ
の窒化珪素焼結体を熱処理してこの焼結体の表面にガラ
ス層を生成させるので、窒化珪素焼結体を酸化雰囲気中
で加熱しないため、窒化珪素焼結体中に金属を埋設して
も、この埋設金属が劣化しにくい。また、エッチングガ
スの種類や条件、エッチング時間を変えることで、ガラ
ス成分層の厚さを変えることができ、これによって最終
的にガラス層の厚さを変えることができる。しかも、こ
うしたガラス成分は、元来が窒化珪素焼結体の材質中に
含まれていたものであるから、熱処理時に焼結体中へと
拡散する。従って、こうしたガラス成分の拡散により、
窒化珪素焼結体へのガラス層の付着強度が大きくなる。
According to the present invention, a silicon nitride sintered body containing a glassy component is exposed to an etching gas, and then this silicon nitride sintered body is heat treated to form a glass layer on the surface of this sintered body. Since the silicon nitride sintered body is not heated in an oxidizing atmosphere because it is generated, even if a metal is embedded in the silicon nitride sintered body, the embedded metal is less likely to deteriorate. Further, the thickness of the glass component layer can be changed by changing the type and conditions of the etching gas and the etching time, and thus the thickness of the glass layer can be finally changed. Moreover, since such a glass component was originally contained in the material of the silicon nitride sintered body, it diffuses into the sintered body during the heat treatment. Therefore, due to the diffusion of these glass components,
The adhesion strength of the glass layer to the silicon nitride sintered body is increased.

【0025】また、本発明の接合方法によれば、上記の
ようにガラス層が第一の窒化珪素焼結体に強固に付着す
ると共に、第二の焼結体に対しても強固に付着する。こ
の際、ガラス層と第二の焼結体との界面においては、第
二の焼結体の方へとガラス成分が拡散するので、ガラス
層と第二の焼結体との接合強度も大きくできる。
Further, according to the bonding method of the present invention, the glass layer adheres strongly to the first silicon nitride sintered body as described above and also adheres strongly to the second sintered body. . At this time, at the interface between the glass layer and the second sintered body, since the glass component diffuses toward the second sintered body, the bonding strength between the glass layer and the second sintered body is also large. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a) は、窒化珪素焼結体の表面にガラス成分層
が形成された状態を示す断面図、(b) はガラス成分層が
熱処理によって緻密なガラス層に変化した後の状態を示
す断面図である。
1A is a cross-sectional view showing a state where a glass component layer is formed on the surface of a silicon nitride sintered body, and FIG. 1B is a state after the glass component layer is changed into a dense glass layer by heat treatment. FIG.

【図2】窒化珪素焼結体の表面部分を拡大して示す模式
断面図である。
FIG. 2 is a schematic cross-sectional view showing an enlarged surface portion of a silicon nitride sintered body.

【図3】窒化珪素焼結体をエッチングガスに曝露した後
の表面状態を示す模式断面図である。
FIG. 3 is a schematic cross-sectional view showing a surface state after exposing the silicon nitride sintered body to an etching gas.

【図4】ガラス層を拡大して示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing an enlarged glass layer.

【図5】(a) は第一の窒化珪素焼結体に第二の焼結体を
当接させた状態を示す断面図、(b) は両者を接合した状
態を示す断面図である。
FIG. 5A is a sectional view showing a state where a second sintered body is brought into contact with a first silicon nitride sintered body, and FIG. 5B is a sectional view showing a state where both are joined.

【図6】半導体製造装置に加熱装置を取り付けた状態を
示す概略断面図である。
FIG. 6 is a schematic cross-sectional view showing a state in which a heating device is attached to the semiconductor manufacturing apparatus.

【図7】円盤状ヒーター部と円筒状支持部とをエッチン
グガスに曝露した後の状態を示す断面図である。
FIG. 7 is a cross-sectional view showing a state after the disc-shaped heater portion and the cylindrical support portion are exposed to an etching gas.

【図8】円盤状ヒーター部と円筒状支持部とを本発明の
方法によって接合した後の状態を示す断面図である。
FIG. 8 is a cross-sectional view showing a state after the disc-shaped heater portion and the cylindrical support portion are joined by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 窒化珪素焼結体 1A 第一の窒化珪素焼結体 1B 第二の焼結体 2 ガラス成分層 3 ガラス層 4 窒化珪素粒子 11A 窒化珪素焼結体からなる円盤状ヒーター部 11B 窒化珪素焼結体からなる円筒状支持部 1 Silicon Nitride Sintered Body 1A First Silicon Nitride Sintered Body 1B Second Sintered Body 2 Glass Component Layer 3 Glass Layer 4 Silicon Nitride Particles 11A Disk Heater Part Made of Silicon Nitride Sintered Body 11B Silicon Nitride Sintered Body Cylindrical support consisting of body

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−216983(JP,A) 特開 昭62−216979(JP,A) 特開 昭62−182184(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 62-216983 (JP, A) JP 62-216979 (JP, A) JP 62-182184 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガラス質成分を含有する窒化珪素焼結体
を、塩素とフッ素との少なくとも一方の元素を有する化
合物を含んだエッチングガスに曝露し、次いでこの窒化
珪素焼結体を熱処理してこの焼結体の表面にガラス層を
生成させる、窒化珪素焼結体の表面改質方法。
1. A silicon nitride sintered body containing a glassy component is exposed to an etching gas containing a compound having at least one element of chlorine and fluorine, and then the silicon nitride sintered body is heat treated. A surface modification method for a silicon nitride sintered body, which comprises forming a glass layer on the surface of this sintered body.
【請求項2】 ガラス質成分を含有する第一の窒化珪素
焼結体を、塩素とフッ素との少なくとも一方の元素を有
する化合物を含んだエッチングガスに曝露し、第一の窒
化珪素焼結体のエッチング面を第二の焼結体の表面に当
接させ、次いで第一の窒化珪素焼結体と第二の焼結体と
を熱処理して少なくとも第一の窒化珪素焼結体のエッチ
ング面にガラス層を生成させ、第一の窒化珪素焼結体と
第二の焼結体を接合する、焼結体の接合方法。
2. A first silicon nitride sintered body containing a glassy component is exposed to an etching gas containing a compound having at least one element of chlorine and fluorine, and the first silicon nitride sintered body is exposed. The etched surface of the second sintered body is brought into contact with the surface of the second sintered body, and then the first silicon nitride sintered body and the second sintered body are heat-treated to etch at least the etched surface of the first silicon nitride sintered body. A method for joining sintered bodies, in which a glass layer is formed on the first sintered body and the first silicon nitride sintered body and the second sintered body are joined together.
JP3081230A 1991-03-22 1991-03-22 Surface modification method of silicon nitride sintered body and joining method of sintered body Expired - Fee Related JPH0729866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3081230A JPH0729866B2 (en) 1991-03-22 1991-03-22 Surface modification method of silicon nitride sintered body and joining method of sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3081230A JPH0729866B2 (en) 1991-03-22 1991-03-22 Surface modification method of silicon nitride sintered body and joining method of sintered body

Publications (2)

Publication Number Publication Date
JPH04295078A JPH04295078A (en) 1992-10-20
JPH0729866B2 true JPH0729866B2 (en) 1995-04-05

Family

ID=13740658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3081230A Expired - Fee Related JPH0729866B2 (en) 1991-03-22 1991-03-22 Surface modification method of silicon nitride sintered body and joining method of sintered body

Country Status (1)

Country Link
JP (1) JPH0729866B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4939232B2 (en) * 2004-11-29 2012-05-23 京セラ株式会社 Composite ceramic body, method for producing the same, microchemical chip, and reformer
JP5309885B2 (en) * 2008-10-21 2013-10-09 三菱マテリアル株式会社 Method for manufacturing ceramic substrate for power module substrate and method for manufacturing power module substrate
US20100258233A1 (en) 2007-11-06 2010-10-14 Mitsubishi Materials Corporation Ceramic substrate, method of manufacturing ceramic substrate, and method of manufacturing power module substrate
EP3085672B1 (en) * 2013-12-17 2019-02-06 Nippon Sheet Glass Company, Limited Glass sheet manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674194B2 (en) * 1986-02-03 1994-09-21 住友電気工業株式会社 Surface-modified A-N sintered body
JPH0676268B2 (en) * 1986-03-15 1994-09-28 住友電気工業株式会社 Aluminum nitride sintered body having metallized layer and method for producing the same
JPH0676264B2 (en) * 1986-03-18 1994-09-28 住友電気工業株式会社 Aluminum nitride sintered body having glass layer and method for producing the same

Also Published As

Publication number Publication date
JPH04295078A (en) 1992-10-20

Similar Documents

Publication Publication Date Title
JP4476701B2 (en) Manufacturing method of sintered body with built-in electrode
JP4744855B2 (en) Electrostatic chuck
EP0447155B1 (en) Wafer heaters for use in semi-conductor-producing apparatus, heating units using such wafer heaters, and production of heaters
TWI308366B (en)
KR101831665B1 (en) Substrate support assembly having metal bonded protective layer
US6503368B1 (en) Substrate support having bonded sections and method
JP3699349B2 (en) Wafer adsorption heating device
EP1722004A1 (en) Substrate with a metallization bonding layer
CN108476006B (en) Electrostatic chuck for clamping in high temperature semiconductor processing and method of manufacturing the same
JP3840990B2 (en) Semiconductor / LCD manufacturing equipment
JPWO2002083596A1 (en) Ceramic bonded body, substrate holding structure and substrate processing apparatus
JP3892965B2 (en) Manufacturing method of joined body and joined body
JPH10242252A (en) Wafer heater
JPH0513558A (en) Wafer heating device and its manufacture
JP2003124299A (en) Electrode contained susceptor and its manufacturing method
JP2001308165A (en) Susceptor and its manufacturing method
JPH0729866B2 (en) Surface modification method of silicon nitride sintered body and joining method of sintered body
JP2003152064A (en) Electrode built-in susceptor and its manufacturing method
JP2006313919A (en) Processed object retainer, susceptor for semiconductor manufacturing apparatus, and processor
JP2000143349A (en) Aluminum nitride-based sintered compact and electrostatic chuck using the same
JP3662909B2 (en) Wafer adsorption heating device and wafer adsorption device
JPH0628258B2 (en) Semiconductor wafer heating device and manufacturing method thereof
JPH1053470A (en) Joined body of ceramic and its production
JP3545866B2 (en) Wafer holding device
JP3243214B2 (en) Aluminum nitride member with built-in metal member and method of manufacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees