JP3771686B2 - Wafer support member - Google Patents

Wafer support member Download PDF

Info

Publication number
JP3771686B2
JP3771686B2 JP23526997A JP23526997A JP3771686B2 JP 3771686 B2 JP3771686 B2 JP 3771686B2 JP 23526997 A JP23526997 A JP 23526997A JP 23526997 A JP23526997 A JP 23526997A JP 3771686 B2 JP3771686 B2 JP 3771686B2
Authority
JP
Japan
Prior art keywords
external terminal
support member
wafer support
thermal expansion
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23526997A
Other languages
Japanese (ja)
Other versions
JPH1174336A (en
Inventor
達也 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP23526997A priority Critical patent/JP3771686B2/en
Publication of JPH1174336A publication Critical patent/JPH1174336A/en
Application granted granted Critical
Publication of JP3771686B2 publication Critical patent/JP3771686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置や液晶表示装置の製造工程において、半導体ウエハや液晶用ガラス基板等のウエハを保持するウエハ支持部材に関するものであり、特に繰り返し熱応力が加わっても安定して通電することが可能なものである。
【0002】
【従来の技術】
従来、半導体装置の製造工程において、半導体ウエハ(以下、ウエハと称す。)に成膜を施すPVD装置やCVD装置などの成膜装置や、ウエハに微細加工を施すドライエッチング装置においては、ウエハを保持するためにサセプターや静電チャックなどのウエハ支持部材が用いられている。
【0003】
例えば、図4に示すウエハ支持部材10は、サセプターと呼ばれるもので、円盤状をしたセラミック基体11からなり、その上面をウエハ30の保持面11aとするとともに、内部にヒータ電極12を埋設してなり、このヒータ電極12と電気的に接続される金属製の外部端子21を前記セラミック基体11の下面に開口する下穴11bにロウ付けしたものがあった。なお、上記外部端子21は、ロウ付け時の残留応力を緩和するために、外径が2〜15mm程度の中実の円柱状をしたものが使用されていた。
【0004】
また、セラミック基体11の下面には、前記外部端子21を包囲するように筒体13がロウ付けにより接合してあり、Oリング17を介してチャンバー18に設置することで筒体13の内側をチャンバー18内と気密にシールするようになっていた。
【0005】
なお、セラミック基体11の下面には、外部端子21以外にセラミック基体11の温度を測定する熱電対22やウエハ30の温度を測定する測温用光ファイバー23も設置されており、これらのリード線は筒体13の内側を通ってチャンバー18外へ取り出されるようになっていた。
【0006】
【発明が解決しようとする問題点】
ところで、成膜装置やドライエッチング装置では、上記ウエハ支持部材10のヒータ電極12に通電し、100〜300℃、さらには600℃程度の高温にウエハ30を加熱して加工することが多く、ウエハ支持部材10には常温から上記加工温度の範囲での熱サイクルが加わることになる。
【0007】
ところが、このような温度範囲での熱サイクルが加わると、外部端子21とセラミック基体11の熱膨張差に伴う熱応力が接合部に集中し、セラミック基体11にクラックが発生して破損するとい問題点があった。
【0008】
そこで、本件出願人は、図5に示すような外部端子21の接合側の端面に中空部21aを設けることで、外部端子21の膨張に伴う熱応力を緩和してセラミック基体11の破損を防ぐことを先に提案した。
【0009】
しかしながら、外部端子21に中空部21aを設けたとしても、熱応力が、外部端子21とセラミック基体11の下穴11bとの接合部に集中して発生することから、図6(a)に示すような外部端子21の外周壁21bがクリープ変形して接合部に隙間が生じて通電不良となったり、あるいは図6(b)に示すようなロウ材が外部端子21の中空部21aの一部埋める結果、セラミック基体11にクラックが発生して破壊するといった問題点があった。
【0010】
また、このような問題点を少しでも緩和するために、外部端子21としてセラミック基体11との熱膨張差が近似した金属を用いるなどの対策が提案されているが、低熱膨張金属のタングステンやモリブデンからなる外部端子21では、上記加工温度に曝されると酸化されるといった問題点もあった。
【0011】
さらに、このような問題点は、ヒータ電極12と電気的に接続される外部端子21だけでなく、熱サイクルが加わるような時には、ウエハ支持部材に内蔵される静電吸着用やプラズマ発生用の電極と電気的に接続される外部端子にもあった。
【0012】
【問題点を解決するための手段】
そこで、本発明は上記問題点に鑑み、一主面をウエハの保持面とするセラミック基体の内部にヒータ用、静電吸着用、プラズマ発生用の少なくとも一種の電極を備えてなり、該電極を導出する外部端子を上記セラミック基体に設けた下穴にロウ付けしてなるウエハ支持部材において、上記セラミック基体と外部端子との熱膨張差を6.0×10-6/℃以下とするとともに、上記外部端子の接合側の端面に中空部を設け、該中空部に前記セラミック基体と同程度の熱膨張係数を有する応力緩和材を挿嵌せしめたことを特徴とする。
【0013】
また、本発明は、上記外部端子を耐酸化性に優れるFe−Ni−Co合金又はFe−Ni合金にて形成したものである。
【0014】
【作用】
本発明のウエハ支持部材によれば、外部端子の接合側の端面に中空部を設けるとともに、この中空部に前記セラミック基体と同程度の熱膨張係数を有する応力緩和材を挿嵌せしめたことにより、ウエハ支持部材が加熱されたり、あるいは発熱してセラミック基体と外部端子との接合部に熱応力が加わったとしても、この熱応力を上記外部端子に設けた中空部により緩和することができるため、セラミック基体の割れを防ぐことができるとともに、外部端子の外周壁が内側に変形して導通不良を起こすのを、前記セラミック基体と外部端子の中空部に挿嵌した応力緩和材とで挟持し、外部端子が変形することによる導通不良を防ぐことができるため、常に安定した導通を図ることができる。
【0015】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0016】
図1はサセプタと呼ばれる本発明のウエハ支持部材を成膜装置のチャンバー内に設置した状態を示す概略断面図である。なお、従来と同一部分については同一符号で示す。
【0017】
1はウエハ支持部材で、円板状をしたセラミック基体11からなり、その上面をウエハ30の保持面11aとするとともに、その内部にはヒータ電極12を埋設してあり、該ヒータ電極12と電気的に接続される略円柱状をした外部端子2を、上記セラミック基体11の下面に設けた下穴11bにロウ付け固定してある。
【0018】
このようなウエハ支持部材1を構成するセラミック基体11の材質としては、アルミナ、窒化アルミニウム、窒化珪素のいずれか一種を主成分とするセラミックスを用いることができ、これらの中でも特に、99重量%以上のアルミナ(Al2 3 )を主成分としシリカ(SiO2 )、マグネシア(MgO)、カルシア(CaO)等の焼結助剤を含有するアルミナセラミックスや、窒化アルミニウム(AlN)を主成分とし周期律表第2a族、第3a族元素の酸化物を0.5〜20重量%の範囲で含有する窒化アルミニウム質セラミックス、あるいは99.8重量%以上の窒化アルミニウム(AlN)を主成分とする高純度の窒化アルミニウム質セラミックスは、成膜装置やエッチング装置等において雰囲気ガスとして使用されるフッ素系や塩素系の腐食性ガスに対して優れた耐蝕性と耐プラズマ性を有することから好適である。
【0019】
また、セラミック基体11の下面には、前記外部端子2を包囲するように筒体13を接合してあり、Oリング17を介してチャンバー18に設置することで筒体13の内部を気密にシールし、外部端子2がチャンバー18内に導入された腐食性ガスに曝されるのを防止するようにしてある。
【0020】
なお、セラミック基体11の下面には外部端子2以外に、セラミック基体11の温度を測定する熱電対22やウエハ30の温度を測定する測温用光ファイバー23も設置してあり、これらのリード線は筒体13の内側を通って外側へ導出するようにしてある。
【0021】
また、図2及び図3に示すように、本発明のウエハ支持部材1によれば、上記円柱状をした外部端子2の接合側の端面に、断面形状が円形をした中空部2aを形成するとともに、この中空部2aには前記セラミック基体11と同程度の熱膨張係数を有する応力緩和材3を挿嵌し、ロウ付け固定してある。
【0022】
即ち、ウエハ支持部材1に熱サイクルが加わると、セラミック基体11と外部端子2との接合部には熱応力が加わるのであるが、本発明は外部端子2の接合側の端面に中空部2aを形成してあることから、外部端子2が外側へ膨張しようとするのを抑え、セラミック基体11にクラックが生じることを防ぐことができる。ただし、外部端子2に中空部2aを形成しただけでは、ヤング率の低い外部端子2の外周壁2bが中空部2a側に変形する結果、セラミック基体11との間に隙間ができるために導通不良を生じる恐れがあるが、本発明では外部端子2の中空部2aに応力緩和材3を挿嵌して外周壁2bが変形しようとするのをセラミック基体11と応力緩和材3とで拘束するようにしてあることから、導通不良の発生を防ぎ、常に安定した導通を図ることができる。しかも、外部端子2の中空部2aに応力緩和材3を挿嵌することで、中空部2aに接合材であるロウ材が充填されることによるセラミック基体11の割れも防ぐことができる。
【0023】
ところで、このような応力緩和材3の材質としては、セラミック基体11との熱膨張差が2×10-6/℃以下のものが良い。これは、応力緩和材3の熱膨張係数が、セラミック基体11との熱膨張差である2×10-6/℃より大きいと、外部端子2が外側へ膨張しようとするのを抑える効果が小さく、セラミック基体11を破損させる恐れがあるからであり、逆に、応力緩和材3の熱膨張係数が、セラミック基体11との熱膨張差である2×10-6/℃より小さいと、外部端子2の外周壁2bが内側へ変形しようとするのを拘束する効果が小さいために、導通不良を生じる恐れがあるからである。
【0024】
なお、具体的には熱膨張差が2×10-6/℃以下となるように、セラミック基体11と同様にアルミナ、窒化アルミニウム、窒化珪素のいずれか一種を主成分とするセラミックスを用いれば良く、好ましくはセラミック基体11と同じ主成分を有するセラミックス、さらに好ましくはセラミック基体11と同組成のセラミックスにより形成すれば良い。
【0025】
また、外部端子2の外周壁2bの厚みtと応力緩和材3の直径Lとの比率が1:2未満では、接合部に発生する熱応力を緩和する効果が乏しいため、比率は1:2以上と厚みtをできるだけ薄くすることが好ましい。
【0026】
さらに、外部端子2の材質としては耐酸化性が高く、上記セラミック基体11との熱膨張差が6×10-6/℃以下の金属を用いることが必要である。これは、熱膨張差が6×10-6/℃を越えると、外部端子2に中空部2aを設け、該中空部2aに応力緩和材3を挿嵌したとしても、セラミック基体11と外部端子2との熱膨張差が大きすぎるためにロウ付け直後にセラミック基体11の下穴11bにクラックが発生するからである。
【0027】
具体的には、Fe−Ni−Co合金、Fe−Ni合金等を用いることができる。これらの合金は、Fe−Ni−Co合金の熱膨張係数が8×10-6Ω・cm、Fe−Ni合金の熱膨張係数が11×10-6Ω・cmと、表1にセラミック基体11を構成するセラミックスの熱膨張係数を示すように、両者の熱膨張差を6×10-6/℃以下とすることができるとともに、耐酸化性に優れるため、外部端子2の材質として好適である。
【0028】
また、セラミック気体11と外部端子2とを接合するロウ材14、及び外部端子2と応力緩和材3を接合するロウ材15の材質としては、高温中で溶融、液化を生じないものを用いる必要があり、具体的にはAg−Cu系、Ti−Cu−Ag系等のロウを用いれば良い。
【0029】
【表1】

