JP7081453B2 - Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method - Google Patents
Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method Download PDFInfo
- Publication number
- JP7081453B2 JP7081453B2 JP2018214979A JP2018214979A JP7081453B2 JP 7081453 B2 JP7081453 B2 JP 7081453B2 JP 2018214979 A JP2018214979 A JP 2018214979A JP 2018214979 A JP2018214979 A JP 2018214979A JP 7081453 B2 JP7081453 B2 JP 7081453B2
- Authority
- JP
- Japan
- Prior art keywords
- graphite
- silicon carbide
- curved surface
- base material
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Chemical Vapour Deposition (AREA)
Description
本発明は、黒鉛基材、炭化珪素の成膜方法および炭化珪素基板の製造方法に関する。 The present invention relates to a graphite substrate, a method for forming a silicon carbide film, and a method for manufacturing a silicon carbide substrate.
炭化珪素は、2.2~3.3eVの広い禁制帯幅を有するワイドバンドギャップ半導体であり、その優れた物理的、化学的特性から、例えば、高周波電子デバイス、高耐圧かつ高出力電子デバイス、青色から紫外にかけての短波長光デバイス等をはじめとして、炭化珪素(SiC)によるデバイス(半導体素子)作製の研究開発が盛んに行われている。SiCデバイスの実用化を進めるにあたっては、高品質のSiCエピタキシャル成長のために大口径の炭化珪素基板を製造することが求められている。現在、その多くは、種結晶を用いた昇華再結晶法(改良レーリー法、改良型レーリー法等と呼ばれる)やCVD法等で製造されている。 Silicon carbide is a wide bandgap semiconductor having a wide forbidden bandwidth of 2.2 to 3.3 eV, and because of its excellent physical and chemical properties, for example, high frequency electronic devices, high withstand voltage and high output electronic devices, Research and development of devices (semiconductor devices) using silicon carbide (SiC), including short-wavelength optical devices from blue to ultraviolet, are being actively carried out. In order to promote the practical use of SiC devices, it is required to manufacture a large-diameter silicon carbide substrate for high-quality SiC epitaxial growth. Currently, most of them are manufactured by a sublimation recrystallization method (called an improved Rayleigh method, an improved Rayleigh method, etc.) using a seed crystal, a CVD method, or the like.
CVD法(化学的気相蒸着法)を利用する炭化珪素基板の製造方法は、原料ガスを気相反応させて基材面上に炭化珪素生成物を析出させて被膜を生成した後、基材を除去するものであり、緻密で高純度の炭化珪素基板を得ることができる。また、基材は切削や研磨等により除去されるが、基材に炭素材を用いると空気中で熱処理することにより除去できるので、プロセスを簡易化できる利点がある。 In the method of manufacturing a silicon carbide substrate using a CVD method (chemical vapor deposition method), a raw material gas is subjected to a gas phase reaction to precipitate a silicon carbide product on the surface of the substrate to form a film, and then the substrate is formed. It is possible to obtain a dense and high-purity silicon carbide substrate. Further, the base material is removed by cutting, polishing, or the like, but if a carbon material is used for the base material, it can be removed by heat treatment in the air, so that there is an advantage that the process can be simplified.
CVD法による炭化珪素基板の製造方法としては、基材の表面に化学蒸着法により炭化珪素膜を形成し、その後前記基材を除去して得られた炭化珪素基板の両面に、更に炭化珪素膜を形成することを特徴とする、化学蒸着法による炭化珪素基板の製造方法が提案されている(特許文献1)。 As a method for manufacturing a silicon carbide substrate by the CVD method, a silicon carbide film is formed on the surface of a base material by a chemical vapor deposition method, and then the silicon carbide film is further formed on both surfaces of the silicon carbide substrate obtained by removing the base material. A method for manufacturing a silicon carbide substrate by a chemical vapor deposition method, which is characterized by forming a silicon carbide substrate, has been proposed (Patent Document 1).
また、基材の表面に化学蒸着法により炭化珪素膜を形成し、その後前記基材を除去することにより、炭化珪素基板を製造する方法において、化学蒸着法により炭化珪素層を形成し、次いで該炭化珪素層の表面を平坦化する工程を複数回繰り返すことにより、各層の厚みが100μm以下の炭化珪素層を所望厚み以上に積層した後、基材を除去することを特徴とする化学蒸着法による炭化珪素基板の製造方法が提案されている(特許文献2)。 Further, in a method for producing a silicon carbide substrate by forming a silicon carbide film on the surface of a substrate by a chemical vapor deposition method and then removing the substrate, a silicon carbide layer is formed by a chemical vapor deposition method, and then the substrate is formed. By repeating the step of flattening the surface of the silicon carbide layer a plurality of times, the silicon carbide layer having a thickness of 100 μm or less is laminated to a desired thickness or more, and then the base material is removed by a chemical vapor deposition method. A method for manufacturing a silicon carbide substrate has been proposed (Patent Document 2).
さらに、上面および下面が凸形状の曲面からなり、側面部に円周方向に沿って溝を形成した円盤形状の黒鉛材を基材とし、該基材表面にCVD法により炭化珪素を析出被着させた後、基材を燃焼して除去する炭化珪素基板の製造方法(特許文献3)が提案されている。 Further, a disk-shaped graphite material having a convex upper surface and a lower surface and having grooves formed along the circumferential direction on the side surface is used as a base material, and silicon carbide is deposited and adhered to the surface of the base material by a CVD method. A method for manufacturing a silicon carbide substrate (Patent Document 3) has been proposed in which a base material is burned and removed after the silicon carbide is formed.
しかしながら、特許文献1と特許文献2の製造方法は、CVD法で形成するSiC膜を所望の膜厚にまで一気に形成することなく、所望の膜厚になるまで複数回成膜する方法であり、また、平坦化処理する等の工程が煩雑化し、製造効率が低下するという問題点がある。
However, the manufacturing methods of Patent Document 1 and
また、特許文献3の製造方法では、黒鉛材の基材の燃焼に時間がかかる。そこで、短時間で燃焼除去するには、基材を例えば溝の部分で水平に切断し、黒鉛を露出する必要がある。この場合、切断時に成膜した炭化珪素膜が割れたり、炭化珪素膜の端部が欠けたりするという問題が生じるおそれがある。
Further, in the manufacturing method of
さらに、特許文献3に開示されたように、側面部に円周方向に沿って溝を形成した黒鉛材では、この溝の幅が、成膜した炭化珪素膜の膜厚の2倍以上ないと、黒鉛材の上面で形成された炭化珪素膜と下面で形成された炭化珪素膜がつながってしまうおそれがある。そして、つながった炭化珪素膜を分断するべく、黒鉛材の端部を研磨除去すると、黒鉛材の端部が欠けるおそれがあるため、厚みを薄くした黒鉛材を使用することが困難となる問題がある。
Further, as disclosed in
上記の問題点に鑑み、本発明では、煩雑な工程を必要とすることなく、化学蒸着により成膜した炭化珪素膜に亀裂や欠けが発生せず、また、反りが少なく、表面の平滑な炭化珪素基板を能率よく製造することが可能な、黒鉛基材、炭化珪素の成膜方法および炭化珪素基板の製造方法を提供することを目的とする。 In view of the above problems, in the present invention, the silicon carbide film formed by chemical vapor deposition does not crack or chip, has less warpage, and has a smooth surface, without requiring a complicated process. It is an object of the present invention to provide a graphite substrate, a method for forming a film of silicon carbide, and a method for producing a silicon carbide substrate, which can efficiently produce a silicon substrate.
上記課題を解決するために、本発明の黒鉛基材は、外側に突出する半楕円体形状の第1曲面と、前記第1曲面とは反対の面であって、かつ、直径が同一であり、外側に突出する半楕円体形状の第2曲面と、前記第1曲面および前記第2曲面の直径と同一の直径であり、前記第1曲面の円周と前記第2曲面の円周とをつなぐ円柱状の側面部と、前記側面部を周回し、外側に突出する円環状凸部と、を備え、前記側面部は、外部へ開口する複数の開口部を有する空隙を備える、円盤形状の黒鉛基材である。 In order to solve the above problems, the graphite base material of the present invention has a semi-elliptical first curved surface protruding outward and a surface opposite to the first curved surface, and has the same diameter. , The diameter of the semi-elliptical second curved surface protruding outward is the same as the diameter of the first curved surface and the second curved surface, and the circumference of the first curved surface and the circumference of the second curved surface are defined as each other. A disk-shaped surface portion comprising a columnar side surface portion to be connected and an annular convex portion that circulates around the side surface portion and projects outward, and the side surface portion includes a gap having a plurality of openings that open to the outside. It is a graphite base material.
前記円環状凸部は、前記第1曲面の直径よりも大きく、前記円環状凸部を折り取り可能な周溝を有してもよい。 The annular convex portion may have a peripheral groove larger than the diameter of the first curved surface and capable of breaking the annular convex portion.
前記第1曲面および前記第2曲面の曲率半径が5000mm~11000mmであってもよい。 The radius of curvature of the first curved surface and the second curved surface may be 5000 mm to 11000 mm.
前記黒鉛基材は、厚みが1.4mm~3.1mmであってもよい。 The graphite substrate may have a thickness of 1.4 mm to 3.1 mm.
前記空隙の数が3~5であってもよい。 The number of the voids may be 3 to 5.
前記黒鉛基材は、前記第1曲面を表面とし、前記第1曲面の直径と同一の直径を有する平面状の第1裏面、および、前記第1曲面および前記第1裏面の直径と同一の直径であり、前記第1曲面の円周と前記第1裏面の円周とをつなぐ円柱状の第1側面部を備える第1黒鉛材と、前記第2曲面を表面とし、前記第2曲面の直径と同一の直径を有する平面状の第2裏面、および、前記第2曲面および前記第2裏面の直径と同一の直径であり、前記第2曲面の円周と前記第2裏面の円周とをつなぐ円柱状の第2側面部を備える第2黒鉛材と、前記第1裏面および前記第2裏面と接合し、前記円環状凸部を有する接合層と、を備え、前記黒鉛基材の側面部は、前記第1側面部、前記第1裏面、前記接合層、前記第2裏面、前記第2側面部を有してもよい。 The graphite base material has a first curved surface as a surface, a planar first back surface having the same diameter as the diameter of the first curved surface, and the same diameter as the diameters of the first curved surface and the first back surface. A first graphite material having a columnar first side surface portion connecting the circumference of the first curved surface and the circumference of the first back surface, and the diameter of the second curved surface having the second curved surface as a surface. A planar second back surface having the same diameter as the above, and having the same diameter as the diameters of the second curved surface and the second back surface, and the circumference of the second curved surface and the circumference of the second back surface. The side surface portion of the graphite base material is provided with a second graphite material having a columnar second side surface portion to be connected, and a bonding layer bonded to the first back surface and the second back surface and having the annular convex portion. May have the first side surface portion, the first back surface portion, the bonding layer, the second back surface portion, and the second side surface portion.
前記第1黒鉛材および前記第2黒鉛材の熱膨張係数が3.0×10-6/℃~6.0×10-6/℃であってもよい。 The coefficient of thermal expansion of the first graphite material and the second graphite material may be 3.0 × 10 −6 / ° C. to 6.0 × 10 −6 / ° C.
前記接合層は、カーボン接着剤によって前記第1裏面および前記第2裏面と接合してもよい。 The bonding layer may be bonded to the first back surface and the second back surface with a carbon adhesive.
前記第1側面部および前記第2側面部の厚みは、0.2mm~0.6mmであってもよい。 The thickness of the first side surface portion and the second side surface portion may be 0.2 mm to 0.6 mm.
前記接合層の厚みは、0.8mm~1.8mmであってもよい。 The thickness of the bonding layer may be 0.8 mm to 1.8 mm.
また、上記課題を解決するために、本発明の炭化珪素の成膜方法は、前記黒鉛基材の表面に、化学蒸着によって炭化珪素を成膜する成膜工程を含む。 Further, in order to solve the above problems, the silicon carbide film forming method of the present invention includes a film forming step of forming silicon carbide on the surface of the graphite substrate by chemical vapor deposition.
また、上記課題を解決するために、本発明の炭化珪素基板の製造方法は、前記の成膜方法により得た、表面に前記炭化珪素が成膜した前記黒鉛基材の前記円環状凸部の少なくとも一部を除去して前記黒鉛基材を露出させる露出工程と、前記露出工程後、黒鉛基材を燃焼させて除去する燃焼除去工程と、を含む。 Further, in order to solve the above problems, the method for manufacturing a silicon carbide substrate of the present invention is the annular convex portion of the graphite substrate on which the silicon carbide is formed on the surface obtained by the film forming method. It includes an exposure step of removing at least a part of the graphite base material to expose the graphite base material, and a combustion removal step of burning and removing the graphite base material after the exposure step.
前記円環状凸部は、前記第1曲面の直径よりも大きく、前記円環状凸部を折り取り可能な周溝を有してもよく、炭化珪素基板の製造方法は、前記露出工程において前記周溝を折り取って前記黒鉛基材を露出させてもよい。 The annular convex portion may have a peripheral groove larger than the diameter of the first curved surface and may have a peripheral groove capable of breaking the annular convex portion, and the method for manufacturing a silicon carbide substrate is the peripheral in the exposure step. The groove may be cut off to expose the graphite substrate.
前記燃焼除去工程後、成膜した前記炭化珪素の表面を研磨する研磨工程を含んでもよい。 After the combustion removal step, a polishing step of polishing the surface of the formed silicon carbide may be included.
本発明によれば、反り量が少なく平坦性に優れ、かつ亀裂や端部のチッピングの発生がない炭化珪素基板を製造することが可能となる。したがって、デバイス作成用、エピタキシャル成長用ウエハやサセプター等の半導体の製造に用いられる各種部材、耐熱性や耐蝕性等が要求される工業用材料の製造において、極めて有用である。 According to the present invention, it is possible to manufacture a silicon carbide substrate having a small amount of warpage, excellent flatness, and no cracks or chipping at the edges. Therefore, it is extremely useful in the manufacture of various members used in the manufacture of semiconductors such as wafers for device fabrication and epitaxial growth wafers and susceptors, and industrial materials that require heat resistance and corrosion resistance.
以下、本発明の具体的な実施形態について、図面を参照しつつ説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
[黒鉛基材]
本発明の黒鉛基材は、第1曲面と、第2曲面と、側面部と、円環状凸部と、を備える。化学蒸着によって表面に炭化珪素膜を成膜させるための基材であり、炭化珪素を成膜後は基材を燃焼させて除去することから、黒鉛製の基材を使用する。図1に、本発明の黒鉛基材の一例として、黒鉛基材100を上からみた図(図1(a))と、黒鉛基材100の側面図(図1(b))を示す。黒鉛基材100は円盤形状であり、上部から見ると円状であり(図1(a))、側面から見ると一定の厚みがある(図1(b))。なお、黒鉛基材100の第1曲面10の円周11の直径Dは、特に限定されないが、通常は約4~6インチ(約100~150mm)である。
[Graphite substrate]
The graphite substrate of the present invention includes a first curved surface, a second curved surface, a side surface portion, and an annular convex portion. A graphite base material is used because it is a base material for forming a silicon carbide film on the surface by chemical vapor deposition, and the base material is burned and removed after the silicon carbide is formed. FIG. 1 shows a view of the
(厚み)
黒鉛基材100の厚みTは、1.4mm~3.1mmであることが好ましい。図2は、CVD装置に黒鉛基材100を収容する収容部の高さを250mmと想定し、この収容部へ黒鉛基材100を10mm間隔で積層した場合の、黒鉛基材100の厚みTが与える黒鉛基材100の積層数への影響を計算した結果を示す。厚みTが3mmの場合は、黒鉛基材100を20枚積層できるが、厚みTが3.2mmを超えると、積層可能な黒鉛基材100の枚数が1枚減り、更に厚みTが4mmの場合には、積層可能な黒鉛基材100の枚数が18枚に減ることが分かる。よって、黒鉛基材100の積層可能な枚数を考慮して、厚みTの上限は3.1が好ましい。また、厚みTが1.4mm未満の場合には、後述する第1側面部および前記第2側面部の厚みや接合層の厚みを好ましい範囲に設定することが難しくなり、黒鉛基材100を良好な円盤形状とすることが困難となるおそれがある。
(Thickness)
The thickness T of the
〈第1曲面〉
第1曲面10は、外側に突出する半楕円体形状の曲面である。化学蒸着により黒鉛基材の表面に炭化珪素を析出させて炭化珪素膜を形成する場合、黒鉛基材と炭化珪素膜の熱膨張係数が異なるため、黒鉛基材および炭化珪素膜には内部応力が蓄積される。そのため、炭化珪素膜を形成する際の高温から、成膜を終了して成膜装置から取り出すまでの冷却過程において、内部応力によって炭化珪素膜に亀裂が生じたり、反りが発生したりする場合がある。
<First curved surface>
The first
例えば、図3、4に示すように平板形状の黒鉛基材500に炭化珪素膜600を化学蒸着により成膜する場合を想定し(図3(a)、図4(a))、黒鉛基材500の熱膨張係数をα1、炭化珪素膜600の柱状組織610の熱膨張係数をα2-L、炭化珪素膜600の微細組織620の熱膨張係数をα2-Sとする。
For example, assuming a case where a
化学蒸着による炭化珪素膜600の形成過程としては、まず黒鉛基材500上に炭化珪素の核が生成してアモルファス質あるいは微粒多結晶の微細組織620が成長し、更に柱状組織610の結晶組織に成長を続け、炭化珪素膜600が形成される。成膜後においては、黒鉛基材500の熱膨張係数が炭化珪素膜600よりも大きくなり、黒鉛基材500が側面において内側へ圧縮される方向へ内部応力が作用する場合があり、この場合には、黒鉛基材500の表面550は内側へ凹み、炭化珪素膜600の表面650は外側へ出っ張る状態に変形するような反りが発生する(図3(b))。
In the process of forming the
炭化珪素膜600を成膜後、黒鉛基材500を燃焼等により除去した後の場合について、図3(c)に示す。黒鉛基材500と接していた炭化珪素膜600の微細組織620の熱膨張係数α2-Sは、炭化珪素膜600の柱状組織610の熱膨張係数α2-Lに比べて小さいために、黒鉛基材500が除去された後は、炭化珪素膜600の微細組織620では側面において外側へ引っ張られる方向へ内部応力が作用し、炭化珪素膜600の柱状組織610では側面において内側へ圧縮される方向へ応力が作用する。その結果、炭化珪素膜600の柱状組織610の表面650は凹み、炭化珪素膜600の微細組織620の表面660は出っ張る状態に変形するような反りが発生する場合がある(図3(c))。
FIG. 3C shows a case where the
また、図3の場合とは異なり、炭化珪素膜600が成膜後において、黒鉛基材500の熱膨張係数が炭化珪素膜600よりも小さくなり、炭化珪素膜600が側面において内側へ圧縮される方向へ内部応力が作用する場合がある(図4(b))。この場合には、黒鉛基材500の表面550は外側へ出っ張り、炭化珪素膜600の表面650は内側へ凹む状態に変形するような反りが発生する(図4(b))。
Further, unlike the case of FIG. 3, after the
炭化珪素膜600を成膜後、図4(b)に示す反りの状態から、黒鉛基材500を燃焼等により除去した後の場合について、図4(c)に示す。黒鉛基材500と接していた炭化珪素膜600の微細組織620の熱膨張係数α2-Sは、炭化珪素膜600の柱状組織610の熱膨張係数α2-Lに比べて小さい。そのために、黒鉛基材500が除去された後においても、炭化珪素膜600の微細組織620では側面において外側へ引っ張られる方向へ内部応力が作用し、炭化珪素膜600の柱状組織610では側面において内側へ圧縮される方向へ応力が作用する。その結果、図3のように黒鉛基材500の除去によって反りが反転せずに、炭化珪素膜600の柱状組織610の表面650は凹み、炭化珪素膜600の微細組織620の表面660は出っ張る状態に変形するような反りが発生する場合がある(図4(c))。
FIG. 4C shows a case where the
本発明の黒鉛基材100は、図1(b)に示すように上面および下面の形状を外側に突出する半楕円体形状の曲面(第1曲面10、第2曲面20)とすることにより、この曲面に炭化珪素膜が凸形状に成膜されることで、内部応力により炭化珪素膜に凹方向の力が作用しても、凹形状の反りの程度を緩和することができる。
As shown in FIG. 1 (b), the
(曲率半径)
第1曲面10の曲率半径は、5000mm~11000mmであることが好ましい。曲率半径がこの範囲内であることにより、第1曲面10に成膜した炭化珪素膜が、黒鉛基材100が除去されることにより発生する反りを緩和し、クラックの発生を抑制することができる。曲率半径が5000mm未満や11000mmを超える場合には、反りが大きくなるおそれや、クラックが発生するおそれがある。
(curvature radius)
The radius of curvature of the first
〈第2曲面〉
第2曲面20は、第1曲面10とは反対の面であって、かつ、直径が第1曲面10の直径(直径Dと同一)と同一であり、外側に突出する半楕円体形状の曲面である。黒鉛基材100は、その両面に炭化珪素膜が成膜される場合があるため、第1曲面10と第2曲面20が両面の関係となるよう、第2曲面20は第1曲面とは反対の面となる。そして、第2曲面20を外側に突出する半楕円体形状とすることで、この曲面に炭化珪素膜が凸形状に成膜されることとなり、内部応力により炭化珪素膜に凹方向の力が作用しても、凹形状の反りの程度を緩和することができる。なお、第2曲面20は第1曲面10と同一形状であれば、炭化珪素の成膜条件が同一となるため、第1曲面10および第2曲面20のいずれにおいても同質の炭化珪素が成膜される。
<Second curved surface>
The second
(曲率半径)
第2曲面20の曲率半径は、5000mm~11000mmであることが好ましい。曲率半径がこの範囲内であることにより、第1曲面10に成膜した炭化珪素膜が、黒鉛基材100が除去されることにより発生する反りを緩和し、クラックの発生を抑制することができる。曲率半径が5000mm未満や11000mmを超える場合には、反りが大きくなるおそれや、クラックが発生するおそれがある。
(curvature radius)
The radius of curvature of the second
〈側面部〉
側面部30は、第1曲面10および第2曲面20の直径と同一の直径であり、第1曲面10の円周11と第2曲面20の円周21とをつなぐ円柱状であり、空隙を備える。
<Side part>
The
(空隙)
側面部30は、外部へ開口する複数の開口部32a、32bを有する空隙32を備える。空隙32があることで、空隙32内へ火が回って黒鉛基材100を燃焼除去させやすくなる。また、1つの空隙32に対して開口部が複数あることで(32a、32b)、空隙32が黒鉛基材100を貫通するため、空隙32内へより火が回りやすくなり、黒鉛基材100の燃焼除去効果がより高くなる。空隙32部には、化学蒸着用の原料ガスの供給が少ないため、その内部には炭化珪素膜が成膜され難い。従って、炭化珪素膜を成膜後に黒鉛基材100を燃焼除去する際において、空隙32が酸素に晒されて黒鉛基材100の燃焼がより容易となる。
(Gap)
The
空隙32の数は、3~5であることが好ましい。空隙32の数が2以下では、黒鉛基材100を燃焼除去する効果が小さくなるおそれがある。また、空隙32の数が6以上では、黒鉛基材100の強度が低下するおそれがある。空隙32の円周方向の幅wは、黒鉛基材100の燃焼除去効果の観点から0.8mm~3mmであることが好ましい。幅wが0.8mm未満の場合には、黒鉛基材100の燃焼除去に時間がかかるおそれがある。また、幅wが3mmより大きいと、黒鉛基材100の強度が低下するおそれがある。
The number of
〈円環状凸部〉
円環状凸部31は、側面部30を周回し、外側に突出する形状を有する。黒鉛基材100において、円環状凸部31が他の部分よりもはみ出すことで、炭化珪素膜600が成膜した後に、その端部の処理が簡便になる。例えば、特許文献3にあるような、側面部に円周方向に沿って凹んだ溝を形成した黒鉛基材の場合には、溝の幅が十分でないと、成膜した上面および下面に成膜した炭化珪素膜が溝においてつながって一体化してしまう場合がある。この場合、一体化した炭化珪素膜の端部に対して、研磨除去等の処理を行って上面と下面に成膜した炭化珪素膜を分離する必要があるが、研磨除去等の処理によって炭化珪素膜の端部にチッピング等の欠けが生じることがある。
<Circular convex part>
The annular
ただし、本発明のように円環状凸部31を設けておくことで、第1曲面10および第2曲面10の表面に炭化珪素膜600が成膜する過程において、円環状凸部31の表面にも炭化珪素膜600が成膜するものの、炭化珪素膜600が成膜後の円環状凸部31のみを切断してトリミングすれば、第1曲面10および第2曲面10の表面に成膜した炭化珪素膜600を分離することが容易となる。また、トリミングであれば、炭化珪素膜600の端部にチッピング等の欠けが生じることを防止することができる。
However, by providing the annular
図8の黒鉛基材120に示すように、円環状凸部31は、第1曲面10の直径Dよりも大きく、円環状凸部31を折り取り可能な周溝31a、31bを有してもよい。周溝31a、31bがあることにより、この部分で円環状凸部31を折り取りによりトリミングすることが容易となり、炭化珪素膜600の端部にチッピング等の欠けが生じることなく、第1曲面10および第2曲面10の表面に成膜した炭化珪素膜600を分離することが、より容易となる。例えば、周溝31a、31bへ円板打ち抜きカッター等をあてることにより、円環状凸部31を折り取ることができる。なお、周溝は円環状凸部31の上面と下面の両方にあってもよいが、上面の周溝31aのみでもよく、下面の周溝32aのみでも円環状凸部31を折り取ることができる。
As shown in the
本発明の黒鉛基材としては、例えば1つの黒鉛の塊を加工して黒鉛基材100の形状としてもよいが、図5に示す黒鉛基材110のように、第1黒鉛材15、第2黒鉛材25、接合層40といったいくつかの部品を組み合わせて黒鉛基材を形成してもよい。このようにいくつかの部品を組み合わせて黒鉛基材を組み立てることにより、黒鉛基材の形状が安定し、製造が容易となる。
As the graphite substrate of the present invention, for example, one graphite block may be processed into the shape of the
(第1黒鉛材)
第1黒鉛材15は、第1曲面10を表面とし、第1曲面10の直径D1と同一の直径を有する平面状の第1裏面12を備える。そして、第1曲面10および第1裏面12の直径D1と同一の直径であり、第1曲面10の円周11と第1裏面12の円周13とをつなぐ円柱状の第1側面部14を備える。第1裏面12が平面状であることにより、後述する接合層40との接合が容易となる。
(1st graphite material)
The
(第2黒鉛材)
第2黒鉛材25は、第2曲面20を表面とし、第2曲面20の直径D2と同一の直径を有する平面状の第2裏面22を備える。そして、第2曲面20および第2裏面22の直径D2と同一の直径であり、第2曲面20の円周21と第2裏面22の円周23とをつなぐ円柱状の第2側面部24を備える。第2裏面22が平面状であることにより、後述する接合層40との接合が容易となる。
(Second graphite material)
The
第1側面部14の厚みt1、および第2側面部24の厚みt2は、0.2mm~0.6mmであることが好ましい。この範囲の厚みであることにより、黒鉛材としての強度を維持しつつ、多くの黒鉛基材110を一度に成膜できる程度の厚さに留めることができる。厚みt1、t2が0.2mm未満の場合には、第1黒鉛材15、第2黒鉛材25の強度が不足するおそれがある。また、厚みt1、t2が0.6mmを超えると、黒鉛基材110としての厚みが厚くなり、基材として一度に成膜できる数が少なくなるので、好ましくない。なお、第1黒鉛材15は第2黒鉛材25と同一形状であれば、炭化珪素の成膜条件が同一となるため、同質の炭化珪素が成膜される。
The thickness t1 of the first
(接合層)
接合層40は、第1黒鉛材15の第1裏面12と第2黒鉛材25の第2裏面22と接合する層である。第1黒鉛材15および第2黒鉛材25と同様に素材は黒鉛とし、板状またはシート状のものを接合層40とすることができる。図6に、黒鉛製のシート材を加工して得た接合層40を上から見た図を示す。第1黒鉛材15や第2黒鉛材25を加工して空隙を設けることが難しい場合には、シート材を円状に切り出した後、切断加工することで接合層40に空隙32を設けることができる。
(Joining layer)
The
接合層40の厚みt3(図5(b))は、0.8mm~1.8mmであることが好ましい。化学蒸着により、炭化珪素膜を0.4mm程度成膜させる場合があるため、厚みt3が0.8mm未満の場合には、炭化珪素膜によって空隙32が塞がれてしまい、黒鉛基材110を燃焼除去することが困難となるおそれがある。また、厚みt3が1.8mmを超えると、黒鉛基材110の厚みTが3.1mmを超えるおそれがあり、成膜装置に積層可能な黒鉛基材110の枚数が減ることで、成膜の効率が低下する場合がある。
The thickness t3 (FIG. 5 (b)) of the
また、接合層40は円環状凸部31を有するため、第1黒鉛材15や第2黒鉛材25よりも大きい直径を有し、2mm~10mm程大きい直径となることで、第1黒鉛材15や第2黒鉛材25の側面から1mm~5mmの幅bで突出していることが好ましい(図5(b))。化学蒸着の場合、黒鉛基材110の端部において、炭化珪素膜600の膜厚が厚くなりやすい。そのため、幅bが1mm未満の場合には、円環状凸部31に炭化珪素膜600が厚く成膜されて折り取りが困難となるおそれがある。また、幅bが5mmを超えると、円環状凸部31の折り取りによって除去する部分が多くなり、この部分にも成膜されるため、無駄な成膜となるのみならず、成膜面積が増加することで成膜速度が遅くなるおそれがある。
Further, since the
黒鉛基材110においては、側面部30は、第1側面部14、第1裏面12、接合層40、第2裏面22、第2側面部24を有する。また、第1黒鉛材15と接合層40および第2黒鉛材25と接合層40を接着するために、後述するカーボン接着剤50を使用する場合には、これも側面部30の構成に含まれる。
In the
なお、黒鉛基材110において、厚みTは第1側面部14の厚みt1、第2側面部24の厚みt2および接合層40の厚みt3に加え、第1曲面10の厚みs1および第2曲面20の厚みs2を合計したものである。なお、後述するカーボン接着剤50を使用する場合には、この厚みも考慮される。以下、厚みs1とs2は同じ値とし、厚みsとして説明する。厚みsは、黒鉛基材110の直径Wと第1曲面の曲率半径r(第2曲面の場合も同じ)から、以下の式(1)、(2)によって計算できる。
In the
[数1]
W=2*r*sin(θ/2) (1)
s=r*(1-cos(θ/2)) (2)
[Number 1]
W = 2 * r * sin (θ / 2) (1)
s = r * (1-cos (θ / 2)) (2)
黒鉛基材110の直径Wを100mm、150mmとした場合において、曲率半径を3000~12000mmとした場合の厚みsを計算した結果を表1に示す。例えば、直径Wが150mmの条件では、曲率半径が5000mmの場合において厚みsは0.563mmであり、曲率半径が10000mmの場合において厚みsは0.281mmになる。
Table 1 shows the results of calculating the thickness s when the diameter W of the
また、表1に、黒鉛基材110の厚みTの最小値と最大値を算出した結果を示す。厚みTは、以下の式(3)によって計算できる。
Table 1 shows the results of calculating the minimum and maximum values of the thickness T of the
[数2]
T=t1+t2+t3+s1+s2 (3)
(t1とt2が等しく(tとする)、s1とs2が等しい(sとする)場合は、T=2×(t+s)+t3でも算出可能)
[Number 2]
T = t1 + t2 + t3 + s1 + s2 (3)
(If t1 and t2 are equal (let's say t) and s1 and s2 are equal (let's say s), T = 2 × (t + s) + t3 can also be calculated)
例えば、直径Wが100mmの条件では、曲率半径が3000mmの場合において、厚みTの最小値は、2×(0.417+0.2)+0.8=2.034となり、厚みTの最大値は、2×(0.417+0.6)+1.8=3.834となる。 For example, under the condition that the diameter W is 100 mm and the radius of curvature is 3000 mm, the minimum value of the thickness T is 2 × (0.417 + 0.2) + 0.8 = 2.034, and the maximum value of the thickness T is. 2 × (0.417 + 0.6) +1.8 = 3.834.
(熱膨張係数)
第1黒鉛材15および第2黒鉛材25の熱膨張係数は、黒鉛材の原料コークスや製造条件等により異なるが、黒鉛材として3.0×10-6/℃~6.0×10-6/℃(室温~450℃)の範囲にあることが好ましい。熱膨張係数が3.0×10-6/℃未満の場合には、黒鉛材としての黒鉛が等方性黒鉛ではなくなって、方位依存性を持ち、膨張によって黒鉛基材自体の形状が変わって、炭化珪素膜が割れるおそれがある。また、熱膨張係数が6.0×10-6/℃を超えると、成膜した炭化珪素膜の反りが大きくなるおそれや、クラックが発生するおそれがある。なお、例えば3.0×10-6/℃より大きい方位と小さな方位を持つ黒鉛粉末を、等方性プレス(CIP)で固めて焼結等することにより、等方性黒鉛を作成することが可能であり、この等方性黒鉛を黒鉛材として用いることができる。
(Coefficient of thermal expansion)
The coefficient of thermal expansion of the
(接着剤)
接合層40は、高温の状態でも接着性が良好なカーボン接着剤50によって第1裏面12および第2裏面22と接合することが好ましい。高温まで接着性が良好なカーボン接着剤50を用いることで、第1黒鉛材15および第2黒鉛材25と、接合層40をより強固に接着することができる。
(glue)
The
カーボン接着剤50としては、特に制限はないが、例示すると、日清紡株式会社製のカーボン接着剤「ST-201」、コトロニクス(COTRONICS)社製のカーボン接着剤「Resbond 931」が挙げられる。
The
カーボン接着剤50は、例えば接合層40の両面に塗布し、第1裏面12および第2裏面22と接合するように、第1黒鉛材15および第2黒鉛材25と押し合わせた後、乾燥させ硬化させることで、第1黒鉛材15および第2黒鉛材25と、接合層40とを接着することができる。硬化させる際の温度条件としては、通常のフェノール樹脂が硬化する程度の温度範囲で良く、特に限定はないが、例えば、約60~250℃程度の温度範囲で硬化させることが好ましい。
The
第1黒鉛材15および第2黒鉛材25と、接合層40とを接着させた後、不活性ガスまたは真空中でカーボン接着剤50を加熱して炭素化することにより、カーボン接着剤50は炭素のみで構成される炭素材となり、しかも第1黒鉛材15および第2黒鉛材25と、接合層40とを強固に接着することができる。尚、この炭素化させる温度は、炭素材料の耐えられる温度範囲内であれば、特に限定されない。
After adhering the
上記した本発明の黒鉛基板を、化学蒸着用の成膜装置にセットして、成膜処理をすると、第1曲面10、第2曲面20および側面部30に炭化珪素膜が均一に成膜される。
When the above-mentioned graphite substrate of the present invention is set in a film forming apparatus for chemical vapor deposition and a film forming process is performed, a silicon carbide film is uniformly formed on the first
成膜処理の際には、空隙32には原料ガスやキャリアガスが供給され難いため、この部分には炭化珪素膜が析出され難く、黒鉛基材が被覆されずに露出した状態を維持することができる。従って、成膜処理後の黒鉛基材の空隙32が酸素に晒されて容易に燃焼され、基材の除去が容易となる。
Since it is difficult to supply the raw material gas and the carrier gas to the
[炭化珪素の成膜方法]
次に、本発明の炭化珪素の成膜方法について、その一態様を説明する。かかる成膜方法は、本発明の黒鉛基材の表面に、化学蒸着によって炭化珪素を成膜する成膜工程を含む。この工程により、黒鉛基材の表面に炭化珪素の多結晶膜を成膜することができる。
[Silicon carbide film formation method]
Next, one aspect of the silicon carbide film forming method of the present invention will be described. Such a film forming method includes a film forming step of forming silicon carbide on the surface of the graphite substrate of the present invention by chemical vapor deposition. By this step, a polycrystalline film of silicon carbide can be formed on the surface of the graphite base material.
〈成膜工程〉
成膜工程の一例としては、加熱した黒鉛基材110上に、1200~1700℃の温度に加熱した、炭化珪素膜600の成分を含む原料ガスやキャリアガス等の混合ガスを供給し、大気圧下において黒鉛基材110の表面や気相での化学反応を所定時間行うことにより、炭化珪素膜600を堆積する方法が挙げられる(図7(a))。ここで、黒鉛基材110の表面に炭化珪素膜600が成膜するが、空隙32へは原料ガスやキャリアガスが届き難いため、これらの部分には炭化珪素膜600が成膜されないか、成膜されても若干量であり、黒鉛基材110は露出した状態を維持することができる。なお、成膜時の黒鉛基材の設置枚数を増加させると、黒鉛基材間の距離が短くなって、黒鉛基材の端と黒鉛基材との間の原料供給量の差が大きくなる。従って、一回の処理で成膜させる黒鉛基材の枚数が増加すると、原料供給量が多い黒鉛基材の端部の膜厚が厚くなり、黒鉛基材の中央が薄くなるため、適宜処理枚数を調整することが好ましい。
<Film formation process>
As an example of the film forming process, a mixed gas such as a raw material gas or a carrier gas containing a component of the
(原料ガス)
炭化珪素膜を成膜することができれば、特に限定されず、一般的に使用される原料ガスを用いることができる。例えば、トリクロロメチルシラン、トリクロロフェニルシラン、ジクロロメチルシラン、ジクロロジメチルシラン、クロロトリメチルシラン等、又はテトラクロロシラン(SiCl4)、SiCl2とメタン、プロパンやアセチレン等の炭化水素ガスを原料ガスとして用いることができる。
(Raw material gas)
As long as the silicon carbide film can be formed, the raw material gas that is generally used is not particularly limited and can be used. For example, trichloromethylsilane, trichlorophenylsilane, dichloromethylsilane, dichlorodimethylsilane, chlorotrimethylsilane, etc., or tetrachlorosilane (SiCl 4 ), SiCl 2 and methane, propane, acetylene, or other hydrocarbon gas is used as the raw material gas. Can be done.
(キャリアガス)
成膜を阻害することなく、原料ガスを基板へ展開することができれば、一般的に使用されるキャリアガスを用いることができる。例えば、H2ガス等をキャリアガスとして用いることができる。
(Carrier gas)
If the raw material gas can be developed on the substrate without inhibiting the film formation, a commonly used carrier gas can be used. For example, H 2 gas or the like can be used as the carrier gas.
〈その他の工程〉
本発明の炭化珪素の成膜方法は、成膜工程以外にも、他の工程を含むことができる。例えば、成膜装置内の基板ホルダーに黒鉛基材110を複数枚セットする工程や、セットした黒鉛基材110を加熱する工程、化学蒸着前の黒鉛基材110に、成膜を阻害するような何らかの反応が生じないよう、黒鉛基材110を不活性雰囲気下とするべく、アルゴン等の不活性ガスを流通させる工程等が挙げられる。
<Other processes>
The silicon carbide film forming method of the present invention can include other steps in addition to the film forming step. For example, a step of setting a plurality of
[炭化珪素基板の製造方法]
次に、本発明の炭化珪素基板の製造方法について、その一態様を説明する。かかる製造方法は、露出工程と、燃焼除去工程とを含む。
[Manufacturing method of silicon carbide substrate]
Next, one aspect of the method for manufacturing the silicon carbide substrate of the present invention will be described. Such a manufacturing method includes an exposure step and a combustion removal step.
〈露出工程〉
露出工程の一例としては、上記した本発明の炭化珪素の成膜方法により得た、表面に炭化珪素膜600が成膜した黒鉛基材110に対し(図7(a))、円環状凸部31の少なくとも一部を除去して黒鉛基材110を露出させる工程が挙げられる(図7(b))。この工程により、円環状凸部31があった部分において、黒鉛基材110の側面35が露出され、黒鉛基材110が燃焼し易くなる。
<Exposure process>
As an example of the exposure step, the annular convex portion with respect to the
具体的には、ダイアモンドやC-BN(立方晶BN)砥粒を用いたシングルワイヤソーで円環状凸部31とそこに成膜した炭化珪素膜630を切断する方法や、研磨ホイールで円環状凸部31とそこに成膜した炭化珪素膜600を削り落とすことにより、黒鉛基材110を露出させることができる。
Specifically, a method of cutting the annular
また、黒鉛基材120のように、円環状凸部31が、第1曲面の直径よりも大きくかつ円環状凸部を折り取り可能な周溝31aや31bを有する場合には(図8(b))、露出工程において周溝31aや31b、またはその両方で、そこに成膜した炭化珪素膜600ごと円環状凸部31を折り取ることにより、黒鉛基材120を露出させることができる。例えば、周溝31a、31bへ円板打ち抜きカッター等をあてることにより、円環状凸部31を折り取ることができる。なお、周溝は円環状凸部31の上面と下面の両方にあってもよいが、上面の周溝31aのみでもよく、下面の周溝32aのみでも円環状凸部31を折り取ることができる。
Further, when the annular
〈燃焼除去工程〉
燃焼除去工程の一例としては、露出工程後、黒鉛基材110を燃焼させて除去する工程が挙げられる(図7(c))。この工程により、黒鉛基材110が消滅して、炭化珪素膜600が残ってこれが炭化珪素基板700となる。
<Combustion removal process>
As an example of the combustion removing step, there is a step of burning and removing the
黒鉛基材110の燃焼除去は、空気中で加熱する等の適宜な方法で行うことができる。加熱条件としては、例えば大気雰囲気下にて1000℃程度に加熱する条件が挙げられる。
Combustion removal of the
〈研磨工程〉
本発明の炭化珪素基板の製造方法は、燃焼除去工程後、成膜した炭化珪素膜600の表面を研磨する研磨工程を含んでもよい。炭化珪素基板は、半導体の製造に用いられる基板とするのであれば、半導体製造プロセスで使用できる面精度が必要となる。そこで、本工程により、炭化珪素基板700の表面を平滑化することが好ましい。
<Polishing process>
The method for manufacturing a silicon carbide substrate of the present invention may include a polishing step of polishing the surface of the formed
例えば、炭化珪素基板700をダイアモンドスラリーでラップ処理し、ダイアモンドとアルミナとの混合スラリーでハードポリッシュした後に、シリカスラリー(コロイダルシリカ、pH11)でポリッシュするという工程を経て、炭化珪素基板700の表面を平滑化することができる。
For example, the surface of the
〈その他の工程〉
本発明の炭化珪素基板の製造方法は、上記の工程以外にも、他の工程を含むことができる。例えば、燃焼除去工程後の炭化珪素基板700を冷却する冷却工程等が挙げられる。
<Other processes>
The method for manufacturing a silicon carbide substrate of the present invention can include other steps in addition to the above steps. For example, a cooling step of cooling the
本発明の炭化珪素の成膜方法および炭化珪素基板の製造方法によれば、凸状の曲面形状を有する第1曲面および第2曲面に炭化珪素膜を成膜させた後、円環状凸部を切断してから、黒鉛基材を燃焼除去するものであるから、凹方向に作用する炭化珪素膜の内部応力を巧みに緩和することができる。更に、空隙があることによって、黒鉛基材の表面全体に炭化珪素膜が一体的に形成することを防止できるので、反りおよび亀裂の少ない炭化珪素基板を製造することが可能となる。 According to the method for forming a silicon carbide film and the method for manufacturing a silicon carbide substrate of the present invention, after forming a silicon carbide film on the first curved surface and the second curved surface having a convex curved surface shape, an annular convex portion is formed. Since the graphite substrate is burnt and removed after cutting, the internal stress of the silicon carbide film acting in the concave direction can be skillfully relieved. Further, since the presence of the voids can prevent the silicon carbide film from being integrally formed on the entire surface of the graphite base material, it is possible to manufacture a silicon carbide substrate having less warpage and cracks.
以下、実施例に基づいて本発明をさらに具体的に説明する。ただし、本発明は以下の実施例の内容に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples. However, the present invention is not limited to the contents of the following examples.
[実施例1~6、比較例1、2]
(黒鉛基材120の製造)
熱膨張係数が異なる黒鉛材を加工して、直径D1およびD2が150.6mm、第1側面部14の厚みt1および第2側面部24の厚みt2が0.2mm、第1曲面10および第2曲面20の曲率半径が7000mmである、第1黒鉛材15および第2黒鉛材25を作製した。接合層40としては、円環状凸部31を形成するべく、カーボンシート(東洋炭素製PF-UHPL)を直径D1およびD2よりも大きくなるように、直径158mmの円板上に切り出し、図6に示すように幅wが20mmの空隙を、空隙の開口方向と直交し、かつカーボンシートの中心を通る直線Cとカーボンシートの円周との交点C1、C2とした場合に、C1から24.5mm、C1から69mm、C2から24.5mmの3か所に形成した。また、コンパスで直径153mmとなるように円状の溝31a、31bを形成した。そして、カーボン接着剤50(日清紡ST-201)を用いて、第1黒鉛材15および第2黒鉛材25と、接合層40とを接着した。
[Examples 1 to 6, Comparative Examples 1 and 2]
(Manufacturing of graphite base material 120)
By processing graphite materials having different coefficients of thermal expansion, the diameters D1 and D2 are 150.6 mm, the thickness t1 of the first
接着後、大気中にて80℃で4時間、120℃で4時間、200℃で1時間の加熱硬化を行った後、窒素雰囲気中で、0.8℃/分の昇温速度で1000℃まで昇温し、接着剤の炭素化を行った。接合層40の厚みt3は0.8mmとした。表2に、実施例1~6および比較例1、2の黒鉛基材120に使用した第1黒鉛材15および第2黒鉛材25の熱膨張係数、第1曲面10および第2曲面20の曲率半径を示す。なお、各実施例および各比較例において、第1黒鉛材15および第2黒鉛材25は熱膨張係数が同じものを使用した。
After bonding, heat curing was performed in the air at 80 ° C. for 4 hours, 120 ° C. for 4 hours, and 200 ° C. for 1 hour, and then in a nitrogen atmosphere at a heating rate of 0.8 ° C./min at 1000 ° C. The temperature was raised to the above, and the adhesive was carbonized. The thickness t3 of the
(炭化珪素基板700の製造)
作製した黒鉛基材120を基板として、その表面に化学蒸着によって炭化珪素を成膜させた。具体的には、基板を10mm間隔で5枚積層するように成膜装置の石英反応管内にセットし、大気圧下において反応温度1400℃で、トリクロロメチルシランと水素との混合ガス(トリクロロメチルシランの濃度7.5vol%)を190l/minの流量で石英反応管内に送入し、40時間化学蒸着反応を行うことで炭化珪素を析出被着させて、基板中央部での厚さ0.7mmの炭化珪素膜600を形成した(図7(a))。円環状凸部31とそこへ成膜した炭化珪素膜600の厚みの合計Eは、1.3mmであった。また、炭化珪素膜600の熱膨張係数は、4.4×10-6/℃であった。
(Manufacturing of Silicon Carbide Substrate 700)
Using the prepared
次に、円環状凸部をそこへ成膜した炭化珪素膜600ごと、溝31a、31bに沿って超音波カッターで切断して黒鉛基材120の側面35を露出させた(露出工程 図7(b))。その後、黒鉛基材120を空気中で加熱して燃焼除去し(燃焼除去工程)、更に炭化珪素膜600の両面を研磨加工して(研磨工程)、直径150mm、厚さ0.5mmの平板状の炭化珪素基板700を製造した(図7(c))。
Next, the
(炭化珪素基板700の評価)
このようにして得られた炭化珪素基板700について、三次元形状測定機を用いて反り量を測定した。また、顕微鏡により炭化珪素基板700の表面のクラックや側面のチッピングの発生状況を観察した。得られた結果を、黒鉛の機械的性質(硬度、ヤング率)と共に表2に示す。なお、硬度は、「JIS Z-2246ショア硬さ試験-試験方法」に基づき、指示形試験機より測定した硬さである。
(Evaluation of Silicon Carbide Substrate 700)
The amount of warpage of the
表2の結果より、第1黒鉛材15および第2黒鉛材25の熱膨張係数が3.8×10-6/℃~5.6×10-6/℃であることにより、得られた炭化珪素基板700は反りが少なく、クラックやチッピングの発生は認められなかった(実施例1~6)。一方で、熱膨張係数が小さいと、得られた炭化珪素基板700の反りが大きくなり、また、クラックの発生が認められた(比較例1、2)。なお、表2において、反り量がマイナスとなっている実施例1、2では、炭化珪素基板700が、第1曲面10や第2曲面20の突出状態とは反対に、内側に突出して反った状態のものである。また、反り量がプラスとなっている実施例3~6、比較例1、2では、炭化珪素基板700が、第1曲面10や第2曲面20の突出状態と同様に、外側に突出して反った状態のものである。
From the results in Table 2, the carbonization obtained by the thermal expansion coefficients of the
[実施例7~9、比較例3~5]
熱膨張係数が実施例4と同一の黒鉛材を用いて、曲率半径を2000~12000mmまで2000mmごとに変えた黒鉛基材120を、実施例4と同様の方法により作製した。次いで、実施例4と同一の方法により、平板状の炭化珪素基板700を製造した。このようにして得られた炭化珪素基板700について、同様に三次元形状測定機を用いて反り量を測定し、また顕微鏡により炭化珪素基板700の表面のクラックや側面のチッピングの発生状況を観察した。黒鉛基材120の曲率半径、厚みTと共に、炭化珪素基板700の反り量およびクラックの発生の評価結果を、表3に示す。
[Examples 7 to 9, Comparative Examples 3 to 5]
Using a graphite material having the same coefficient of thermal expansion as in Example 4, a
表3の結果より、黒鉛基材120の曲率半径が6000mm~10000mmであることにより、得られた炭化珪素基板700は反りが少なく、クラックやチッピングの発生は認められなかった(実施例7~9)。一方で、黒鉛基材110の曲率半径が2000~4000mmの場合や12000mmの場合には、得られた炭化珪素基板700の反りが大きくなり、また、クラックの発生が認められた(比較例3~5)。
From the results in Table 3, since the radius of curvature of the
[比較例6~8]
接合層40の直径を直径D1およびD2と同様に150.6mmとし、円環状凸部31の無い黒鉛基材130(図9)を用いたこと以外は、実施例7~9と同じ方法で炭化珪素膜600を成膜した(図9(a))。黒鉛基材130の第1曲面140および第2曲面150に成膜させた炭化珪素基板600が一体化し、外周端部を形成してしまって黒鉛基材130が完全に被覆されてしまい、燃焼除去することが不可能となったので、炭化珪素膜600の外周側面640を切断除去して黒鉛基材130の側面36を露出させた(図9(b))。そして、実施例7~9と同じ方法で黒鉛基材130を燃焼除去して炭化珪素基板710を得た(図9(c))。このようにして得られた炭化珪素基板710について、同様に三次元形状測定機を用いて反り量を測定し、また顕微鏡により炭化珪素基板710の表面のクラックや端部720の表面におけるチッピングの発生状況を観察した。黒鉛基材130の曲率半径、厚みTと共に、炭化珪素基板710の反り量、クラックおよびチッピングの発生の評価結果を表4に示す。
[Comparative Examples 6 to 8]
The diameter of the
表4の結果より、円環状凸部31の無い黒鉛基材130を用いたことにより、その成膜させた炭化珪素基板600が一体化して黒鉛基材130を完全に被覆してしまったため、黒鉛基材130を燃焼除去するためには、炭化珪素膜600の外周側面640を切断除去する工程が必要となった。その結果、この切断除去の工程により、炭化珪素膜600にチッピングが発生してしまい、10枚の炭化珪素基板710のうち、端部720が細かく欠けてしまったものが、3枚以上あった。
From the results in Table 4, since the
[まとめ]
以上より、本発明によれば、反り量が少なく平坦性に優れ、かつ亀裂や割れのない炭化珪素基板を容易に製造することができる。また、黒鉛基材に空隙があることで燃焼除去し易いために、黒鉛基材を横断方向に切断して上下に2分割する処理が必要ないため、この処理によって生じるおそれのある炭化珪素膜の割れの発生を防止することができる。よって、本発明であれば、高純度で緻密性、耐蝕性等に優れ、反りや亀裂のない炭化珪素基板、例えばデバイス作製用のウエハとして有用な炭化珪素基板を容易に製造することが可能であるため、産業上有用である。
[summary]
From the above, according to the present invention, it is possible to easily manufacture a silicon carbide substrate having a small amount of warpage, excellent flatness, and no cracks or cracks. Further, since the graphite base material has voids and is easily removed by combustion, it is not necessary to cut the graphite base material in the transverse direction and divide the graphite base material into upper and lower parts. It is possible to prevent the occurrence of cracks. Therefore, according to the present invention, it is possible to easily manufacture a silicon carbide substrate having high purity, excellent density, corrosion resistance, etc., and having no warp or crack, for example, a silicon carbide substrate useful as a wafer for manufacturing a device. Therefore, it is industrially useful.
10 第1曲面
11 円周
12 第1裏面
13 円周
14 第1側面部
15 第1黒鉛材
20 第2曲面
21 円周
22 第2裏面
23 円周
24 第2側面部
25 第2黒鉛材
30 側面部
31 円環状凸部
31a 周溝
31b 周溝
32 空隙
32a 開口部
32b 開口部
35 側面
36 側面
40 接合層
50 カーボン接着剤
100 黒鉛基材
110 黒鉛基材
120 黒鉛基材
130 黒鉛基材
140 第1曲面
150 第2曲面
500 黒鉛基材
550 表面
600 炭化珪素膜
610 柱状組織
620 微細組織
630 炭化珪素膜
640 外周側面
650 表面
660 表面
700 炭化珪素基板
710 炭化珪素基板
720 端部
b 幅
C 直線
C1 交点
C2 交点
D 直径
D1 直径
D2 直径
E 厚みの合計
r 曲率半径
s 厚み
s1 厚み
s2 厚み
T 厚み
t1 厚み
t2 厚み
t3 厚み
α1 熱膨張係数
α2-L 熱膨張係数
α2-S 熱膨張係数
w 幅
W 直径
10 1st curved
Claims (14)
前記第1曲面とは反対の面であって、かつ、直径が同一であり、外側に突出する半楕円体形状の第2曲面と、
前記第1曲面および前記第2曲面の直径と同一の直径であり、前記第1曲面の円周と前記第2曲面の円周とをつなぐ円柱状の側面部と、
前記側面部を周回し、外側に突出する円環状凸部と、を備え、
前記側面部は、外部へ開口する複数の開口部を有する空隙を備える、円盤形状の黒鉛基材。 A semi-elliptical first curved surface protruding outward,
A semi-elliptical second curved surface that is opposite to the first curved surface and has the same diameter and protrudes outward.
A columnar side surface portion having the same diameter as the diameters of the first curved surface and the second curved surface and connecting the circumference of the first curved surface and the circumference of the second curved surface.
It is provided with an annular convex portion that circulates around the side surface portion and projects outward.
The side surface portion is a disk-shaped graphite base material having voids having a plurality of openings that open to the outside.
前記第2曲面を表面とし、前記第2曲面の直径と同一の直径を有する平面状の第2裏面、および、前記第2曲面および前記第2裏面の直径と同一の直径であり、前記第2曲面の円周と前記第2裏面の円周とをつなぐ円柱状の第2側面部を備える第2黒鉛材と、
前記第1裏面および前記第2裏面と接合し、前記円環状凸部を有する接合層と、を備え、
前記黒鉛基材の側面部は、前記第1側面部、前記第1裏面、前記接合層、前記第2裏面、前記第2側面部を有する、請求項1~5のいずれか1項に記載の黒鉛基材。 The first curved surface is a front surface, and the first back surface is a plane having the same diameter as the diameter of the first curved surface, and the diameter is the same as the diameters of the first curved surface and the first back surface. A first graphite material having a columnar first side surface portion connecting the circumference of the curved surface and the circumference of the first back surface,
The second curved surface is a front surface, and the diameter is the same as the diameters of the second curved surface and the second back surface, which are planar and have the same diameter as the diameter of the second curved surface. A second graphite material having a columnar second side surface portion connecting the circumference of the curved surface and the circumference of the second back surface, and
A bonding layer that is bonded to the first back surface and the second back surface and has the annular convex portion is provided.
The aspect according to any one of claims 1 to 5, wherein the side surface portion of the graphite substrate has the first side surface portion, the first back surface portion, the bonding layer, the second back surface portion, and the second side surface portion. Graphite substrate.
前記露出工程後、黒鉛基材を燃焼させて除去する燃焼除去工程と、を含む、炭化珪素基板の製造方法。 An exposure step obtained by the film forming method according to claim 11, wherein at least a part of the annular convex portion of the graphite substrate having the silicon carbide deposited on the surface is removed to expose the graphite substrate. ,
A method for manufacturing a silicon carbide substrate, which comprises a combustion removing step of burning and removing a graphite base material after the exposure step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018214979A JP7081453B2 (en) | 2018-11-15 | 2018-11-15 | Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018214979A JP7081453B2 (en) | 2018-11-15 | 2018-11-15 | Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020083666A JP2020083666A (en) | 2020-06-04 |
JP7081453B2 true JP7081453B2 (en) | 2022-06-07 |
Family
ID=70909628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018214979A Active JP7081453B2 (en) | 2018-11-15 | 2018-11-15 | Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7081453B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7484516B2 (en) * | 2020-07-13 | 2024-05-16 | 住友金属鉱山株式会社 | Exhaust gas treatment method and silicon carbide polycrystalline wafer manufacturing method |
JP7484515B2 (en) * | 2020-07-13 | 2024-05-16 | 住友金属鉱山株式会社 | Exhaust gas treatment method and silicon carbide polycrystalline wafer manufacturing method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000273632A (en) | 1999-03-25 | 2000-10-03 | Ibiden Co Ltd | Production of flat ceramic bulk material free from warpage by chemical vapor deposition method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08188468A (en) * | 1994-12-29 | 1996-07-23 | Toyo Tanso Kk | Formed silicon carbide produced by chemical vapor deposition and its production |
JPH08188408A (en) * | 1994-12-29 | 1996-07-23 | Toyo Tanso Kk | Silicon carbide molded product by chemical vapor deposition and its production |
JPH1017382A (en) * | 1996-06-28 | 1998-01-20 | Mitsubishi Pencil Co Ltd | Production of silicon carbide formed body |
JPH1053464A (en) * | 1996-08-06 | 1998-02-24 | Toyo Tanso Kk | Production of chemical vapor deposition-silicon carbide material |
JP3958397B2 (en) * | 1997-02-17 | 2007-08-15 | 東洋炭素株式会社 | Method for producing chemical vapor deposition silicon carbide material |
JP3811540B2 (en) * | 1997-03-11 | 2006-08-23 | 東海カーボン株式会社 | Method for producing silicon carbide molded body |
-
2018
- 2018-11-15 JP JP2018214979A patent/JP7081453B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000273632A (en) | 1999-03-25 | 2000-10-03 | Ibiden Co Ltd | Production of flat ceramic bulk material free from warpage by chemical vapor deposition method |
Also Published As
Publication number | Publication date |
---|---|
JP2020083666A (en) | 2020-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3938361B2 (en) | Carbon composite material | |
JP5125098B2 (en) | Manufacturing method of nitride semiconductor free-standing substrate | |
JP2012214376A (en) | Seventy five millimeter silicon carbide wafer with low warp, bow, and ttv | |
WO2005116307A1 (en) | Process for producing wafer of silicon carbide single-crystal | |
WO2017164233A1 (en) | Manufacturing method for aluminum nitride single-crystal substrate | |
JP7081453B2 (en) | Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method | |
JP2006348388A (en) | Carbon composite material | |
JP7163756B2 (en) | LAMINATED PRODUCT, METHOD FOR MANUFACTURING LAMINATED BODY, AND METHOD FOR MANUFACTURING SILICON CARBIDE POLYCRYSTALLINE SUBSTRATE | |
JP7103182B2 (en) | Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method | |
CN109312491B (en) | Nitride semiconductor template, method for manufacturing nitride semiconductor template, and method for manufacturing nitride semiconductor free-standing substrate | |
JP3094312B2 (en) | Susceptor | |
JP3811540B2 (en) | Method for producing silicon carbide molded body | |
JP4619036B2 (en) | Carbon composite material | |
JP7294021B2 (en) | Method for surface treatment of graphite support substrate, method for depositing polycrystalline silicon carbide film, and method for manufacturing polycrystalline silicon carbide substrate | |
JP7255473B2 (en) | Method for manufacturing polycrystalline silicon carbide substrate | |
JP7220844B2 (en) | Manufacturing method of SiC polycrystalline substrate | |
JP7322408B2 (en) | Polycrystalline silicon carbide substrate, method for producing polycrystalline silicon carbide film, and method for producing polycrystalline silicon carbide substrate | |
JP2022067844A (en) | Deposition method for silicon carbide polycrystalline film, and production method for silicon carbide polycrystalline substrate | |
JP7322783B2 (en) | Film formation support substrate, method for producing film formation support substrate, method for forming polycrystalline film, and method for producing polycrystalline substrate | |
JP7413768B2 (en) | Method for manufacturing polycrystalline substrate | |
JP7367541B2 (en) | Method for manufacturing silicon carbide polycrystalline substrate | |
JP7371448B2 (en) | Method for removing graphite support substrate and method for manufacturing silicon carbide polycrystalline substrate | |
JP7375580B2 (en) | Support substrate for film formation and manufacturing method of polycrystalline substrate | |
JP7204625B2 (en) | Group III compound substrate manufacturing method and substrate manufactured by the manufacturing method | |
WO2014123097A1 (en) | Method for manufacturing composite substrate and semiconductor wafer using said substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210623 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220509 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7081453 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |