JP2000273632A - Production of flat ceramic bulk material free from warpage by chemical vapor deposition method - Google Patents

Production of flat ceramic bulk material free from warpage by chemical vapor deposition method

Info

Publication number
JP2000273632A
JP2000273632A JP11081338A JP8133899A JP2000273632A JP 2000273632 A JP2000273632 A JP 2000273632A JP 11081338 A JP11081338 A JP 11081338A JP 8133899 A JP8133899 A JP 8133899A JP 2000273632 A JP2000273632 A JP 2000273632A
Authority
JP
Japan
Prior art keywords
ceramic
substrate
thermal expansion
chemical vapor
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11081338A
Other languages
Japanese (ja)
Inventor
Mitsuteru Tomita
光輝 富田
Takashi Hirose
敬司 広瀬
Taishin Horio
泰臣 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP11081338A priority Critical patent/JP2000273632A/en
Publication of JP2000273632A publication Critical patent/JP2000273632A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a new method for producing a ceramic bulk material free from warpage by a chemical vapor deposition method. SOLUTION: The surface of a base material 3 in which ceramic is formed and deposited by a chemical vapor deposition method is subjected to spherical working, and in the case the thermal expansion coefficient of the material to be vapor-deposited is smaller than that of the base material 3, the shape by the shperical working is formed into the recessed one, and in the case the thermal expansion coefficient of the material to be vapor-deposited is higher than that of the base material, the shape by the spherical working is formed into the projecting one. The ceramic stock to be produced is desirably composed of silicon carbide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、化学気相蒸着法に
より、反りの無いセラミックバルク材料を製造する方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a warped ceramic bulk material by a chemical vapor deposition method.

【0002】[0002]

【従来の技術】従来から、基材の表面に化学気相蒸着法
(CVD法)により、炭化珪素などのセラミックの膜を
形成した後、基材部分を燃焼又は機械的な加工により取
り除いて、炭化珪素などのセラミック素材を作ることが
知られていた。そしてこのようにして得られたセラミッ
ク、特に炭化珪素は熱伝導率が良好であるなどの特性を
有することから、半導体プロセスなどにおいて使用され
てきた。しかしながら、このような方法において、基材
として平坦な表面を持つものを使用した場合、基材を構
成する材料と形成されるセラミック素材の熱膨張係数が
違う場合、基材を取り除いた後のセラミックの素材が、
外側又は内側に反り返るという現象が起る。従って、平
坦なセラミック素材とするには、基材の熱膨張係数をセ
ラミック素材の熱膨張係数とほぼ同じするか、最終製品
の厚さよりも厚いセラミック素材を作り、該素材を平坦
になるように加工しなければならず、セラミック素材の
利用率が悪くなるなど、製造コストが高くなるといった
問題があった。
2. Description of the Related Art Conventionally, after forming a ceramic film such as silicon carbide on a surface of a base material by a chemical vapor deposition method (CVD method), the base material portion is removed by burning or mechanical processing. It was known to make ceramic materials such as silicon carbide. The ceramics thus obtained, particularly silicon carbide, have properties such as good thermal conductivity and have been used in semiconductor processes and the like. However, in such a method, when a substrate having a flat surface is used, when the material constituting the substrate and the formed ceramic material have different coefficients of thermal expansion, the ceramic after removing the substrate is removed. The material is
The phenomenon of warping outward or inward occurs. Therefore, in order to make the ceramic material flat, the coefficient of thermal expansion of the base material should be substantially the same as the coefficient of thermal expansion of the ceramic material, or a ceramic material thicker than the thickness of the final product should be made, and the material should be flat. Processing has to be performed, and there has been a problem that the utilization rate of the ceramic material is reduced and the production cost is increased.

【0003】前記製品の反りの問題を取り除くための一
つの方法として、基材の表面に形成されるセラミック素
材と同じ材質の、例えば炭化珪素素材を形成する場合に
は基材の表面に炭化珪素の被覆層を形成して、基材の熱
膨張係数と形成されるセラミックバルク素材の熱膨張係
数とを一致させておくもの、具体的には黒鉛基材を化学
気相反応によって炭化珪素化することによって基材の熱
膨張係数を形成されるセラミックの熱膨張係数と一致さ
せる技術が提案されている(特開平10−53464号
公報参照)。また、他の方法として、基材としてガラス
状炭素材からなるものを使用し、該基材の両表面を覆う
ようにCVD法により炭化珪素のようなセラミックの被
覆層を形成した後、前記基材を含めて厚さ方向の中央で
水平方向に切り割り、すなわち半割にし、半割にしたそ
れぞれの製品から基材部分を取り除いて、前記セラミッ
クバルク素材を製造する方法が提案されている(特開平
10−167830号公報参照)。前記他の方法では、
CVD法の基材の材料としてガラス状炭素材を使用する
ことにより、ガラス状炭素材のもつ緻密性のためCVD
法によるセラミックの沈積の際、該セラミックが基材へ
ほとんど浸透しないので、基材と形成されたセラミック
層とは弱く密着しているだけであるから、半割した製品
の基材の周縁部分が切り取られるような切り取り加工を
するだけで、基材をセラミック素材から取り除くことが
できる。そして、該方法では基材の材質の熱膨張係数を
セラミック素材の熱膨張係数との関連で考慮する必要が
ないから、有利である、と記載している。
As one method for eliminating the problem of the warpage of the product, when a silicon carbide material, for example, of the same material as the ceramic material formed on the surface of the base material is formed, the silicon carbide is formed on the surface of the base material. A coating layer of which the coefficient of thermal expansion of the base material and the coefficient of thermal expansion of the ceramic bulk material to be formed are made to match each other, specifically, the graphite base material is turned into silicon carbide by a chemical vapor reaction. Thus, a technique has been proposed in which the coefficient of thermal expansion of the base material is made to match the coefficient of thermal expansion of the ceramic to be formed (see JP-A-10-53464). As another method, a substrate made of a glassy carbon material is used as a substrate, and a ceramic coating layer such as silicon carbide is formed by a CVD method so as to cover both surfaces of the substrate. There has been proposed a method of manufacturing the ceramic bulk material by cutting the material in the horizontal direction at the center in the thickness direction including the material, that is, halving the material, and removing the base material portion from each of the halved products (particularly). See JP-A-10-167830). In the other method,
By using a glassy carbon material as the material of the substrate of the CVD method, the CVD method is used because of the denseness of the glassy carbon material
During the deposition of the ceramic by the method, the ceramic hardly penetrates into the base material, so that the base material and the formed ceramic layer only weakly adhere to each other. The substrate can be removed from the ceramic material simply by performing a cutting process such as cutting. This method is advantageous because it is not necessary to consider the thermal expansion coefficient of the material of the base material in relation to the thermal expansion coefficient of the ceramic material.

【0004】[0004]

【発明が解決しようとする課題】ところで、前記先行技
術は、第1の方法においては基材の化学気相反応処理が
必要であり、前記他の方法では、沈積するセラミックが
浸透しない、弱い密着力で沈積セラミックを保持するガ
ラス状炭素材からなる基材を用いて、基材と沈積するセ
ラミックとの熱膨張係数の違いにより、該セラミックに
応力による反りが発生するのをなくそうというものであ
るが、CVD法によりセラミックの生成沈着反応を行っ
ている際、該沈積生成したセラミックを保持する強度が
小さいために、沈積したセラミックの安定性の点で不都
合があることが解った。本発明は、前記CVD法により
セラミックの生成沈着反応中の不安定性が無く、かつ反
りの無いセラミックバルク素材を製造する方法を提供す
ることを目的とする。
However, in the prior art, the first method requires a chemical vapor reaction treatment of the base material, and the other method does not allow the deposited ceramic to penetrate, and the weak adhesion. Using a substrate made of a glassy carbon material that holds the deposited ceramic by force, it is intended to eliminate warpage due to stress in the ceramic due to the difference in thermal expansion coefficient between the substrate and the deposited ceramic. However, it has been found that during the formation and deposition reaction of ceramics by the CVD method, the strength of holding the deposited and formed ceramics is low, which is disadvantageous in terms of the stability of the deposited ceramics. An object of the present invention is to provide a method for producing a ceramic bulk material without instability during the formation and deposition reaction of ceramics by the CVD method and without warpage.

【0005】[0005]

【課題を解決するための手段】本発明は、前記他の方法
の技術とは全く逆の発想に基づくものである。すなわ
ち、基材と生成沈着されるセラミックとの熱膨張係数の
差を認めた上で、これによって発生する応力を利用し
て、基材を取り除いた後に、平坦なセラミックバルク素
材を得る方法に関する。すなわち、特定の曲率を有する
基材を使用することによって、該基材を取り除いた後の
セラミックバルク素材がフラットな製品となることを発
見し、該原理を利用して平坦なセラミックバルク素材を
得る方法に関する。前記原理によりフラットなセラミッ
クス製品を得るには、基材表面にCVD法によりセラミ
ックの生成沈着が完了した後、該基材を灰化処理などに
より除去したとき、前記熱膨張係数の違いにより蓄積さ
れていた応力によりセラミック素材がフラットな製品と
して得られるように、セラミックが生成沈着される基材
の表面を前記熱膨張係数の違いに関連した曲率にするこ
とによって達成できることが判った。従って、本発明
は、基材の素材と形成されるセラミック素材との熱膨張
係数の差に関連して、基材を燃焼除去するだけでセラミ
ックバルク素材がフラットな製品として得られるよう
に、蒸着する物質の熱膨張係数が基材の熱膨張係数より
小さい場合は基材表面を凹状に球面加工し、前記蒸着す
る物質熱膨張係数が前記基材の熱膨張係数より大きい場
合は基材表面を凸状に球面加工することによって前記課
題を解決したものである。
SUMMARY OF THE INVENTION The present invention is based on an idea completely opposite to that of the above-mentioned other method. That is, the present invention relates to a method for obtaining a flat ceramic bulk material after removing a base material by using a stress generated by the difference in thermal expansion coefficient between the base material and a ceramic to be deposited and formed. That is, by using a substrate having a specific curvature, it is discovered that the ceramic bulk material after removing the substrate becomes a flat product, and a flat ceramic bulk material is obtained by using the principle. About the method. In order to obtain a flat ceramic product according to the above principle, after the formation and deposition of the ceramic on the surface of the substrate by the CVD method are completed, when the substrate is removed by ashing or the like, the ceramic is accumulated due to the difference in the thermal expansion coefficient. It has been found that this can be achieved by making the surface of the substrate on which the ceramic is formed and deposited a curvature related to said difference in thermal expansion coefficients, so that the stresses which result in the ceramic material as a flat product. Therefore, the present invention relates to the difference in thermal expansion coefficient between the base material and the formed ceramic material, so that the ceramic bulk material can be obtained as a flat product by simply burning and removing the base material. If the coefficient of thermal expansion of the material to be deposited is smaller than the coefficient of thermal expansion of the substrate, the surface of the substrate is spherically processed into a concave shape, and if the coefficient of thermal expansion of the deposited material is greater than the coefficient of thermal expansion of the substrate, the surface of the substrate is modified. This problem has been solved by forming a convex spherical surface.

【0006】[0006]

【発明の実施の形態】本発明の基材を構成する材料に
は、前記先行技術に記載のように材料に制限を受けない
し、前記第一の方法のように基材を化学的処理をする必
要がもない。従って静圧成形法(CIP)などを用いて
所望の曲率を持った基材を成形することができる。ま
た、本発明においては、曲率を有する基体表面に加熱反
応により、一定の厚さの高純度の炭化珪素層を形成する
のであるが、従来の平坦な基材を用いた場合の反応ガス
の供給及び排出手段を用いることができるし、原料ガス
としては炭素源、珪素源を同時に含有する化合物とキャ
リヤーガスとを用いても良いし、炭素源、珪素源を別々
に含有する二種の化合物とキャリヤーガスを用いてもよ
い。反応容器内の加熱温度は1100℃〜1500℃と
することができ、そして圧力は1〜100Torr程度
の減圧とすることが望ましい。前記加熱手段としては、
例えば抵抗加熱、誘導加熱、赤外放射加熱などを用いる
ことができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The material constituting the substrate of the present invention is not limited to the material as described in the prior art, and the substrate is chemically treated as in the first method. There is no need. Therefore, a substrate having a desired curvature can be formed by using a static pressure forming method (CIP) or the like. Further, in the present invention, a high-purity silicon carbide layer having a constant thickness is formed by a heating reaction on the surface of a substrate having a curvature. However, the supply of a reactive gas when a conventional flat substrate is used is used. And a discharge means, and a carbon source, a compound simultaneously containing a silicon source and a carrier gas may be used as a raw material gas, or a carbon source and two kinds of compounds separately containing a silicon source. A carrier gas may be used. The heating temperature in the reaction vessel can be 1100 ° C. to 1500 ° C., and the pressure is desirably reduced to about 1 to 100 Torr. As the heating means,
For example, resistance heating, induction heating, infrared radiation heating, or the like can be used.

【0007】実施例、以下、本発明の実施例を図面を参
照して説明する。セラミック素材の反りの測定は、前記
先行文献に記載されているように、得られたセラミック
素材を水平面において、その水平面から浮き上がった距
離を測定して、その距離を反り返り量とした(最大反り
量のみを示す。)。
An embodiment of the present invention will be described below with reference to the drawings. As described in the above-mentioned prior art, the measurement of the warpage of the ceramic material is performed by measuring the distance of the obtained ceramic material from the horizontal surface and rising from the horizontal surface, and defining the distance as the amount of warpage (the maximum warpage amount). Only shown).

【0008】実施例1 基材として、直径が200mm×厚さ5mm、50〜4
00℃の平均熱膨張係数が3.1×10-6/℃の黒鉛基
材を用いた。形成される炭化珪素の化学気相蒸着素材の
熱膨張係数は3.5×10-6/℃であるから、曲率半径
が約6250mmの外側凸の曲面を有する基板を成形し
た。該基板を図1に示す反応容器に装填し、これに対向
して抵抗加熱ヒータを配設した。真空ポンプにより反応
容器の圧力を300Torrに減圧した。次に前記ヒー
タに通電しヒータの温度を1300℃とした。次いでガ
ス供給管よりメチルトリクロロシラン及び水素ガスを1
対100の割合にして、5.5リットル/分の速度で供
給し、前記基材の表面に炭化珪素の蒸着膜(厚さ約1m
m)が形成された。基材を灰化処理により除去して、炭
化珪素の素材を得た。反りの量は0.1ミリ以下であっ
た。
Example 1 A base material having a diameter of 200 mm × thickness of 5 mm, 50 to 4
A graphite base material having an average thermal expansion coefficient of 3.1 × 10 −6 / ° C. at 00 ° C. was used. Since the thermal expansion coefficient of the formed silicon carbide chemical vapor deposition material is 3.5 × 10 −6 / ° C., a substrate having an outwardly convex curved surface with a radius of curvature of about 6250 mm was formed. The substrate was loaded into the reaction vessel shown in FIG. 1, and a resistance heater was disposed opposite to the reaction vessel. The pressure in the reaction vessel was reduced to 300 Torr by a vacuum pump. Next, the heater was energized to set the temperature of the heater to 1300 ° C. Next, methyltrichlorosilane and hydrogen gas were supplied from the gas supply pipe for 1 hour.
The mixture was supplied at a rate of 5.5 liters / minute at a ratio of 100 to 100, and a silicon carbide vapor-deposited film (thickness of about 1 m
m) was formed. The substrate was removed by ashing treatment to obtain a silicon carbide material. The amount of warpage was 0.1 mm or less.

【0009】実施例2 基材として、直径が200mm×厚さ5mmの熱膨張係
数が3.9×10-6/℃の黒鉛基材を用いた。形成され
る炭化珪素の化学気相蒸着素材の熱膨張係数は3.5×
10-6/℃であるから、曲率半径が約6250mmの内
側に凹の曲面を有する基板を成形した。加熱条件、減圧
条件、ガス供給条件を実施例1と同じ条件とし、形成さ
れる蒸着膜の厚さもほぼ実施例1と同じにした。基材を
灰化処理により除去して、炭化珪素の素材を得た。反り
の量は0.1ミリ以下であった。具体例として、炭化珪
素の場合のみを示したが、他のセラミックバルク素材を
製造する場合にも、前記方法が適用できることは、明か
である。
Example 2 As a substrate, a graphite substrate having a diameter of 200 mm × a thickness of 5 mm and a thermal expansion coefficient of 3.9 × 10 −6 / ° C. was used. The thermal expansion coefficient of the formed silicon carbide chemical vapor deposition material is 3.5 ×
Since the temperature was 10 −6 / ° C., a substrate having a concave curved surface with a radius of curvature of about 6250 mm was formed. The heating conditions, decompression conditions, and gas supply conditions were the same as in Example 1, and the thickness of the deposited film to be formed was almost the same as in Example 1. The substrate was removed by ashing treatment to obtain a silicon carbide material. The amount of warpage was 0.1 mm or less. Although only the case of silicon carbide is shown as a specific example, it is clear that the above method can be applied to the case of manufacturing other ceramic bulk materials.

【0010】[0010]

【発明の効果】本発明の方法によれば、CVD法により
基板表面にセラミック蒸着膜を形成した後、前記基材を
燃焼などに取り除くだけで、反りのない、平坦なセラミ
ックバルク素材を得ることができるという優れた効果が
もたらされる。
According to the method of the present invention, after forming a ceramic vapor-deposited film on a substrate surface by a CVD method, a flat ceramic bulk material without warpage can be obtained by simply removing the substrate by burning or the like. The excellent effect that it can do is brought.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る化学気相蒸着法により反りの無い
フラットなセラミックバルク材料を製造する装置を示す
概略図である。
FIG. 1 is a schematic view showing an apparatus for producing a warped flat ceramic bulk material by a chemical vapor deposition method according to the present invention.

【符号の説明】[Explanation of symbols]

1 反応容器 2 ヒーター 3 基材
4 反応ガス 5 排気
1 reaction vessel 2 heater 3 substrate
4 Reaction gas 5 Exhaust

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀尾 泰臣 岐阜県大垣市青柳町300番地 イビデン株 式会社青柳工場内 Fターム(参考) 4G001 BA77 BB22 BC22 BC61 BD38 BE31 4G052 DB01 DB12 DC06 4K030 AA03 AA06 AA09 AA17 BA37 CA01 CA11 DA08 FA10  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yasuomi Horio 300 Aoyanagi-cho, Ogaki-shi, Gifu F-term in the Aoyagi Plant of IBIDEN Corporation (reference) 4G001 BA77 BB22 BC22 BC61 BD38 BE31 4G052 DB01 DB12 DC06 4K030 AA03 AA06 AA09 AA17 BA37 CA01 CA11 DA08 FA10

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 化学気相蒸着法によりセラミックを生成
沈積される基材表面が球面加工され、蒸着する物質の熱
膨張係数が基材の熱膨張係数より小さい場合、球面加工
は凹状とし、前記蒸着する物質の熱膨張係数が前記基材
の熱膨張係数より大きい場合、球面加工を凸状とするこ
とを特徴とする化学気相蒸着法により反りの無いセラミ
ックバルク材料を製造する方法。
1. The method according to claim 1, wherein the surface of the substrate on which the ceramic is formed and deposited by chemical vapor deposition is spherically processed, and when the coefficient of thermal expansion of the material to be deposited is smaller than the coefficient of thermal expansion of the substrate, the spherically processed surface is concave. A method for producing a warped ceramic bulk material by a chemical vapor deposition method, wherein the spherical processing is made convex when the coefficient of thermal expansion of the substance to be deposited is larger than the coefficient of thermal expansion of the substrate.
【請求項2】 製造されるセラミック素材が炭化珪素で
あることを特徴とする請求項1に記載の化学気相蒸着法
により反りの無いセラミックバルク材料を製造する方
法。
2. The method for producing a warped ceramic bulk material by a chemical vapor deposition method according to claim 1, wherein the produced ceramic material is silicon carbide.
JP11081338A 1999-03-25 1999-03-25 Production of flat ceramic bulk material free from warpage by chemical vapor deposition method Pending JP2000273632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11081338A JP2000273632A (en) 1999-03-25 1999-03-25 Production of flat ceramic bulk material free from warpage by chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11081338A JP2000273632A (en) 1999-03-25 1999-03-25 Production of flat ceramic bulk material free from warpage by chemical vapor deposition method

Publications (1)

Publication Number Publication Date
JP2000273632A true JP2000273632A (en) 2000-10-03

Family

ID=13743595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11081338A Pending JP2000273632A (en) 1999-03-25 1999-03-25 Production of flat ceramic bulk material free from warpage by chemical vapor deposition method

Country Status (1)

Country Link
JP (1) JP2000273632A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019196007A (en) * 2018-05-10 2019-11-14 ロッキード マーティン コーポレイションLockheed Martin Corporation Direct additive synthesis of diamond semiconductor
JP2020083666A (en) * 2018-11-15 2020-06-04 住友金属鉱山株式会社 Graphite base material, film deposition method of silicon carbide, and manufacturing method of silicon carbide substrate
JP2022008517A (en) * 2018-05-10 2022-01-13 ロッキード マーティン コーポレイション Direct addition synthesis from uv-induced solvated electron in row material consisting of halogenated material and negative electron affinity nanoparticle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019196007A (en) * 2018-05-10 2019-11-14 ロッキード マーティン コーポレイションLockheed Martin Corporation Direct additive synthesis of diamond semiconductor
JP2022008517A (en) * 2018-05-10 2022-01-13 ロッキード マーティン コーポレイション Direct addition synthesis from uv-induced solvated electron in row material consisting of halogenated material and negative electron affinity nanoparticle
JP7130594B2 (en) 2018-05-10 2022-09-05 ロッキード マーティン コーポレイション Direct addition synthesis of diamond semiconductors
JP2022172207A (en) * 2018-05-10 2022-11-15 ロッキード マーティン コーポレイション Direct additional synthesis for diamond semiconductor
JP7190012B2 (en) 2018-05-10 2022-12-14 ロッキード マーティン コーポレイション Direct addition synthesis from UV-induced solvated electrons in feedstocks composed of halogenated materials and negatively electron-affinitive nanoparticles.
US11557475B2 (en) 2018-05-10 2023-01-17 Lockheed Martin Corporation Direct additive synthesis of diamond semiconductor
JP7408744B2 (en) 2018-05-10 2024-01-05 ロッキード マーティン コーポレーション Direct addition synthesis of diamond semiconductors
JP2020083666A (en) * 2018-11-15 2020-06-04 住友金属鉱山株式会社 Graphite base material, film deposition method of silicon carbide, and manufacturing method of silicon carbide substrate
JP7081453B2 (en) 2018-11-15 2022-06-07 住友金属鉱山株式会社 Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method

Similar Documents

Publication Publication Date Title
JPS6169116A (en) Susceptor for continuous cvd coating on silicon wafer
US20050123713A1 (en) Articles formed by chemical vapor deposition and methods for their manufacture
JPH03146672A (en) Susceptor for cvd
JPH08188468A (en) Formed silicon carbide produced by chemical vapor deposition and its production
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JPH07335572A (en) Susceptor for heat treatment of semiconductor wafer and its manufacture
JPH1012692A (en) Dummy wafer
US5750195A (en) Deposition of diamond on oxidizable material
JPH0758040A (en) Susceptor for phase growth apparatus
JPH0377655B2 (en)
JP2000273632A (en) Production of flat ceramic bulk material free from warpage by chemical vapor deposition method
JP2002003285A (en) SiC-COATED GRAPHITE MATERIAL AND ITS MANUFACTURING METHOD
JP2000073171A (en) Production of chemical vapor deposition multilayer silicon carbide film
JP3811540B2 (en) Method for producing silicon carbide molded body
JPH0586476A (en) Chemical vapor growth device
JPH0647516B2 (en) Graphite susceptor for plasma CVD
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPH0532355B2 (en)
JP3617676B2 (en) Method for producing silicon carbide molded body
JP2007012933A (en) Semiconductor manufacturing device and component therefor
JP2549030B2 (en) Semiconductor processing member and method of manufacturing the same
JPH1067584A (en) Reaction vessel
JPH1053464A (en) Production of chemical vapor deposition-silicon carbide material
JP2002097082A (en) Method of manufacturing carbon part
JPS61251528A (en) Mold for forming glass lens and production thereof