Figure 0003771686
【0030】
以上のように、本実施形態では、ヒータ電極12を埋設したウエハ支持部材1を例にとって説明したが、本発明はヒータ電極12と電気的に接続される外部端子2だけに適用されるものではなく、例えば、静電吸着用やプラズマ発生用の電極を備えたウエハ支持部材であって、熱サイクルが加わる時には上記静電吸着用電極やプラズマ発生用電極と電気的に接続される外部端子にも好適なものである。
【0031】
(実施例1)
外部端子2の材質を変えるとともに、外部端子2の中空部2aに応力緩和材3を設けたものと設けていないウエハ支持部材1をそれぞれ用意し、熱サイクル試験を行ったあとの外部端子2の接合状態について測定した。
【0032】
本実験ではウエハ支持部材1を構成するセラミック基体11として、AlN含有量が99.9重量%以上の窒化アルミニウム質セラミックスを用いた。
【0033】
この窒化アルミニウム質セラミックスからなるウエハ支持部材1は、一次原料であるAlN粉末をメタノールに混合して平均粒径1μm程度に粉砕した後、10%の有機バインダーを添加することにより泥漿を得た。そして、この泥漿をドクターブレード法により複数枚のグリーンシートを形成し、そのうち数枚積層したグリーンシート上にWCのペーストを印刷して配線パターンを敷設したあと、残りのグリーンシートを積層してグリーンシート積層体を製作した。しかるのち、円板状に切削加工を施したあと、窒素雰囲気にて2000℃、5時間程度の条件で焼成することで直径200mm程度のセラミック基体11を得た。
【0034】
なお、得られたセラミック基体11は比重が3.26g/cm3 と理論密度に対して十分な焼結密度を有しており、その熱膨張係数は5×10-6/℃であった。
【0035】
次に、上記セラミック基体11の上面に研磨加工を施して保持面11aを形成するとともに、下面に下穴11bを穿孔し、該下穴11bに外部端子2をCu−Ag−Ti系のロウ材を用いてロウ付け固定した。
【0036】
外部端子2の寸法は、外径6mm、長さ15mm、中空部2aの内径3mm、深さ8mmとし、材質として以下に示す4種類の金属を用いた。
【0037】
Fe−Ni−Co合金 熱膨張率 8 ×10-6/℃
Fe−Ni合金 熱膨張率11 ×10-6/℃
ステンレス(SUS304)熱膨張率13.5×10-6/℃
タングステン(W) 熱膨張率 5.2×10-6/℃
また、応力緩和材3には、上記セラミック基体11と同じ窒化アルミニウム質セラミックスからなり、長さ8mm、外径3mmのものを使用した。
【0038】
そして、これらのウエハ支持部材1を用いて、PVD装置中で、常温から550℃の熱サイクルを50回加えた後の接合部における通電不良の有無とセラミック基体11の破損の有無を測定した。
【0039】
それぞれの結果を表2に示す。
【0040】
【表2】
Figure 0003771686
【0041】
この結果、表2より判るように、応力緩和材3のないものは、外部端子2の外周壁2bが中空部2a側に変形して接合部に隙間が発生して通電不良を生じた。また、応力緩和材3の有るものでも、外部端子2とセラミック基体11との熱膨張差が6×10-6/℃より大きいものでは、外部端子2の接合時にセラミック基体11にクラックが発生した。
【0042】
さらに、外部端子2としてタングステンを用いたものでは、耐酸化性が悪く実用上使用不可能であった。
【0043】
これに対し、外部端子2とセラミック基体11との熱膨張差が6×10-6/℃以下であり、かつ応力緩和材3を備えたものは、いずれもセラミック基体11にクラックを生じたり、導通不良を生じることがなく、安定した通電が可能であった。
【0044】
(実施例2)
次に、外部端子2の材質をFe-Ni-Co合金とし、外部端子2の中空部2aに直径Lの異なる応力緩和材3を挿嵌した図1のウエハ支持部材1を用意し、PVD装置中で、常温から550℃の熱サイクルを加えた時の耐久性について測定を行った。なお、セラミック基体11及び応力緩和材3には実施例1と同じ窒化アルミニウム質セラミックスを用いた。
【0045】
結果は表3に示すように、外部端子2の外周壁2bの厚みtが応力緩和材3の直径Lに対して薄くなるにつれて、耐久性を高められることが判る。そして、外部端子2の外周壁2bの厚みtと応力緩和材3の直径Lとの比率が1:1以上あれば50サイクル以上の耐久性があり、1:2以上あれば200サイクル以上の熱サイクルにも耐え得るものとできることが判った。
【0046】
【表3】
Figure 0003771686
【0047】
(実施例3)
次に、セラミック基板11と応力緩和材3をアルミナセラミックスで形成し、その他は実施例1と同様にしてウエハ支持部材1を試作した。
【0048】
本実験ではウエハ支持部材1を構成するセラミック基体11として、Al2 3 含有量が99.9重量%のアルミナセラミックスを用いた。
【0049】
このアルミナセラミックスからなるウエハ支持部材1は、一次原料であるAl2 3 粉末を水に混合して平均粒径0.5μm程度に粉砕した後、10%の有機バインダーを添加することにより泥漿を得た。そして、この泥漿をドクターブレード法により複数枚のグリーンシートを形成し、そのうち数枚積層したグリーンシート上にWCのペーストを印刷して配線パターンを敷設したあと、残りのグリーンシートを積層してグリーンシート積層体を製作した。しかるのち、円板状に切削加工を施したあと、大気雰囲気にて1680℃、5時間程度の条件で焼成することで直径200mm程度のセラミック基体11を得た。
【0050】
なお、得られたセラミック基体11は比重が3.9g/cm3 と理論密度に対して十分な焼結密度を有しており、その熱膨張係数は7.1×10-6/℃であった。
【0051】
次に、上記セラミック基体11の上面に研磨加工を施して保持面11aを形成するとともに、下面に下穴11bを穿孔し、該下穴11bに外部端子2をCu−Ag−Ti系のロウ材を用いてロウ付け固定した。
【0052】
外部端子2の寸法は、外径6mm、長さ15mm、中空部2aの内径3mm、深さ8mmとし、材質として以下に示す4種類の金属を用いた。
【0053】
Fe−Ni−Co合金 熱膨張率 8 ×10-6/℃
Fe−Ni合金 熱膨張率11 ×10-6/℃
ステンレス(SUS304)熱膨張率13.5×10-6/℃
モリブデン(Mo) 熱膨張率 5.8×10-6/℃
また、応力緩和材3には、上記セラミック基体11と同じアルミナセラミックスからなり、長さ8mm、外径3mmのものを使用した。
【0054】
そして、これらのウエハ支持部材1を用いて、PVD装置中で、常温から550℃の熱サイクルを50回加えた後の接合部における通電不良の有無とセラミック基体11の破損の有無を測定した。
【0055】
それぞれの結果を表4に示す。
【0056】
【表4】
Figure 0003771686
【0057】
この結果、実施例1と同様に、応力緩和材3を持たないものは、外部端子2の外周壁2bが中空部2a側に変形して接合部に隙間が発生して通電不良が発生し、応力緩和材3を備えたものでも、外部端子2とセラミック基体11との熱膨張差が6×10-6/℃より大きいものでは、外部端子2の接合時にセラミック基体11にクラックが発生した。
【0058】
さらに、外部端子2としてモリブデンを用いたものでは、耐酸化性が悪く実用上使用不可能であった。
【0059】
これに対し、外部端子2とセラミック基体11との熱膨張差が6×10-6/℃以下であり、かつ応力緩和材3を備えたものは、いずれもセラミック基体11にクラックを生じたり、導通不良を生じることがなかった。
【0060】
(実施例4)
さらに、外部端子2の材質をFe-Ni-Co合金とし、外部端子2の中空部2aに直径Lの異なる応力緩和材3を挿嵌した図1のウエハ支持部材1を用意し、PVD装置中で、常温から550℃の熱サイクルを加えた時の耐久性について測定を行った。なお、セラミック基体11及び応力緩和材3には実施例3と同じアルミナセラミックスを用いた。
【0061】
結果は表5に示すように、外部端子2の外周壁2bの厚みtが応力緩和材3の直径Lに対して薄くなるにつれて、耐久性を高められることが判る。そして、外部端子2の外周壁2bの厚みtと応力緩和材3の直径Lとの比率が1:1以上あれば50サイクル以上の耐久性があり、1:2以上あれば200サイクル以上の熱サイクルにも耐え得るものとできることが判った。
【0062】
【表5】
Figure 0003771686
【0063】
【発明の効果】
以上のように、本発明によれば、一主面をウエハの保持面とするセラミック基体の内部に電極を備えてなり、該電極を導出する金属製の外部端子を上記セラミック基体に設けた下穴にロウ付けしてなるウエハ支持部材において、上記セラミック基体と外部端子との熱膨張差を6.0×10-6/℃以下とするとともに、上記外部端子の接合側の端面に中空部を設け、該中空部に前記セラミック基体と同程度の熱膨張係数を有する応力緩和材を挿嵌せしめたことにより、熱サイクルが加わってもセラミック基体を破損させたり、通電不良を生じることがない。
【0064】
また、本発明によれば、外部端子を耐酸化性に優れたFe−Ni−Co合金又はFe−Ni合金により形成してあることから、高温に曝されたとしても腐食することがない。
【0065】
その為、長期間わたって安定した通電が可能なウエハ支持部材を提供することができる。
【図面の簡単な説明】
【図1】サセプタと呼ばれる本発明のウエハ支持部材を成膜装置のチャンバー内に設置した状態を示す概略断面図である。
【図2】本発明のウエハ支持部材における外部端子の接合部を拡大した断面図である。
【図3】本発明のウエハ支持部材における外部端子と応力緩和材を示す斜視図である。
【図4】サセプタと呼ばれる従来のウエハ支持部材を成膜装置のチャンバー内に設置した状態を示す概略断面図である。
【図5】従来のウエハ支持部材における外部端子の接合部を拡大した断面図である。
【図6】(a)(b)は従来のウエハ支持部材における外部端子の接合部における不良の状態を示す断面図である。
【符号の説明】
1・・・ウエハ支持部材、2・・・外部端子、2a・・・中空部、
2b・・・外周壁、3・・・応力緩和材、11・・・セラミック基体、
11a・・・保持面、11b・・・下穴、12・・・ヒータ電極、
13・・・筒体、17・・・Oリング、18・・・チャンバー、
22・・・熱電対、23・・・測温用光ファイバー23、30・・・ウエハ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wafer support member for holding a wafer such as a semiconductor wafer or a glass substrate for liquid crystal in a manufacturing process of a semiconductor device or a liquid crystal display device, and in particular, stably energizes even when repeated thermal stress is applied. Is possible.
[0002]
[Prior art]
Conventionally, in a semiconductor device manufacturing process, in a film forming apparatus such as a PVD apparatus or a CVD apparatus that forms a film on a semiconductor wafer (hereinafter referred to as a wafer) or a dry etching apparatus that performs microfabrication on a wafer, the wafer is used. A wafer support member such as a susceptor or an electrostatic chuck is used for holding.
[0003]
For example, the wafer support member 10 shown in FIG. 4 is a so-called susceptor, which is composed of a disk-shaped ceramic base 11 having an upper surface as a holding surface 11a of the wafer 30 and a heater electrode 12 embedded therein. Thus, there is a case where a metal external terminal 21 electrically connected to the heater electrode 12 is brazed to a prepared hole 11b opened in the lower surface of the ceramic base 11. As the external terminal 21, a solid cylindrical shape having an outer diameter of about 2 to 15 mm was used in order to relieve residual stress at the time of brazing.
[0004]
Further, a cylindrical body 13 is joined to the lower surface of the ceramic base 11 by brazing so as to surround the external terminal 21, and the inner side of the cylindrical body 13 is installed by installing it in the chamber 18 through an O-ring 17. The inside of the chamber 18 was hermetically sealed.
[0005]
In addition to the external terminals 21, a thermocouple 22 that measures the temperature of the ceramic substrate 11 and a temperature measuring optical fiber 23 that measures the temperature of the wafer 30 are also installed on the lower surface of the ceramic substrate 11. The inside of the cylinder 13 was taken out of the chamber 18.
[0006]
[Problems to be solved by the invention]
By the way, in the film forming apparatus and the dry etching apparatus, the heater electrode 12 of the wafer support member 10 is energized, and the wafer 30 is often heated and processed at a high temperature of about 100 to 300 ° C. and further about 600 ° C. The support member 10 is subjected to a thermal cycle in the range from room temperature to the above processing temperature.
[0007]
However, when a thermal cycle in such a temperature range is applied, the thermal stress accompanying the thermal expansion difference between the external terminal 21 and the ceramic base 11 is concentrated on the joint, and the ceramic base 11 is cracked and damaged. There was a point.
[0008]
Therefore, the applicant of the present application provides a hollow portion 21a on the end face on the joint side of the external terminal 21 as shown in FIG. 5 to relieve the thermal stress accompanying expansion of the external terminal 21 and prevent the ceramic substrate 11 from being damaged. I proposed that earlier.
[0009]
However, even if the hollow portion 21 a is provided in the external terminal 21, the thermal stress is concentrated on the joint portion between the external terminal 21 and the prepared hole 11 b of the ceramic substrate 11. The outer peripheral wall 21b of the external terminal 21 creep-deforms and a gap is generated in the joint portion, resulting in poor conduction, or a brazing material as shown in FIG. 6B is a part of the hollow portion 21a of the external terminal 21. As a result of filling, there was a problem that the ceramic substrate 11 was cracked and destroyed.
[0010]
In order to alleviate such problems as much as possible, measures such as using a metal having a thermal expansion difference approximate to that of the ceramic substrate 11 as the external terminal 21 have been proposed. However, low thermal expansion metals such as tungsten and molybdenum are proposed. The external terminal 21 made of the material has a problem that it is oxidized when exposed to the processing temperature.
[0011]
Further, such a problem is caused not only by the external terminal 21 electrically connected to the heater electrode 12 but also for electrostatic adsorption or plasma generation built in the wafer support member when a thermal cycle is applied. There was also an external terminal electrically connected to the electrode.
[0012]
[Means for solving problems]
Therefore, in view of the above problems, the present invention includes at least one electrode for heater, electrostatic adsorption, and plasma generation inside a ceramic base having one main surface as a holding surface of a wafer, In the wafer support member formed by brazing the external terminal to be led out to the pilot hole provided in the ceramic base, the thermal expansion difference between the ceramic base and the external terminal is 6.0 × 10 −6 / ° C. or less, A hollow portion is provided on the end face on the joint side of the external terminal, and a stress relaxation material having a thermal expansion coefficient comparable to that of the ceramic substrate is inserted into the hollow portion.
[0013]
In the present invention, the external terminal is formed of an Fe—Ni—Co alloy or an Fe—Ni alloy having excellent oxidation resistance.
[0014]
[Action]
According to the wafer support member of the present invention, a hollow portion is provided on the end face on the joint side of the external terminal, and a stress relaxation material having a thermal expansion coefficient comparable to that of the ceramic base is inserted into the hollow portion. Even if the wafer support member is heated or generates heat and thermal stress is applied to the joint between the ceramic base and the external terminal, the thermal stress can be alleviated by the hollow portion provided in the external terminal. The ceramic substrate can be prevented from cracking, and the outer peripheral wall of the external terminal is deformed inward to cause poor conduction between the ceramic substrate and the stress relaxation material inserted into the hollow portion of the external terminal. Since the conduction failure due to the deformation of the external terminal can be prevented, stable conduction can be always achieved.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0016]
FIG. 1 is a schematic sectional view showing a state where a wafer support member of the present invention called a susceptor is installed in a chamber of a film forming apparatus. In addition, about the same part as the past, it shows with the same code | symbol.
[0017]
Reference numeral 1 denotes a wafer support member, which is composed of a disk-shaped ceramic base 11, the upper surface of which is a holding surface 11 a of the wafer 30, and a heater electrode 12 embedded therein, and the heater electrode 12 is electrically connected. The external terminal 2 having a substantially cylindrical shape to be connected to the bottom of the ceramic base 11 is brazed and fixed to a prepared hole 11b provided on the lower surface of the ceramic base 11.
[0018]
As a material of the ceramic substrate 11 constituting such a wafer support member 1, ceramics mainly composed of any one of alumina, aluminum nitride, and silicon nitride can be used, and among these, 99% by weight or more is particularly preferable. Alumina ceramics containing alumina (Al 2 O 3 ) as a main component and containing a sintering aid such as silica (SiO 2 ), magnesia (MgO), calcia (CaO), etc., and aluminum nitride (AlN) as a main component. Table 2a, Group 3a element oxide containing 0.5 to 20% by weight of aluminum nitride ceramics, or 99.8% by weight or more of aluminum nitride (AlN) as a main component Purity aluminum nitride ceramics are fluorine-based ceramics that are used as atmospheric gases in film forming equipment and etching equipment. It is preferable because it has excellent corrosion resistance and plasma resistance against corrosive gas Motokei.
[0019]
Further, a cylindrical body 13 is joined to the lower surface of the ceramic base 11 so as to surround the external terminal 2, and the inside of the cylindrical body 13 is hermetically sealed by being installed in the chamber 18 through an O-ring 17. Thus, the external terminal 2 is prevented from being exposed to the corrosive gas introduced into the chamber 18.
[0020]
In addition to the external terminal 2, a thermocouple 22 for measuring the temperature of the ceramic substrate 11 and a temperature measuring optical fiber 23 for measuring the temperature of the wafer 30 are also installed on the lower surface of the ceramic substrate 11. It leads out to the outside through the inside of the cylinder 13.
[0021]
As shown in FIGS. 2 and 3, according to the wafer support member 1 of the present invention, the hollow portion 2a having a circular cross section is formed on the end surface on the joining side of the external terminal 2 having the columnar shape. At the same time, a stress relaxation material 3 having a thermal expansion coefficient comparable to that of the ceramic base 11 is inserted into the hollow portion 2a and fixed by brazing.
[0022]
That is, when a thermal cycle is applied to the wafer support member 1, thermal stress is applied to the joint portion between the ceramic base 11 and the external terminal 2, but in the present invention, the hollow portion 2 a is formed on the end face on the joint side of the external terminal 2. Since it forms, it can suppress that the external terminal 2 tends to expand outside, and can prevent that the ceramic base | substrate 11 produces a crack. However, only by forming the hollow portion 2a in the external terminal 2, the outer peripheral wall 2b of the external terminal 2 having a low Young's modulus is deformed to the hollow portion 2a side, resulting in a gap between the ceramic base 11 and poor conduction. In the present invention, the ceramic base 11 and the stress relieving material 3 constrain that the stress relieving material 3 is inserted into the hollow portion 2a of the external terminal 2 to deform the outer peripheral wall 2b. Therefore, it is possible to prevent the occurrence of poor conduction and always achieve stable conduction. In addition, by inserting the stress relaxation material 3 into the hollow portion 2a of the external terminal 2, it is possible to prevent the ceramic substrate 11 from being cracked due to the hollow portion 2a being filled with the brazing material as a bonding material.
[0023]
By the way, as a material of such a stress relaxation material 3, a material whose thermal expansion difference from the ceramic substrate 11 is 2 × 10 −6 / ° C. or less is preferable. This is because if the thermal expansion coefficient of the stress relaxation material 3 is larger than 2 × 10 −6 / ° C. which is the difference in thermal expansion from the ceramic substrate 11, the effect of suppressing the external terminal 2 from expanding outward is small. If the thermal expansion coefficient of the stress relaxation material 3 is smaller than 2 × 10 −6 / ° C., which is the difference in thermal expansion from the ceramic substrate 11, the external terminal may be damaged. This is because the effect of restraining the outer peripheral wall 2b of the second outer wall 2b from being deformed inward is small, and there is a possibility that a conduction failure may occur.
[0024]
Specifically, ceramics mainly composed of any one of alumina, aluminum nitride, and silicon nitride may be used like the ceramic substrate 11 so that the difference in thermal expansion is 2 × 10 −6 / ° C. or less. The ceramic base 11 is preferably made of a ceramic having the same main component, more preferably a ceramic having the same composition as the ceramic base 11.
[0025]
In addition, when the ratio between the thickness t of the outer peripheral wall 2b of the external terminal 2 and the diameter L of the stress relaxation material 3 is less than 1: 2, the effect of relaxing the thermal stress generated at the joint is poor, so the ratio is 1: 2. It is preferable to reduce the thickness t as much as possible.
[0026]
Furthermore, it is necessary to use a metal having high oxidation resistance as the material of the external terminal 2 and having a thermal expansion difference of 6 × 10 −6 / ° C. or less with respect to the ceramic substrate 11. This is because when the difference in thermal expansion exceeds 6 × 10 −6 / ° C., even if the external terminal 2 is provided with the hollow portion 2a and the stress relaxation material 3 is inserted into the hollow portion 2a, the ceramic base 11 and the external terminal This is because the difference in thermal expansion from 2 is too large, and a crack is generated in the prepared hole 11b of the ceramic substrate 11 immediately after brazing.
[0027]
Specifically, an Fe—Ni—Co alloy, an Fe—Ni alloy, or the like can be used. In these alloys, the thermal expansion coefficient of Fe—Ni—Co alloy is 8 × 10 −6 Ω · cm, and the thermal expansion coefficient of Fe—Ni alloy is 11 × 10 −6 Ω · cm. As shown in the thermal expansion coefficient of the ceramics constituting the metal, the difference in thermal expansion between them can be set to 6 × 10 −6 / ° C. or less, and since the oxidation resistance is excellent, it is suitable as a material for the external terminal 2. .
[0028]
The brazing material 14 that joins the ceramic gas 11 and the external terminal 2 and the brazing material 15 that joins the external terminal 2 and the stress relieving material 3 need not be melted or liquefied at high temperatures. Specifically, Ag-Cu-based, Ti-Cu-Ag-based or the like may be used.
[0029]
[Table 1]
Figure 0003771686
[0030]
As described above, in the present embodiment, the wafer support member 1 in which the heater electrode 12 is embedded is described as an example. However, the present invention is not applied only to the external terminal 2 electrically connected to the heater electrode 12. For example, a wafer support member provided with an electrode for electrostatic adsorption or plasma generation, and an external terminal electrically connected to the electrode for electrostatic adsorption or plasma generation electrode when a thermal cycle is applied Is also suitable.
[0031]
Example 1
While changing the material of the external terminal 2 and preparing the wafer support member 1 provided with the stress relaxation material 3 in the hollow portion 2a of the external terminal 2 and the non-provided wafer support member 1, The bonding state was measured.
[0032]
In this experiment, an aluminum nitride ceramic having an AlN content of 99.9% by weight or more was used as the ceramic substrate 11 constituting the wafer support member 1.
[0033]
The wafer support member 1 made of this aluminum nitride ceramic was obtained by mixing 10% organic binder with 10% organic binder after mixing AlN powder as a primary raw material with methanol and crushing it to an average particle size of about 1 μm. Then, a plurality of green sheets are formed from this slurry by the doctor blade method, and a WC paste is printed on the green sheets laminated several times, and a wiring pattern is laid. A sheet laminate was produced. After that, after cutting into a disc shape, the ceramic substrate 11 having a diameter of about 200 mm was obtained by firing in a nitrogen atmosphere at 2000 ° C. for about 5 hours.
[0034]
The obtained ceramic substrate 11 had a specific gravity of 3.26 g / cm 3 and a sintered density sufficient for the theoretical density, and its thermal expansion coefficient was 5 × 10 −6 / ° C.
[0035]
Next, the upper surface of the ceramic substrate 11 is polished to form a holding surface 11a, and a lower hole 11b is drilled in the lower surface. The external terminal 2 is connected to the lower hole 11b with a Cu-Ag-Ti brazing material. Was fixed by brazing.
[0036]
The dimensions of the external terminal 2 were an outer diameter of 6 mm, a length of 15 mm, an inner diameter of the hollow portion 2a of 3 mm, and a depth of 8 mm, and the following four types of metals were used as materials.
[0037]
Fe-Ni-Co alloy Thermal expansion coefficient 8 × 10 -6 / ° C
Fe-Ni alloy Thermal expansion coefficient 11 × 10 -6 / ° C
Stainless steel (SUS304) coefficient of thermal expansion 13.5 × 10 -6 / ° C
Tungsten (W) Thermal expansion coefficient 5.2 × 10 -6 / ° C
The stress relieving material 3 is made of the same aluminum nitride ceramic as the ceramic base 11 and has a length of 8 mm and an outer diameter of 3 mm.
[0038]
Then, using these wafer support members 1, in a PVD apparatus, the presence / absence of an energization failure and the presence / absence of breakage of the ceramic substrate 11 after the thermal cycle of 50 ° C. to 550 ° C. was measured.
[0039]
The results are shown in Table 2.
[0040]
[Table 2]
Figure 0003771686
[0041]
As a result, as can be seen from Table 2, in the case without the stress relieving material 3, the outer peripheral wall 2b of the external terminal 2 was deformed to the hollow portion 2a side, and a gap was generated in the joint portion, resulting in poor conduction. Further, even when the stress relaxation material 3 is present, when the difference in thermal expansion between the external terminal 2 and the ceramic substrate 11 is larger than 6 × 10 −6 / ° C., the ceramic substrate 11 is cracked when the external terminal 2 is joined. .
[0042]
Further, when tungsten is used as the external terminal 2, the oxidation resistance is poor and it cannot be used practically.
[0043]
On the other hand, any one having a thermal expansion difference between the external terminal 2 and the ceramic base 11 of 6 × 10 −6 / ° C. or less and having the stress relaxation material 3 causes cracks in the ceramic base 11, Stable energization was possible without causing poor conduction.
[0044]
(Example 2)
Next, the wafer support member 1 of FIG. 1 in which the material of the external terminal 2 is made of an Fe—Ni—Co alloy and the stress relaxation material 3 having a different diameter L is inserted into the hollow portion 2a of the external terminal 2 is prepared. In particular, the durability was measured when a thermal cycle from room temperature to 550 ° C. was applied. Note that the same aluminum nitride ceramic as in Example 1 was used for the ceramic substrate 11 and the stress relaxation material 3.
[0045]
As shown in Table 3, it can be seen that the durability can be improved as the thickness t of the outer peripheral wall 2b of the external terminal 2 becomes thinner than the diameter L of the stress relaxation material 3. If the ratio of the thickness t of the outer peripheral wall 2b of the external terminal 2 to the diameter L of the stress relaxation material 3 is 1: 1 or more, the durability is 50 cycles or more, and if it is 1: 2 or more, the heat is 200 cycles or more. It turns out that it can withstand the cycle.
[0046]
[Table 3]
Figure 0003771686
[0047]
Example 3
Next, the ceramic substrate 11 and the stress relaxation material 3 were formed of alumina ceramics, and the wafer support member 1 was prototyped in the same manner as in Example 1 except for the above.
[0048]
In this experiment, alumina ceramics having an Al 2 O 3 content of 99.9% by weight were used as the ceramic substrate 11 constituting the wafer support member 1.
[0049]
The wafer support member 1 made of alumina ceramics is prepared by mixing Al 2 O 3 powder, which is a primary material, with water and pulverizing it to an average particle size of about 0.5 μm, and then adding 10% organic binder. Obtained. Then, a plurality of green sheets are formed from this slurry by the doctor blade method, and a WC paste is printed on the green sheets laminated several times, and a wiring pattern is laid. A sheet laminate was produced. After that, after cutting into a disk shape, the ceramic substrate 11 having a diameter of about 200 mm was obtained by firing in an air atmosphere at 1680 ° C. for about 5 hours.
[0050]
The obtained ceramic substrate 11 had a specific gravity of 3.9 g / cm 3 and a sintered density sufficient for the theoretical density, and its thermal expansion coefficient was 7.1 × 10 −6 / ° C. It was.
[0051]
Next, the upper surface of the ceramic substrate 11 is polished to form a holding surface 11a, and a lower hole 11b is drilled in the lower surface. The external terminal 2 is connected to the lower hole 11b with a Cu-Ag-Ti brazing material. Was fixed by brazing.
[0052]
The dimensions of the external terminal 2 were an outer diameter of 6 mm, a length of 15 mm, an inner diameter of the hollow portion 2a of 3 mm, and a depth of 8 mm, and the following four types of metals were used as materials.
[0053]
Fe-Ni-Co alloy Thermal expansion coefficient 8 × 10 -6 / ° C
Fe-Ni alloy Thermal expansion coefficient 11 × 10 -6 / ° C
Stainless steel (SUS304) coefficient of thermal expansion 13.5 × 10 -6 / ° C
Molybdenum (Mo) coefficient of thermal expansion 5.8 × 10 -6 / ° C
The stress relieving material 3 is made of the same alumina ceramic as the ceramic base 11 and has a length of 8 mm and an outer diameter of 3 mm.
[0054]
Then, using these wafer support members 1, in a PVD apparatus, the presence / absence of an energization failure and the presence / absence of breakage of the ceramic substrate 11 after the thermal cycle of 50 ° C. to 550 ° C. was measured.
[0055]
Each result is shown in Table 4.
[0056]
[Table 4]
Figure 0003771686
[0057]
As a result, as in Example 1, those without the stress relieving material 3 are deformed to the hollow portion 2a side of the outer peripheral wall 2b of the external terminal 2 to generate a gap in the joint portion, resulting in poor conduction. Even when the stress relaxation material 3 was provided, when the difference in thermal expansion between the external terminal 2 and the ceramic base 11 was larger than 6 × 10 −6 / ° C., cracks occurred in the ceramic base 11 when the external terminal 2 was joined.
[0058]
Further, when molybdenum is used as the external terminal 2, the oxidation resistance is poor and it cannot be used practically.
[0059]
On the other hand, any one having a thermal expansion difference between the external terminal 2 and the ceramic base 11 of 6 × 10 −6 / ° C. or less and having the stress relaxation material 3 causes cracks in the ceramic base 11, There was no continuity failure.
[0060]
(Example 4)
Further, the wafer support member 1 of FIG. 1 in which the external terminal 2 is made of an Fe—Ni—Co alloy and the stress relaxation material 3 having a different diameter L is inserted into the hollow portion 2a of the external terminal 2 is prepared. Then, the durability was measured when a thermal cycle from room temperature to 550 ° C. was applied. In addition, the same alumina ceramic as Example 3 was used for the ceramic base | substrate 11 and the stress relaxation material 3. FIG.
[0061]
As shown in Table 5, it can be seen that the durability can be improved as the thickness t of the outer peripheral wall 2b of the external terminal 2 becomes thinner than the diameter L of the stress relaxation material 3. If the ratio between the thickness t of the outer peripheral wall 2b of the external terminal 2 and the diameter L of the stress relaxation material 3 is 1: 1 or more, the durability is 50 cycles or more, and if it is 1: 2 or more, the heat is 200 cycles or more. It turns out that it can withstand the cycle.
[0062]
[Table 5]
Figure 0003771686
[0063]
【The invention's effect】
As described above, according to the present invention, an electrode is provided inside a ceramic base having one main surface as a holding surface of the wafer, and a metal external terminal for leading the electrode is provided on the ceramic base. In the wafer support member brazed to the hole, the difference in thermal expansion between the ceramic base and the external terminal is 6.0 × 10 −6 / ° C. or less, and a hollow portion is formed on the end face on the joint side of the external terminal. By providing and inserting a stress relaxation material having a thermal expansion coefficient comparable to that of the ceramic substrate into the hollow portion, the ceramic substrate is not damaged or poorly energized even when a thermal cycle is applied.
[0064]
Further, according to the present invention, since the external terminal is formed of an Fe—Ni—Co alloy or Fe—Ni alloy having excellent oxidation resistance, it does not corrode even when exposed to high temperatures.
[0065]
Therefore, it is possible to provide a wafer support member that can be stably energized over a long period of time.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a state where a wafer support member of the present invention called a susceptor is installed in a chamber of a film forming apparatus.
FIG. 2 is an enlarged cross-sectional view of a joint portion of an external terminal in a wafer support member of the present invention.
FIG. 3 is a perspective view showing an external terminal and a stress relaxation material in the wafer support member of the present invention.
FIG. 4 is a schematic cross-sectional view showing a state in which a conventional wafer support member called a susceptor is installed in a chamber of a film forming apparatus.
FIG. 5 is an enlarged cross-sectional view of a joint portion of an external terminal in a conventional wafer support member.
FIGS. 6A and 6B are cross-sectional views showing a defective state in a joint portion of an external terminal in a conventional wafer support member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Wafer support member, 2 ... External terminal, 2a ... Hollow part,
2b ... outer peripheral wall, 3 ... stress relaxation material, 11 ... ceramic substrate,
11a ... holding surface, 11b ... pilot hole, 12 ... heater electrode,
13 ... cylinder, 17 ... O-ring, 18 ... chamber,
22 ... Thermocouple, 23 ... Temperature measuring optical fiber 23, 30 ... Wafer

Claims (2)

一主面をウエハの保持面とするセラミック基体の内部に電極を備えてなり、該電極を導出する金属製の外部端子を上記セラミック基体に設けた下穴にロウ付けしてなるウエハ支持部材において、上記セラミック基体と外部端子との熱膨張差を6.0×10-6/℃以下とするとともに、上記外部端子の接合側の端面に中空部を設け、該中空部に前記セラミック基体と同程度の熱膨張係数を有する応力緩和材を挿嵌せしめたことを特徴とするウエハ支持部材。In a wafer support member comprising an electrode inside a ceramic substrate having one main surface as a holding surface of the wafer, and brazing a metal external terminal for leading out the electrode to a pilot hole provided in the ceramic substrate. The difference in thermal expansion between the ceramic base and the external terminal is 6.0 × 10 −6 / ° C. or less, and a hollow portion is provided on the end face on the joint side of the external terminal, and the hollow portion is the same as the ceramic base. A wafer support member, wherein a stress relaxation material having a coefficient of thermal expansion is inserted. 上記外部端子の材質が、Fe−Ni−Co合金又はFe−Ni合金であることを特徴とする請求項1に記載のウエハ支持部材。2. The wafer support member according to claim 1, wherein the material of the external terminal is an Fe—Ni—Co alloy or an Fe—Ni alloy.
JP23526997A 1997-08-29 1997-08-29 Wafer support member Expired - Fee Related JP3771686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23526997A JP3771686B2 (en) 1997-08-29 1997-08-29 Wafer support member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23526997A JP3771686B2 (en) 1997-08-29 1997-08-29 Wafer support member

Publications (2)

Publication Number Publication Date
JPH1174336A JPH1174336A (en) 1999-03-16
JP3771686B2 true JP3771686B2 (en) 2006-04-26

Family

ID=16983601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23526997A Expired - Fee Related JP3771686B2 (en) 1997-08-29 1997-08-29 Wafer support member

Country Status (1)

Country Link
JP (1) JP3771686B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110878A (en) * 1999-06-09 2001-04-20 Ibiden Co Ltd Ceramic substrate for semiconductor manufacturing/ inspection device
EP1274280A1 (en) 2000-04-14 2003-01-08 Ibiden Co., Ltd. Ceramic heater
JP4526734B2 (en) * 2001-06-05 2010-08-18 住友大阪セメント株式会社 Heater element, heating device and substrate heating device
JP4526735B2 (en) * 2001-06-05 2010-08-18 住友大阪セメント株式会社 Connection structure of power supply electrode rod and power supply terminal, heater element, heating device, and substrate heating device
JP4268450B2 (en) * 2003-05-23 2009-05-27 キヤノン株式会社 Large glass substrate adsorption device for display
JP4266886B2 (en) 2004-06-21 2009-05-20 株式会社ソディック Ceramic element and manufacturing method thereof
JP4510745B2 (en) * 2005-10-28 2010-07-28 日本碍子株式会社 Bonding structure of ceramic substrate and power supply connector
US8027171B2 (en) 2006-09-19 2011-09-27 Creative Technology Corporation Feeding structure of electrostatic chuck, method for producing the same, and method for regenerating feeding structure of electrostatic chuck
JP6356598B2 (en) * 2014-12-25 2018-07-11 京セラ株式会社 Parts for semiconductor manufacturing equipment
US11472748B2 (en) 2018-06-28 2022-10-18 Kyocera Corporation Manufacturing method for a member for a semiconductor manufacturing device and member for a semiconductor manufacturing device
US10867829B2 (en) * 2018-07-17 2020-12-15 Applied Materials, Inc. Ceramic hybrid insulator plate
JP7037477B2 (en) * 2018-12-27 2022-03-16 京セラ株式会社 Multilayer board and its manufacturing method
JPWO2020195636A1 (en) * 2019-03-22 2020-10-01

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3401120B2 (en) * 1995-05-09 2003-04-28 京セラ株式会社 Wafer holding device
JPH09172055A (en) * 1995-12-19 1997-06-30 Fujitsu Ltd Electrostatic chuck and method for attracting wafer
JPH09213455A (en) * 1996-02-05 1997-08-15 Kyocera Corp Power feeding structure of wafer holding device
JP3447495B2 (en) * 1996-12-26 2003-09-16 京セラ株式会社 Power supply structure of wafer holding device

Also Published As

Publication number Publication date
JPH1174336A (en) 1999-03-16

Similar Documents

Publication Publication Date Title
JP4648030B2 (en) Yttria sintered body, ceramic member, and method for producing yttria sintered body
US6057513A (en) Joint structure of metal member and ceramic member and method of producing the same
JP3771686B2 (en) Wafer support member
JP4796354B2 (en) Electrostatic chuck and method for producing yttria sintered body
EP1695949A1 (en) Joined body and manufacturing method for the same
JP2010537446A (en) Substrate support unit and substrate processing apparatus having the same
JP2006128603A (en) Ceramic member and manufacturing method therefor
JPWO2003015157A1 (en) Ceramic joint
JP4005268B2 (en) Bonding structure of ceramics and metal and intermediate insert used for this
JP5476726B2 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus including the same
JP3145664B2 (en) Wafer heating device
JP2001237051A (en) Ceramic heater with cylindrical part and heating device using the same
JPH09270454A (en) Wafer holding apparatus
JP2004253786A (en) Joint structure of ceramics
JP5281480B2 (en) Electrostatic chuck
JP4703442B2 (en) Substrate heating device
JP3771722B2 (en) Wafer support member
JP3545866B2 (en) Wafer holding device
JP2005166368A (en) Heating device
JP2003224181A (en) Wafer support member
JP2023023670A (en) ceramic heater
JP4526734B2 (en) Heater element, heating device and substrate heating device
JP2000169252A (en) Bonded material of ceramic member and metal member and wafer supporting member using the same
JPH06314694A (en) Heating apparatus of semiconductor wafer
JP3264975B2 (en) High pressure discharge lamp manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees