JP7081453B2 - Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method - Google Patents

Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method Download PDF

Info

Publication number
JP7081453B2
JP7081453B2 JP2018214979A JP2018214979A JP7081453B2 JP 7081453 B2 JP7081453 B2 JP 7081453B2 JP 2018214979 A JP2018214979 A JP 2018214979A JP 2018214979 A JP2018214979 A JP 2018214979A JP 7081453 B2 JP7081453 B2 JP 7081453B2
Authority
JP
Japan
Prior art keywords
graphite
silicon carbide
curved surface
base material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018214979A
Other languages
Japanese (ja)
Other versions
JP2020083666A (en
Inventor
裕二 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018214979A priority Critical patent/JP7081453B2/en
Publication of JP2020083666A publication Critical patent/JP2020083666A/en
Application granted granted Critical
Publication of JP7081453B2 publication Critical patent/JP7081453B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

本発明は、黒鉛基材、炭化珪素の成膜方法および炭化珪素基板の製造方法に関する。 The present invention relates to a graphite substrate, a method for forming a silicon carbide film, and a method for manufacturing a silicon carbide substrate.

炭化珪素は、2.2~3.3eVの広い禁制帯幅を有するワイドバンドギャップ半導体であり、その優れた物理的、化学的特性から、例えば、高周波電子デバイス、高耐圧かつ高出力電子デバイス、青色から紫外にかけての短波長光デバイス等をはじめとして、炭化珪素(SiC)によるデバイス(半導体素子)作製の研究開発が盛んに行われている。SiCデバイスの実用化を進めるにあたっては、高品質のSiCエピタキシャル成長のために大口径の炭化珪素基板を製造することが求められている。現在、その多くは、種結晶を用いた昇華再結晶法(改良レーリー法、改良型レーリー法等と呼ばれる)やCVD法等で製造されている。 Silicon carbide is a wide bandgap semiconductor having a wide forbidden bandwidth of 2.2 to 3.3 eV, and because of its excellent physical and chemical properties, for example, high frequency electronic devices, high withstand voltage and high output electronic devices, Research and development of devices (semiconductor devices) using silicon carbide (SiC), including short-wavelength optical devices from blue to ultraviolet, are being actively carried out. In order to promote the practical use of SiC devices, it is required to manufacture a large-diameter silicon carbide substrate for high-quality SiC epitaxial growth. Currently, most of them are manufactured by a sublimation recrystallization method (called an improved Rayleigh method, an improved Rayleigh method, etc.) using a seed crystal, a CVD method, or the like.

CVD法(化学的気相蒸着法)を利用する炭化珪素基板の製造方法は、原料ガスを気相反応させて基材面上に炭化珪素生成物を析出させて被膜を生成した後、基材を除去するものであり、緻密で高純度の炭化珪素基板を得ることができる。また、基材は切削や研磨等により除去されるが、基材に炭素材を用いると空気中で熱処理することにより除去できるので、プロセスを簡易化できる利点がある。 In the method of manufacturing a silicon carbide substrate using a CVD method (chemical vapor deposition method), a raw material gas is subjected to a gas phase reaction to precipitate a silicon carbide product on the surface of the substrate to form a film, and then the substrate is formed. It is possible to obtain a dense and high-purity silicon carbide substrate. Further, the base material is removed by cutting, polishing, or the like, but if a carbon material is used for the base material, it can be removed by heat treatment in the air, so that there is an advantage that the process can be simplified.

CVD法による炭化珪素基板の製造方法としては、基材の表面に化学蒸着法により炭化珪素膜を形成し、その後前記基材を除去して得られた炭化珪素基板の両面に、更に炭化珪素膜を形成することを特徴とする、化学蒸着法による炭化珪素基板の製造方法が提案されている(特許文献1)。 As a method for manufacturing a silicon carbide substrate by the CVD method, a silicon carbide film is formed on the surface of a base material by a chemical vapor deposition method, and then the silicon carbide film is further formed on both surfaces of the silicon carbide substrate obtained by removing the base material. A method for manufacturing a silicon carbide substrate by a chemical vapor deposition method, which is characterized by forming a silicon carbide substrate, has been proposed (Patent Document 1).

また、基材の表面に化学蒸着法により炭化珪素膜を形成し、その後前記基材を除去することにより、炭化珪素基板を製造する方法において、化学蒸着法により炭化珪素層を形成し、次いで該炭化珪素層の表面を平坦化する工程を複数回繰り返すことにより、各層の厚みが100μm以下の炭化珪素層を所望厚み以上に積層した後、基材を除去することを特徴とする化学蒸着法による炭化珪素基板の製造方法が提案されている(特許文献2)。 Further, in a method for producing a silicon carbide substrate by forming a silicon carbide film on the surface of a substrate by a chemical vapor deposition method and then removing the substrate, a silicon carbide layer is formed by a chemical vapor deposition method, and then the substrate is formed. By repeating the step of flattening the surface of the silicon carbide layer a plurality of times, the silicon carbide layer having a thickness of 100 μm or less is laminated to a desired thickness or more, and then the base material is removed by a chemical vapor deposition method. A method for manufacturing a silicon carbide substrate has been proposed (Patent Document 2).

さらに、上面および下面が凸形状の曲面からなり、側面部に円周方向に沿って溝を形成した円盤形状の黒鉛材を基材とし、該基材表面にCVD法により炭化珪素を析出被着させた後、基材を燃焼して除去する炭化珪素基板の製造方法(特許文献3)が提案されている。 Further, a disk-shaped graphite material having a convex upper surface and a lower surface and having grooves formed along the circumferential direction on the side surface is used as a base material, and silicon carbide is deposited and adhered to the surface of the base material by a CVD method. A method for manufacturing a silicon carbide substrate (Patent Document 3) has been proposed in which a base material is burned and removed after the silicon carbide is formed.

特開平8-188408号公報Japanese Unexamined Patent Publication No. 8-188408 特開平8-188468号公報Japanese Unexamined Patent Publication No. 8-188468 特開平10-251062号公報Japanese Unexamined Patent Publication No. 10-251062

しかしながら、特許文献1と特許文献2の製造方法は、CVD法で形成するSiC膜を所望の膜厚にまで一気に形成することなく、所望の膜厚になるまで複数回成膜する方法であり、また、平坦化処理する等の工程が煩雑化し、製造効率が低下するという問題点がある。 However, the manufacturing methods of Patent Document 1 and Patent Document 2 are methods in which the SiC film formed by the CVD method is not formed at once to a desired film thickness, but is formed a plurality of times until the desired film thickness is reached. Further, there is a problem that the process such as the flattening process becomes complicated and the manufacturing efficiency is lowered.

また、特許文献3の製造方法では、黒鉛材の基材の燃焼に時間がかかる。そこで、短時間で燃焼除去するには、基材を例えば溝の部分で水平に切断し、黒鉛を露出する必要がある。この場合、切断時に成膜した炭化珪素膜が割れたり、炭化珪素膜の端部が欠けたりするという問題が生じるおそれがある。 Further, in the manufacturing method of Patent Document 3, it takes time to burn the base material of the graphite material. Therefore, in order to burn and remove the substrate in a short time, it is necessary to cut the substrate horizontally, for example, at the groove portion to expose the graphite. In this case, there may be a problem that the silicon carbide film formed at the time of cutting is cracked or the end portion of the silicon carbide film is chipped.

さらに、特許文献3に開示されたように、側面部に円周方向に沿って溝を形成した黒鉛材では、この溝の幅が、成膜した炭化珪素膜の膜厚の2倍以上ないと、黒鉛材の上面で形成された炭化珪素膜と下面で形成された炭化珪素膜がつながってしまうおそれがある。そして、つながった炭化珪素膜を分断するべく、黒鉛材の端部を研磨除去すると、黒鉛材の端部が欠けるおそれがあるため、厚みを薄くした黒鉛材を使用することが困難となる問題がある。 Further, as disclosed in Patent Document 3, in a graphite material having grooves formed along the circumferential direction on the side surface portion, the width of the grooves must be at least twice the thickness of the formed silicon carbide film. There is a possibility that the silicon carbide film formed on the upper surface of the graphite material and the silicon carbide film formed on the lower surface may be connected. Then, if the end portion of the graphite material is polished and removed in order to divide the connected silicon carbide film, the end portion of the graphite material may be chipped, which makes it difficult to use a thin graphite material. be.

上記の問題点に鑑み、本発明では、煩雑な工程を必要とすることなく、化学蒸着により成膜した炭化珪素膜に亀裂や欠けが発生せず、また、反りが少なく、表面の平滑な炭化珪素基板を能率よく製造することが可能な、黒鉛基材、炭化珪素の成膜方法および炭化珪素基板の製造方法を提供することを目的とする。 In view of the above problems, in the present invention, the silicon carbide film formed by chemical vapor deposition does not crack or chip, has less warpage, and has a smooth surface, without requiring a complicated process. It is an object of the present invention to provide a graphite substrate, a method for forming a film of silicon carbide, and a method for producing a silicon carbide substrate, which can efficiently produce a silicon substrate.

上記課題を解決するために、本発明の黒鉛基材は、外側に突出する半楕円体形状の第1曲面と、前記第1曲面とは反対の面であって、かつ、直径が同一であり、外側に突出する半楕円体形状の第2曲面と、前記第1曲面および前記第2曲面の直径と同一の直径であり、前記第1曲面の円周と前記第2曲面の円周とをつなぐ円柱状の側面部と、前記側面部を周回し、外側に突出する円環状凸部と、を備え、前記側面部は、外部へ開口する複数の開口部を有する空隙を備える、円盤形状の黒鉛基材である。 In order to solve the above problems, the graphite base material of the present invention has a semi-elliptical first curved surface protruding outward and a surface opposite to the first curved surface, and has the same diameter. , The diameter of the semi-elliptical second curved surface protruding outward is the same as the diameter of the first curved surface and the second curved surface, and the circumference of the first curved surface and the circumference of the second curved surface are defined as each other. A disk-shaped surface portion comprising a columnar side surface portion to be connected and an annular convex portion that circulates around the side surface portion and projects outward, and the side surface portion includes a gap having a plurality of openings that open to the outside. It is a graphite base material.

前記円環状凸部は、前記第1曲面の直径よりも大きく、前記円環状凸部を折り取り可能な周溝を有してもよい。 The annular convex portion may have a peripheral groove larger than the diameter of the first curved surface and capable of breaking the annular convex portion.

前記第1曲面および前記第2曲面の曲率半径が5000mm~11000mmであってもよい。 The radius of curvature of the first curved surface and the second curved surface may be 5000 mm to 11000 mm.

前記黒鉛基材は、厚みが1.4mm~3.1mmであってもよい。 The graphite substrate may have a thickness of 1.4 mm to 3.1 mm.

前記空隙の数が3~5であってもよい。 The number of the voids may be 3 to 5.

前記黒鉛基材は、前記第1曲面を表面とし、前記第1曲面の直径と同一の直径を有する平面状の第1裏面、および、前記第1曲面および前記第1裏面の直径と同一の直径であり、前記第1曲面の円周と前記第1裏面の円周とをつなぐ円柱状の第1側面部を備える第1黒鉛材と、前記第2曲面を表面とし、前記第2曲面の直径と同一の直径を有する平面状の第2裏面、および、前記第2曲面および前記第2裏面の直径と同一の直径であり、前記第2曲面の円周と前記第2裏面の円周とをつなぐ円柱状の第2側面部を備える第2黒鉛材と、前記第1裏面および前記第2裏面と接合し、前記円環状凸部を有する接合層と、を備え、前記黒鉛基材の側面部は、前記第1側面部、前記第1裏面、前記接合層、前記第2裏面、前記第2側面部を有してもよい。 The graphite base material has a first curved surface as a surface, a planar first back surface having the same diameter as the diameter of the first curved surface, and the same diameter as the diameters of the first curved surface and the first back surface. A first graphite material having a columnar first side surface portion connecting the circumference of the first curved surface and the circumference of the first back surface, and the diameter of the second curved surface having the second curved surface as a surface. A planar second back surface having the same diameter as the above, and having the same diameter as the diameters of the second curved surface and the second back surface, and the circumference of the second curved surface and the circumference of the second back surface. The side surface portion of the graphite base material is provided with a second graphite material having a columnar second side surface portion to be connected, and a bonding layer bonded to the first back surface and the second back surface and having the annular convex portion. May have the first side surface portion, the first back surface portion, the bonding layer, the second back surface portion, and the second side surface portion.

前記第1黒鉛材および前記第2黒鉛材の熱膨張係数が3.0×10-6/℃~6.0×10-6/℃であってもよい。 The coefficient of thermal expansion of the first graphite material and the second graphite material may be 3.0 × 10 −6 / ° C. to 6.0 × 10 −6 / ° C.

前記接合層は、カーボン接着剤によって前記第1裏面および前記第2裏面と接合してもよい。 The bonding layer may be bonded to the first back surface and the second back surface with a carbon adhesive.

前記第1側面部および前記第2側面部の厚みは、0.2mm~0.6mmであってもよい。 The thickness of the first side surface portion and the second side surface portion may be 0.2 mm to 0.6 mm.

前記接合層の厚みは、0.8mm~1.8mmであってもよい。 The thickness of the bonding layer may be 0.8 mm to 1.8 mm.

また、上記課題を解決するために、本発明の炭化珪素の成膜方法は、前記黒鉛基材の表面に、化学蒸着によって炭化珪素を成膜する成膜工程を含む。 Further, in order to solve the above problems, the silicon carbide film forming method of the present invention includes a film forming step of forming silicon carbide on the surface of the graphite substrate by chemical vapor deposition.

また、上記課題を解決するために、本発明の炭化珪素基板の製造方法は、前記の成膜方法により得た、表面に前記炭化珪素が成膜した前記黒鉛基材の前記円環状凸部の少なくとも一部を除去して前記黒鉛基材を露出させる露出工程と、前記露出工程後、黒鉛基材を燃焼させて除去する燃焼除去工程と、を含む。 Further, in order to solve the above problems, the method for manufacturing a silicon carbide substrate of the present invention is the annular convex portion of the graphite substrate on which the silicon carbide is formed on the surface obtained by the film forming method. It includes an exposure step of removing at least a part of the graphite base material to expose the graphite base material, and a combustion removal step of burning and removing the graphite base material after the exposure step.

前記円環状凸部は、前記第1曲面の直径よりも大きく、前記円環状凸部を折り取り可能な周溝を有してもよく、炭化珪素基板の製造方法は、前記露出工程において前記周溝を折り取って前記黒鉛基材を露出させてもよい。 The annular convex portion may have a peripheral groove larger than the diameter of the first curved surface and may have a peripheral groove capable of breaking the annular convex portion, and the method for manufacturing a silicon carbide substrate is the peripheral in the exposure step. The groove may be cut off to expose the graphite substrate.

前記燃焼除去工程後、成膜した前記炭化珪素の表面を研磨する研磨工程を含んでもよい。 After the combustion removal step, a polishing step of polishing the surface of the formed silicon carbide may be included.

本発明によれば、反り量が少なく平坦性に優れ、かつ亀裂や端部のチッピングの発生がない炭化珪素基板を製造することが可能となる。したがって、デバイス作成用、エピタキシャル成長用ウエハやサセプター等の半導体の製造に用いられる各種部材、耐熱性や耐蝕性等が要求される工業用材料の製造において、極めて有用である。 According to the present invention, it is possible to manufacture a silicon carbide substrate having a small amount of warpage, excellent flatness, and no cracks or chipping at the edges. Therefore, it is extremely useful in the manufacture of various members used in the manufacture of semiconductors such as wafers for device fabrication and epitaxial growth wafers and susceptors, and industrial materials that require heat resistance and corrosion resistance.

本発明の黒鉛基材の一例として黒鉛基材100を示す図である。It is a figure which shows the graphite base material 100 as an example of the graphite base material of this invention. 黒鉛基材の厚みが与える黒鉛基材の積層数への影響を計算した結果を示すグラフである。It is a graph which shows the result of having calculated the influence which the thickness of a graphite base material has on the number of layers of a graphite base material. 黒鉛基材に炭化珪素膜を成膜する際に生じる応力を説明する図である。It is a figure explaining the stress generated when the silicon carbide film is formed on the graphite base material. 図3とは異なる応力を説明する図である。It is a figure explaining the stress different from FIG. 本発明の黒鉛基材の一例として黒鉛基材110を示す図である。It is a figure which shows the graphite base material 110 as an example of the graphite base material of this invention. 黒鉛製のシート材を加工して得た接合層40を上から見た図である。It is a figure which looked at the bonding layer 40 obtained by processing the sheet material made of graphite from the top. 黒鉛基材110を用いた炭化珪素基板の製造の工程を説明するための断面図である。It is sectional drawing for demonstrating the process of manufacturing the silicon carbide substrate using a graphite base material 110. 本発明の黒鉛基材の一例として黒鉛基材120を示す図である。It is a figure which shows the graphite base material 120 as an example of the graphite base material of this invention. 円環状凸部31の無い黒鉛基材130を用いた炭化珪素基板の製造の工程を説明するための断面図である。It is sectional drawing for demonstrating the process of manufacturing the silicon carbide substrate using the graphite base material 130 without an annular convex portion 31.

以下、本発明の具体的な実施形態について、図面を参照しつつ説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

[黒鉛基材]
本発明の黒鉛基材は、第1曲面と、第2曲面と、側面部と、円環状凸部と、を備える。化学蒸着によって表面に炭化珪素膜を成膜させるための基材であり、炭化珪素を成膜後は基材を燃焼させて除去することから、黒鉛製の基材を使用する。図1に、本発明の黒鉛基材の一例として、黒鉛基材100を上からみた図(図1(a))と、黒鉛基材100の側面図(図1(b))を示す。黒鉛基材100は円盤形状であり、上部から見ると円状であり(図1(a))、側面から見ると一定の厚みがある(図1(b))。なお、黒鉛基材100の第1曲面10の円周11の直径Dは、特に限定されないが、通常は約4~6インチ(約100~150mm)である。
[Graphite substrate]
The graphite substrate of the present invention includes a first curved surface, a second curved surface, a side surface portion, and an annular convex portion. A graphite base material is used because it is a base material for forming a silicon carbide film on the surface by chemical vapor deposition, and the base material is burned and removed after the silicon carbide is formed. FIG. 1 shows a view of the graphite base material 100 from above (FIG. 1 (a)) and a side view of the graphite base material 100 (FIG. 1 (b)) as an example of the graphite base material of the present invention. The graphite base material 100 has a disk shape, is circular when viewed from above (FIG. 1 (a)), and has a certain thickness when viewed from the side surface (FIG. 1 (b)). The diameter D of the circumference 11 of the first curved surface 10 of the graphite base material 100 is not particularly limited, but is usually about 4 to 6 inches (about 100 to 150 mm).

(厚み)
黒鉛基材100の厚みTは、1.4mm~3.1mmであることが好ましい。図2は、CVD装置に黒鉛基材100を収容する収容部の高さを250mmと想定し、この収容部へ黒鉛基材100を10mm間隔で積層した場合の、黒鉛基材100の厚みTが与える黒鉛基材100の積層数への影響を計算した結果を示す。厚みTが3mmの場合は、黒鉛基材100を20枚積層できるが、厚みTが3.2mmを超えると、積層可能な黒鉛基材100の枚数が1枚減り、更に厚みTが4mmの場合には、積層可能な黒鉛基材100の枚数が18枚に減ることが分かる。よって、黒鉛基材100の積層可能な枚数を考慮して、厚みTの上限は3.1が好ましい。また、厚みTが1.4mm未満の場合には、後述する第1側面部および前記第2側面部の厚みや接合層の厚みを好ましい範囲に設定することが難しくなり、黒鉛基材100を良好な円盤形状とすることが困難となるおそれがある。
(Thickness)
The thickness T of the graphite base material 100 is preferably 1.4 mm to 3.1 mm. In FIG. 2, assuming that the height of the accommodating portion for accommodating the graphite substrate 100 in the CVD apparatus is 250 mm, the thickness T of the graphite substrate 100 when the graphite substrate 100 is laminated at intervals of 10 mm in this accommodating portion is The result of calculating the influence on the number of laminated graphite base material 100 is shown. When the thickness T is 3 mm, 20 graphite base materials 100 can be laminated, but when the thickness T exceeds 3.2 mm, the number of laminateable graphite base materials 100 is reduced by one, and when the thickness T is 4 mm. It can be seen that the number of the graphite base materials 100 that can be laminated is reduced to 18 sheets. Therefore, the upper limit of the thickness T is preferably 3.1 in consideration of the number of graphite substrates 100 that can be laminated. Further, when the thickness T is less than 1.4 mm, it becomes difficult to set the thickness of the first side surface portion and the second side surface portion to be described later and the thickness of the bonding layer within a preferable range, and the graphite base material 100 is good. It may be difficult to make a good disk shape.

〈第1曲面〉
第1曲面10は、外側に突出する半楕円体形状の曲面である。化学蒸着により黒鉛基材の表面に炭化珪素を析出させて炭化珪素膜を形成する場合、黒鉛基材と炭化珪素膜の熱膨張係数が異なるため、黒鉛基材および炭化珪素膜には内部応力が蓄積される。そのため、炭化珪素膜を形成する際の高温から、成膜を終了して成膜装置から取り出すまでの冷却過程において、内部応力によって炭化珪素膜に亀裂が生じたり、反りが発生したりする場合がある。
<First curved surface>
The first curved surface 10 is a semi-elliptical curved surface protruding outward. When silicon carbide is deposited on the surface of a graphite base material by chemical vapor deposition to form a silicon carbide film, the graphite base material and the silicon carbide film have different coefficients of thermal expansion, so that the graphite base material and the silicon carbide film have internal stress. Accumulate. Therefore, in the cooling process from the high temperature at which the silicon carbide film is formed to the completion of film formation and removal from the film forming apparatus, the silicon carbide film may be cracked or warped due to internal stress. be.

例えば、図3、4に示すように平板形状の黒鉛基材500に炭化珪素膜600を化学蒸着により成膜する場合を想定し(図3(a)、図4(a))、黒鉛基材500の熱膨張係数をα1、炭化珪素膜600の柱状組織610の熱膨張係数をα2-L、炭化珪素膜600の微細組織620の熱膨張係数をα2-Sとする。 For example, assuming a case where a silicon carbide film 600 is formed by chemical vapor deposition on a flat plate-shaped graphite base material 500 as shown in FIGS. 3 and 4 (FIGS. 3 (a) and 4 (a)), the graphite base material is assumed. The coefficient of thermal expansion of 500 is α1, the coefficient of thermal expansion of the columnar structure 610 of the silicon carbide film 600 is α2-L, and the coefficient of thermal expansion of the fine structure 620 of the silicon carbide film 600 is α2-S.

化学蒸着による炭化珪素膜600の形成過程としては、まず黒鉛基材500上に炭化珪素の核が生成してアモルファス質あるいは微粒多結晶の微細組織620が成長し、更に柱状組織610の結晶組織に成長を続け、炭化珪素膜600が形成される。成膜後においては、黒鉛基材500の熱膨張係数が炭化珪素膜600よりも大きくなり、黒鉛基材500が側面において内側へ圧縮される方向へ内部応力が作用する場合があり、この場合には、黒鉛基材500の表面550は内側へ凹み、炭化珪素膜600の表面650は外側へ出っ張る状態に変形するような反りが発生する(図3(b))。 In the process of forming the silicon carbide film 600 by chemical vapor deposition, first, silicon carbide nuclei are formed on the graphite substrate 500, and an amorphous or fine-grained polycrystal fine structure 620 grows, and further becomes a crystal structure of a columnar structure 610. It continues to grow and the silicon carbide film 600 is formed. After the film formation, the coefficient of thermal expansion of the graphite base material 500 becomes larger than that of the silicon carbide film 600, and internal stress may act in the direction in which the graphite base material 500 is compressed inward on the side surface. The surface 550 of the graphite base material 500 is recessed inward, and the surface 650 of the silicon carbide film 600 is warped so as to be deformed so as to protrude outward (FIG. 3 (b)).

炭化珪素膜600を成膜後、黒鉛基材500を燃焼等により除去した後の場合について、図3(c)に示す。黒鉛基材500と接していた炭化珪素膜600の微細組織620の熱膨張係数α2-Sは、炭化珪素膜600の柱状組織610の熱膨張係数α2-Lに比べて小さいために、黒鉛基材500が除去された後は、炭化珪素膜600の微細組織620では側面において外側へ引っ張られる方向へ内部応力が作用し、炭化珪素膜600の柱状組織610では側面において内側へ圧縮される方向へ応力が作用する。その結果、炭化珪素膜600の柱状組織610の表面650は凹み、炭化珪素膜600の微細組織620の表面660は出っ張る状態に変形するような反りが発生する場合がある(図3(c))。 FIG. 3C shows a case where the silicon carbide film 600 is formed and the graphite base material 500 is removed by combustion or the like. Since the coefficient of thermal expansion α2-S of the fine structure 620 of the silicon carbide film 600 in contact with the graphite base material 500 is smaller than the coefficient of thermal expansion α2-L of the columnar structure 610 of the silicon carbide film 600, the graphite base material After the 500 is removed, the microstructure 620 of the silicon carbide film 600 is subjected to internal stress in the direction of being pulled outward on the side surface, and the columnar structure 610 of the silicon carbide film 600 is stressed in the direction of being compressed inward on the side surface. Works. As a result, the surface 650 of the columnar structure 610 of the silicon carbide film 600 may be dented, and the surface 660 of the microstructure 620 of the silicon carbide film 600 may be warped so as to be deformed into a protruding state (FIG. 3 (c)). ..

また、図3の場合とは異なり、炭化珪素膜600が成膜後において、黒鉛基材500の熱膨張係数が炭化珪素膜600よりも小さくなり、炭化珪素膜600が側面において内側へ圧縮される方向へ内部応力が作用する場合がある(図4(b))。この場合には、黒鉛基材500の表面550は外側へ出っ張り、炭化珪素膜600の表面650は内側へ凹む状態に変形するような反りが発生する(図4(b))。 Further, unlike the case of FIG. 3, after the silicon carbide film 600 is formed, the coefficient of thermal expansion of the graphite base material 500 becomes smaller than that of the silicon carbide film 600, and the silicon carbide film 600 is compressed inward on the side surface. Internal stress may act in the direction (Fig. 4 (b)). In this case, the surface 550 of the graphite base material 500 protrudes outward, and the surface 650 of the silicon carbide film 600 is warped so as to be deformed inward (FIG. 4B).

炭化珪素膜600を成膜後、図4(b)に示す反りの状態から、黒鉛基材500を燃焼等により除去した後の場合について、図4(c)に示す。黒鉛基材500と接していた炭化珪素膜600の微細組織620の熱膨張係数α2-Sは、炭化珪素膜600の柱状組織610の熱膨張係数α2-Lに比べて小さい。そのために、黒鉛基材500が除去された後においても、炭化珪素膜600の微細組織620では側面において外側へ引っ張られる方向へ内部応力が作用し、炭化珪素膜600の柱状組織610では側面において内側へ圧縮される方向へ応力が作用する。その結果、図3のように黒鉛基材500の除去によって反りが反転せずに、炭化珪素膜600の柱状組織610の表面650は凹み、炭化珪素膜600の微細組織620の表面660は出っ張る状態に変形するような反りが発生する場合がある(図4(c))。 FIG. 4C shows a case where the graphite base material 500 is removed from the warped state shown in FIG. 4B after the silicon carbide film 600 is formed by combustion or the like. The coefficient of thermal expansion α2-S of the fine structure 620 of the silicon carbide film 600 in contact with the graphite base material 500 is smaller than the coefficient of thermal expansion α2-L of the columnar structure 610 of the silicon carbide film 600. Therefore, even after the graphite base material 500 is removed, internal stress acts in the direction of being pulled outward on the side surface of the microstructure 620 of the silicon carbide film 600, and inside the columnar structure 610 of the silicon carbide film 600 on the side surface. Stress acts in the direction of being compressed to. As a result, as shown in FIG. 3, the warp is not reversed by removing the graphite base material 500, the surface 650 of the columnar structure 610 of the silicon carbide film 600 is dented, and the surface 660 of the fine structure 620 of the silicon carbide film 600 is protruding. Warpage that deforms to the surface may occur (FIG. 4 (c)).

本発明の黒鉛基材100は、図1(b)に示すように上面および下面の形状を外側に突出する半楕円体形状の曲面(第1曲面10、第2曲面20)とすることにより、この曲面に炭化珪素膜が凸形状に成膜されることで、内部応力により炭化珪素膜に凹方向の力が作用しても、凹形状の反りの程度を緩和することができる。 As shown in FIG. 1 (b), the graphite base material 100 of the present invention has a semi-elliptical curved surface (first curved surface 10, second curved surface 20) in which the shapes of the upper surface and the lower surface project outward. By forming the silicon carbide film in a convex shape on this curved surface, the degree of warpage of the concave shape can be alleviated even if a force in the concave direction acts on the silicon carbide film due to internal stress.

(曲率半径)
第1曲面10の曲率半径は、5000mm~11000mmであることが好ましい。曲率半径がこの範囲内であることにより、第1曲面10に成膜した炭化珪素膜が、黒鉛基材100が除去されることにより発生する反りを緩和し、クラックの発生を抑制することができる。曲率半径が5000mm未満や11000mmを超える場合には、反りが大きくなるおそれや、クラックが発生するおそれがある。
(curvature radius)
The radius of curvature of the first curved surface 10 is preferably 5000 mm to 11000 mm. When the radius of curvature is within this range, the silicon carbide film formed on the first curved surface 10 can alleviate the warp generated by removing the graphite base material 100 and suppress the occurrence of cracks. .. If the radius of curvature is less than 5000 mm or more than 11000 mm, the warp may increase or cracks may occur.

〈第2曲面〉
第2曲面20は、第1曲面10とは反対の面であって、かつ、直径が第1曲面10の直径(直径Dと同一)と同一であり、外側に突出する半楕円体形状の曲面である。黒鉛基材100は、その両面に炭化珪素膜が成膜される場合があるため、第1曲面10と第2曲面20が両面の関係となるよう、第2曲面20は第1曲面とは反対の面となる。そして、第2曲面20を外側に突出する半楕円体形状とすることで、この曲面に炭化珪素膜が凸形状に成膜されることとなり、内部応力により炭化珪素膜に凹方向の力が作用しても、凹形状の反りの程度を緩和することができる。なお、第2曲面20は第1曲面10と同一形状であれば、炭化珪素の成膜条件が同一となるため、第1曲面10および第2曲面20のいずれにおいても同質の炭化珪素が成膜される。
<Second curved surface>
The second curved surface 20 is a surface opposite to the first curved surface 10 and has the same diameter as the diameter of the first curved surface 10 (same as the diameter D), and is a semi-elliptical curved surface protruding outward. Is. Since a silicon carbide film may be formed on both sides of the graphite base material 100, the second curved surface 20 is opposite to the first curved surface so that the first curved surface 10 and the second curved surface 20 have a relationship of both sides. It becomes the surface of. Then, by forming the second curved surface 20 into a semi-elliptical shape protruding outward, a silicon carbide film is formed in a convex shape on this curved surface, and a concave force acts on the silicon carbide film due to internal stress. Even so, the degree of warpage of the concave shape can be alleviated. If the second curved surface 20 has the same shape as the first curved surface 10, the film forming conditions for silicon carbide are the same. Therefore, the same quality silicon carbide is formed on both the first curved surface 10 and the second curved surface 20. Will be done.

(曲率半径)
第2曲面20の曲率半径は、5000mm~11000mmであることが好ましい。曲率半径がこの範囲内であることにより、第1曲面10に成膜した炭化珪素膜が、黒鉛基材100が除去されることにより発生する反りを緩和し、クラックの発生を抑制することができる。曲率半径が5000mm未満や11000mmを超える場合には、反りが大きくなるおそれや、クラックが発生するおそれがある。
(curvature radius)
The radius of curvature of the second curved surface 20 is preferably 5000 mm to 11000 mm. When the radius of curvature is within this range, the silicon carbide film formed on the first curved surface 10 can alleviate the warp generated by removing the graphite base material 100 and suppress the occurrence of cracks. .. If the radius of curvature is less than 5000 mm or more than 11000 mm, the warp may increase or cracks may occur.

〈側面部〉
側面部30は、第1曲面10および第2曲面20の直径と同一の直径であり、第1曲面10の円周11と第2曲面20の円周21とをつなぐ円柱状であり、空隙を備える。
<Side part>
The side surface portion 30 has the same diameter as the diameters of the first curved surface 10 and the second curved surface 20, and is a columnar shape connecting the circumference 11 of the first curved surface 10 and the circumference 21 of the second curved surface 20 to form a void. Be prepared.

(空隙)
側面部30は、外部へ開口する複数の開口部32a、32bを有する空隙32を備える。空隙32があることで、空隙32内へ火が回って黒鉛基材100を燃焼除去させやすくなる。また、1つの空隙32に対して開口部が複数あることで(32a、32b)、空隙32が黒鉛基材100を貫通するため、空隙32内へより火が回りやすくなり、黒鉛基材100の燃焼除去効果がより高くなる。空隙32部には、化学蒸着用の原料ガスの供給が少ないため、その内部には炭化珪素膜が成膜され難い。従って、炭化珪素膜を成膜後に黒鉛基材100を燃焼除去する際において、空隙32が酸素に晒されて黒鉛基材100の燃焼がより容易となる。
(Gap)
The side surface portion 30 includes a gap 32 having a plurality of openings 32a and 32b that open to the outside. The presence of the voids 32 facilitates the burning and removal of the graphite base material 100 by causing fire to circulate in the voids 32. Further, since there are a plurality of openings for one void 32 (32a, 32b), the void 32 penetrates the graphite base material 100, so that it becomes easier for the fire to circulate in the void 32, and the graphite base material 100. The effect of removing combustion is higher. Since the supply of the raw material gas for chemical vapor deposition is small in the gap 32, it is difficult to form a silicon carbide film inside the gap 32. Therefore, when the graphite base material 100 is burnt and removed after the silicon carbide film is formed, the voids 32 are exposed to oxygen, and the graphite base material 100 is more easily burned.

空隙32の数は、3~5であることが好ましい。空隙32の数が2以下では、黒鉛基材100を燃焼除去する効果が小さくなるおそれがある。また、空隙32の数が6以上では、黒鉛基材100の強度が低下するおそれがある。空隙32の円周方向の幅wは、黒鉛基材100の燃焼除去効果の観点から0.8mm~3mmであることが好ましい。幅wが0.8mm未満の場合には、黒鉛基材100の燃焼除去に時間がかかるおそれがある。また、幅wが3mmより大きいと、黒鉛基材100の強度が低下するおそれがある。 The number of voids 32 is preferably 3-5. If the number of voids 32 is 2 or less, the effect of burning and removing the graphite base material 100 may be reduced. Further, if the number of voids 32 is 6 or more, the strength of the graphite base material 100 may decrease. The width w of the void 32 in the circumferential direction is preferably 0.8 mm to 3 mm from the viewpoint of the combustion removing effect of the graphite base material 100. If the width w is less than 0.8 mm, it may take time to remove the graphite base material by burning. Further, if the width w is larger than 3 mm, the strength of the graphite base material 100 may decrease.

〈円環状凸部〉
円環状凸部31は、側面部30を周回し、外側に突出する形状を有する。黒鉛基材100において、円環状凸部31が他の部分よりもはみ出すことで、炭化珪素膜600が成膜した後に、その端部の処理が簡便になる。例えば、特許文献3にあるような、側面部に円周方向に沿って凹んだ溝を形成した黒鉛基材の場合には、溝の幅が十分でないと、成膜した上面および下面に成膜した炭化珪素膜が溝においてつながって一体化してしまう場合がある。この場合、一体化した炭化珪素膜の端部に対して、研磨除去等の処理を行って上面と下面に成膜した炭化珪素膜を分離する必要があるが、研磨除去等の処理によって炭化珪素膜の端部にチッピング等の欠けが生じることがある。
<Circular convex part>
The annular convex portion 31 has a shape that goes around the side surface portion 30 and projects outward. In the graphite base material 100, the annular convex portion 31 protrudes from the other portions, which simplifies the treatment of the end portion of the silicon carbide film 600 after the film is formed. For example, in the case of a graphite base material having grooves recessed along the circumferential direction on the side surface as in Patent Document 3, if the width of the grooves is not sufficient, a film is formed on the upper surface and the lower surface of the film. The silicon carbide film may be connected and integrated in the groove. In this case, it is necessary to perform a treatment such as polishing removal on the end portion of the integrated silicon carbide film to separate the silicon carbide film formed on the upper surface and the lower surface. Chips such as chipping may occur at the edges of the film.

ただし、本発明のように円環状凸部31を設けておくことで、第1曲面10および第2曲面10の表面に炭化珪素膜600が成膜する過程において、円環状凸部31の表面にも炭化珪素膜600が成膜するものの、炭化珪素膜600が成膜後の円環状凸部31のみを切断してトリミングすれば、第1曲面10および第2曲面10の表面に成膜した炭化珪素膜600を分離することが容易となる。また、トリミングであれば、炭化珪素膜600の端部にチッピング等の欠けが生じることを防止することができる。 However, by providing the annular convex portion 31 as in the present invention, in the process of forming the silicon carbide film 600 on the surfaces of the first curved surface 10 and the second curved surface 10, the surface of the annular convex portion 31 is formed. Although the silicon carbide film 600 forms a film, if the silicon carbide film 600 cuts and trims only the annular convex portion 31 after the film formation, the carbonization formed on the surfaces of the first curved surface 10 and the second curved surface 10 is performed. It becomes easy to separate the silicon film 600. Further, in the case of trimming, it is possible to prevent chipping or the like from being chipped at the end of the silicon carbide film 600.

図8の黒鉛基材120に示すように、円環状凸部31は、第1曲面10の直径Dよりも大きく、円環状凸部31を折り取り可能な周溝31a、31bを有してもよい。周溝31a、31bがあることにより、この部分で円環状凸部31を折り取りによりトリミングすることが容易となり、炭化珪素膜600の端部にチッピング等の欠けが生じることなく、第1曲面10および第2曲面10の表面に成膜した炭化珪素膜600を分離することが、より容易となる。例えば、周溝31a、31bへ円板打ち抜きカッター等をあてることにより、円環状凸部31を折り取ることができる。なお、周溝は円環状凸部31の上面と下面の両方にあってもよいが、上面の周溝31aのみでもよく、下面の周溝32aのみでも円環状凸部31を折り取ることができる。 As shown in the graphite base material 120 of FIG. 8, the annular convex portion 31 has a diameter D larger than that of the first curved surface 10 and has peripheral grooves 31a and 31b capable of breaking the annular convex portion 31. good. The presence of the peripheral grooves 31a and 31b facilitates trimming of the annular convex portion 31 by folding off the annular convex portion 31 at this portion, and the first curved surface 10 is not chipped at the end portion of the silicon carbide film 600. And it becomes easier to separate the silicon carbide film 600 formed on the surface of the second curved surface 10. For example, the annular convex portion 31 can be broken off by applying a disk punching cutter or the like to the peripheral grooves 31a and 31b. The peripheral groove may be provided on both the upper surface and the lower surface of the annular convex portion 31, but the peripheral groove 31a on the upper surface may be used alone, or the peripheral groove 32a on the lower surface alone may be used to break off the annular convex portion 31. ..

本発明の黒鉛基材としては、例えば1つの黒鉛の塊を加工して黒鉛基材100の形状としてもよいが、図5に示す黒鉛基材110のように、第1黒鉛材15、第2黒鉛材25、接合層40といったいくつかの部品を組み合わせて黒鉛基材を形成してもよい。このようにいくつかの部品を組み合わせて黒鉛基材を組み立てることにより、黒鉛基材の形状が安定し、製造が容易となる。 As the graphite substrate of the present invention, for example, one graphite block may be processed into the shape of the graphite substrate 100, but as in the graphite substrate 110 shown in FIG. 5, the first graphite material 15 and the second graphite substrate are used. A graphite base material may be formed by combining several parts such as the graphite material 25 and the bonding layer 40. By assembling the graphite base material by combining some parts in this way, the shape of the graphite base material is stabilized and the production becomes easy.

(第1黒鉛材)
第1黒鉛材15は、第1曲面10を表面とし、第1曲面10の直径D1と同一の直径を有する平面状の第1裏面12を備える。そして、第1曲面10および第1裏面12の直径D1と同一の直径であり、第1曲面10の円周11と第1裏面12の円周13とをつなぐ円柱状の第1側面部14を備える。第1裏面12が平面状であることにより、後述する接合層40との接合が容易となる。
(1st graphite material)
The first graphite material 15 has a first curved surface 10 as a front surface, and has a planar first back surface 12 having the same diameter as the diameter D1 of the first curved surface 10. Then, a columnar first side surface portion 14 having the same diameter as the diameter D1 of the first curved surface 10 and the first back surface 12 and connecting the circumference 11 of the first curved surface 10 and the circumference 13 of the first back surface 12 is formed. Be prepared. Since the first back surface 12 is planar, it is easy to join with the bonding layer 40 described later.

(第2黒鉛材)
第2黒鉛材25は、第2曲面20を表面とし、第2曲面20の直径D2と同一の直径を有する平面状の第2裏面22を備える。そして、第2曲面20および第2裏面22の直径D2と同一の直径であり、第2曲面20の円周21と第2裏面22の円周23とをつなぐ円柱状の第2側面部24を備える。第2裏面22が平面状であることにより、後述する接合層40との接合が容易となる。
(Second graphite material)
The second graphite material 25 has a second curved surface 20 as a front surface, and has a planar second back surface 22 having the same diameter as the diameter D2 of the second curved surface 20. Then, a columnar second side surface portion 24 having the same diameter as the diameter D2 of the second curved surface 20 and the second back surface 22 and connecting the circumference 21 of the second curved surface 20 and the circumference 23 of the second back surface 22 is formed. Be prepared. Since the second back surface 22 is planar, it is easy to join with the bonding layer 40 described later.

第1側面部14の厚みt1、および第2側面部24の厚みt2は、0.2mm~0.6mmであることが好ましい。この範囲の厚みであることにより、黒鉛材としての強度を維持しつつ、多くの黒鉛基材110を一度に成膜できる程度の厚さに留めることができる。厚みt1、t2が0.2mm未満の場合には、第1黒鉛材15、第2黒鉛材25の強度が不足するおそれがある。また、厚みt1、t2が0.6mmを超えると、黒鉛基材110としての厚みが厚くなり、基材として一度に成膜できる数が少なくなるので、好ましくない。なお、第1黒鉛材15は第2黒鉛材25と同一形状であれば、炭化珪素の成膜条件が同一となるため、同質の炭化珪素が成膜される。 The thickness t1 of the first side surface portion 14 and the thickness t2 of the second side surface portion 24 are preferably 0.2 mm to 0.6 mm. With a thickness in this range, it is possible to maintain the strength of the graphite material and keep the thickness to a level that allows a large number of graphite base materials 110 to be formed at one time. If the thicknesses t1 and t2 are less than 0.2 mm, the strength of the first graphite material 15 and the second graphite material 25 may be insufficient. Further, when the thicknesses t1 and t2 exceed 0.6 mm, the thickness of the graphite base material 110 becomes thick and the number of films that can be formed as a base material at one time decreases, which is not preferable. If the first graphite material 15 has the same shape as the second graphite material 25, the film forming conditions for silicon carbide are the same, so that silicon carbide of the same quality is formed.

(接合層)
接合層40は、第1黒鉛材15の第1裏面12と第2黒鉛材25の第2裏面22と接合する層である。第1黒鉛材15および第2黒鉛材25と同様に素材は黒鉛とし、板状またはシート状のものを接合層40とすることができる。図6に、黒鉛製のシート材を加工して得た接合層40を上から見た図を示す。第1黒鉛材15や第2黒鉛材25を加工して空隙を設けることが難しい場合には、シート材を円状に切り出した後、切断加工することで接合層40に空隙32を設けることができる。
(Joining layer)
The bonding layer 40 is a layer for bonding the first back surface 12 of the first graphite material 15 and the second back surface 22 of the second graphite material 25. Similar to the first graphite material 15 and the second graphite material 25, the material may be graphite, and a plate-shaped or sheet-shaped material may be used as the bonding layer 40. FIG. 6 shows a top view of the bonding layer 40 obtained by processing a graphite sheet material. When it is difficult to process the first graphite material 15 and the second graphite material 25 to provide voids, the sheet material may be cut out in a circular shape and then cut to provide voids 32 in the bonding layer 40. can.

接合層40の厚みt3(図5(b))は、0.8mm~1.8mmであることが好ましい。化学蒸着により、炭化珪素膜を0.4mm程度成膜させる場合があるため、厚みt3が0.8mm未満の場合には、炭化珪素膜によって空隙32が塞がれてしまい、黒鉛基材110を燃焼除去することが困難となるおそれがある。また、厚みt3が1.8mmを超えると、黒鉛基材110の厚みTが3.1mmを超えるおそれがあり、成膜装置に積層可能な黒鉛基材110の枚数が減ることで、成膜の効率が低下する場合がある。 The thickness t3 (FIG. 5 (b)) of the bonding layer 40 is preferably 0.8 mm to 1.8 mm. Since a silicon carbide film of about 0.4 mm may be formed by chemical vapor deposition, if the thickness t3 is less than 0.8 mm, the voids 32 are blocked by the silicon carbide film, and the graphite substrate 110 is formed. It may be difficult to remove by burning. Further, if the thickness t3 exceeds 1.8 mm, the thickness T of the graphite base material 110 may exceed 3.1 mm, and the number of graphite base materials 110 that can be laminated on the film forming apparatus is reduced, so that the film formation is formed. Efficiency may be reduced.

また、接合層40は円環状凸部31を有するため、第1黒鉛材15や第2黒鉛材25よりも大きい直径を有し、2mm~10mm程大きい直径となることで、第1黒鉛材15や第2黒鉛材25の側面から1mm~5mmの幅bで突出していることが好ましい(図5(b))。化学蒸着の場合、黒鉛基材110の端部において、炭化珪素膜600の膜厚が厚くなりやすい。そのため、幅bが1mm未満の場合には、円環状凸部31に炭化珪素膜600が厚く成膜されて折り取りが困難となるおそれがある。また、幅bが5mmを超えると、円環状凸部31の折り取りによって除去する部分が多くなり、この部分にも成膜されるため、無駄な成膜となるのみならず、成膜面積が増加することで成膜速度が遅くなるおそれがある。 Further, since the bonding layer 40 has an annular convex portion 31, it has a diameter larger than that of the first graphite material 15 and the second graphite material 25, and has a diameter larger by about 2 mm to 10 mm, whereby the first graphite material 15 is formed. It is preferable that the graphite material 25 protrudes from the side surface thereof with a width b of 1 mm to 5 mm (FIG. 5 (b)). In the case of chemical vapor deposition, the film thickness of the silicon carbide film 600 tends to increase at the end of the graphite base material 110. Therefore, when the width b is less than 1 mm, the silicon carbide film 600 may be thickly formed on the annular convex portion 31 and it may be difficult to break it off. Further, when the width b exceeds 5 mm, a large portion is removed by breaking off the annular convex portion 31, and a film is formed on this portion as well, which not only results in wasteful film formation but also increases the film formation area. The increase may slow down the film formation speed.

黒鉛基材110においては、側面部30は、第1側面部14、第1裏面12、接合層40、第2裏面22、第2側面部24を有する。また、第1黒鉛材15と接合層40および第2黒鉛材25と接合層40を接着するために、後述するカーボン接着剤50を使用する場合には、これも側面部30の構成に含まれる。 In the graphite base material 110, the side surface portion 30 has a first side surface portion 14, a first back surface portion 12, a bonding layer 40, a second back surface portion 22, and a second side surface portion 24. Further, when the carbon adhesive 50 described later is used for adhering the first graphite material 15 and the bonding layer 40 and the second graphite material 25 and the bonding layer 40, this is also included in the configuration of the side surface portion 30. ..

なお、黒鉛基材110において、厚みTは第1側面部14の厚みt1、第2側面部24の厚みt2および接合層40の厚みt3に加え、第1曲面10の厚みs1および第2曲面20の厚みs2を合計したものである。なお、後述するカーボン接着剤50を使用する場合には、この厚みも考慮される。以下、厚みs1とs2は同じ値とし、厚みsとして説明する。厚みsは、黒鉛基材110の直径Wと第1曲面の曲率半径r(第2曲面の場合も同じ)から、以下の式(1)、(2)によって計算できる。 In the graphite base material 110, the thickness T is the thickness t1 of the first side surface portion 14, the thickness t2 of the second side surface portion 24, and the thickness t3 of the bonding layer 40, as well as the thickness s1 of the first curved surface portion 10 and the thickness s1 of the second curved surface portion 20. It is the sum of the thicknesses s2 of. When the carbon adhesive 50 described later is used, this thickness is also taken into consideration. Hereinafter, the thickness s1 and s2 are set to the same value, and the thickness s will be described. The thickness s can be calculated from the diameter W of the graphite base material 110 and the radius of curvature r of the first curved surface (the same applies to the second curved surface) by the following equations (1) and (2).

[数1]
W=2*r*sin(θ/2) (1)
s=r*(1-cos(θ/2)) (2)
[Number 1]
W = 2 * r * sin (θ / 2) (1)
s = r * (1-cos (θ / 2)) (2)

黒鉛基材110の直径Wを100mm、150mmとした場合において、曲率半径を3000~12000mmとした場合の厚みsを計算した結果を表1に示す。例えば、直径Wが150mmの条件では、曲率半径が5000mmの場合において厚みsは0.563mmであり、曲率半径が10000mmの場合において厚みsは0.281mmになる。 Table 1 shows the results of calculating the thickness s when the diameter W of the graphite base material 110 is 100 mm and 150 mm and the radius of curvature is 3000 to 12000 mm. For example, under the condition that the diameter W is 150 mm, the thickness s is 0.563 mm when the radius of curvature is 5000 mm, and the thickness s is 0.281 mm when the radius of curvature is 10000 mm.

また、表1に、黒鉛基材110の厚みTの最小値と最大値を算出した結果を示す。厚みTは、以下の式(3)によって計算できる。 Table 1 shows the results of calculating the minimum and maximum values of the thickness T of the graphite base material 110. The thickness T can be calculated by the following equation (3).

[数2]
T=t1+t2+t3+s1+s2 (3)
(t1とt2が等しく(tとする)、s1とs2が等しい(sとする)場合は、T=2×(t+s)+t3でも算出可能)
[Number 2]
T = t1 + t2 + t3 + s1 + s2 (3)
(If t1 and t2 are equal (let's say t) and s1 and s2 are equal (let's say s), T = 2 × (t + s) + t3 can also be calculated)

例えば、直径Wが100mmの条件では、曲率半径が3000mmの場合において、厚みTの最小値は、2×(0.417+0.2)+0.8=2.034となり、厚みTの最大値は、2×(0.417+0.6)+1.8=3.834となる。 For example, under the condition that the diameter W is 100 mm and the radius of curvature is 3000 mm, the minimum value of the thickness T is 2 × (0.417 + 0.2) + 0.8 = 2.034, and the maximum value of the thickness T is. 2 × (0.417 + 0.6) +1.8 = 3.834.

Figure 0007081453000001
Figure 0007081453000001

(熱膨張係数)
第1黒鉛材15および第2黒鉛材25の熱膨張係数は、黒鉛材の原料コークスや製造条件等により異なるが、黒鉛材として3.0×10-6/℃~6.0×10-6/℃(室温~450℃)の範囲にあることが好ましい。熱膨張係数が3.0×10-6/℃未満の場合には、黒鉛材としての黒鉛が等方性黒鉛ではなくなって、方位依存性を持ち、膨張によって黒鉛基材自体の形状が変わって、炭化珪素膜が割れるおそれがある。また、熱膨張係数が6.0×10-6/℃を超えると、成膜した炭化珪素膜の反りが大きくなるおそれや、クラックが発生するおそれがある。なお、例えば3.0×10-6/℃より大きい方位と小さな方位を持つ黒鉛粉末を、等方性プレス(CIP)で固めて焼結等することにより、等方性黒鉛を作成することが可能であり、この等方性黒鉛を黒鉛材として用いることができる。
(Coefficient of thermal expansion)
The coefficient of thermal expansion of the first graphite material 15 and the second graphite material 25 varies depending on the raw material coke of the graphite material, manufacturing conditions, etc., but as a graphite material, it is 3.0 × 10 -6 / ° C. to 6.0 × 10 -6 . It is preferably in the range of / ° C (room temperature to 450 ° C). When the coefficient of thermal expansion is less than 3.0 × 10 -6 / ° C, graphite as a graphite material is not isotropic graphite and has orientation dependence, and the shape of the graphite base material itself changes due to expansion. , The silicon carbide film may crack. Further, if the coefficient of thermal expansion exceeds 6.0 × 10 −6 / ° C., the formed silicon carbide film may be warped significantly or cracks may occur. It should be noted that, for example, graphite powder having an orientation larger than 3.0 × 10 -6 / ° C and a small orientation can be solidified with an isotropic press (CIP) and sintered to produce isotropic graphite. It is possible, and this isotropic graphite can be used as a graphite material.

(接着剤)
接合層40は、高温の状態でも接着性が良好なカーボン接着剤50によって第1裏面12および第2裏面22と接合することが好ましい。高温まで接着性が良好なカーボン接着剤50を用いることで、第1黒鉛材15および第2黒鉛材25と、接合層40をより強固に接着することができる。
(glue)
The bonding layer 40 is preferably bonded to the first back surface 12 and the second back surface 22 with a carbon adhesive 50 having good adhesiveness even in a high temperature state. By using the carbon adhesive 50 having good adhesiveness up to a high temperature, the first graphite material 15 and the second graphite material 25 can be more firmly bonded to the bonding layer 40.

カーボン接着剤50としては、特に制限はないが、例示すると、日清紡株式会社製のカーボン接着剤「ST-201」、コトロニクス(COTRONICS)社製のカーボン接着剤「Resbond 931」が挙げられる。 The carbon adhesive 50 is not particularly limited, and examples thereof include a carbon adhesive "ST-201" manufactured by Nisshinbo Co., Ltd. and a carbon adhesive "Resbond 931" manufactured by COTRONICS.

カーボン接着剤50は、例えば接合層40の両面に塗布し、第1裏面12および第2裏面22と接合するように、第1黒鉛材15および第2黒鉛材25と押し合わせた後、乾燥させ硬化させることで、第1黒鉛材15および第2黒鉛材25と、接合層40とを接着することができる。硬化させる際の温度条件としては、通常のフェノール樹脂が硬化する程度の温度範囲で良く、特に限定はないが、例えば、約60~250℃程度の温度範囲で硬化させることが好ましい。 The carbon adhesive 50 is applied to, for example, both sides of the bonding layer 40, pressed against the first graphite material 15 and the second graphite material 25 so as to be bonded to the first back surface 12 and the second back surface 22, and then dried. By curing, the first graphite material 15 and the second graphite material 25 can be adhered to the bonding layer 40. The temperature condition for curing may be a temperature range in which a normal phenol resin is cured, and is not particularly limited, but for example, curing is preferably performed in a temperature range of about 60 to 250 ° C.

第1黒鉛材15および第2黒鉛材25と、接合層40とを接着させた後、不活性ガスまたは真空中でカーボン接着剤50を加熱して炭素化することにより、カーボン接着剤50は炭素のみで構成される炭素材となり、しかも第1黒鉛材15および第2黒鉛材25と、接合層40とを強固に接着することができる。尚、この炭素化させる温度は、炭素材料の耐えられる温度範囲内であれば、特に限定されない。 After adhering the first graphite material 15 and the second graphite material 25 to the bonding layer 40, the carbon adhesive 50 is carbonized by heating the carbon adhesive 50 in an inert gas or vacuum to carbonize the carbon adhesive 50. It is a carbon material composed of only one, and moreover, the first graphite material 15 and the second graphite material 25 and the bonding layer 40 can be firmly adhered to each other. The temperature for carbonization is not particularly limited as long as it is within the temperature range that the carbon material can withstand.

上記した本発明の黒鉛基板を、化学蒸着用の成膜装置にセットして、成膜処理をすると、第1曲面10、第2曲面20および側面部30に炭化珪素膜が均一に成膜される。 When the above-mentioned graphite substrate of the present invention is set in a film forming apparatus for chemical vapor deposition and a film forming process is performed, a silicon carbide film is uniformly formed on the first curved surface 10, the second curved surface 20, and the side surface portion 30. To.

成膜処理の際には、空隙32には原料ガスやキャリアガスが供給され難いため、この部分には炭化珪素膜が析出され難く、黒鉛基材が被覆されずに露出した状態を維持することができる。従って、成膜処理後の黒鉛基材の空隙32が酸素に晒されて容易に燃焼され、基材の除去が容易となる。 Since it is difficult to supply the raw material gas and the carrier gas to the voids 32 during the film forming process, it is difficult for the silicon carbide film to be deposited in this portion, and the graphite base material is not covered and the exposed state is maintained. Can be done. Therefore, the voids 32 of the graphite base material after the film forming treatment are exposed to oxygen and easily burned, so that the base material can be easily removed.

[炭化珪素の成膜方法]
次に、本発明の炭化珪素の成膜方法について、その一態様を説明する。かかる成膜方法は、本発明の黒鉛基材の表面に、化学蒸着によって炭化珪素を成膜する成膜工程を含む。この工程により、黒鉛基材の表面に炭化珪素の多結晶膜を成膜することができる。
[Silicon carbide film formation method]
Next, one aspect of the silicon carbide film forming method of the present invention will be described. Such a film forming method includes a film forming step of forming silicon carbide on the surface of the graphite substrate of the present invention by chemical vapor deposition. By this step, a polycrystalline film of silicon carbide can be formed on the surface of the graphite base material.

〈成膜工程〉
成膜工程の一例としては、加熱した黒鉛基材110上に、1200~1700℃の温度に加熱した、炭化珪素膜600の成分を含む原料ガスやキャリアガス等の混合ガスを供給し、大気圧下において黒鉛基材110の表面や気相での化学反応を所定時間行うことにより、炭化珪素膜600を堆積する方法が挙げられる(図7(a))。ここで、黒鉛基材110の表面に炭化珪素膜600が成膜するが、空隙32へは原料ガスやキャリアガスが届き難いため、これらの部分には炭化珪素膜600が成膜されないか、成膜されても若干量であり、黒鉛基材110は露出した状態を維持することができる。なお、成膜時の黒鉛基材の設置枚数を増加させると、黒鉛基材間の距離が短くなって、黒鉛基材の端と黒鉛基材との間の原料供給量の差が大きくなる。従って、一回の処理で成膜させる黒鉛基材の枚数が増加すると、原料供給量が多い黒鉛基材の端部の膜厚が厚くなり、黒鉛基材の中央が薄くなるため、適宜処理枚数を調整することが好ましい。
<Film formation process>
As an example of the film forming process, a mixed gas such as a raw material gas or a carrier gas containing a component of the silicon carbide film 600 heated to a temperature of 1200 to 1700 ° C. is supplied onto the heated graphite base material 110 to provide an atmospheric pressure. Below, a method of depositing the silicon carbide film 600 by carrying out a chemical reaction on the surface of the graphite base material 110 or in a gas phase for a predetermined time can be mentioned (FIG. 7A). Here, the silicon carbide film 600 is formed on the surface of the graphite base material 110, but since it is difficult for the raw material gas and the carrier gas to reach the voids 32, the silicon carbide film 600 may or may not be formed on these portions. Even if the film is formed, the amount is small, and the graphite base material 110 can be maintained in an exposed state. If the number of graphite substrates installed at the time of film formation is increased, the distance between the graphite substrates becomes shorter, and the difference in the amount of raw material supplied between the edge of the graphite substrate and the graphite substrate becomes large. Therefore, as the number of graphite substrates to be formed in one treatment increases, the film thickness at the edges of the graphite substrate, which has a large supply of raw materials, becomes thicker, and the center of the graphite substrate becomes thinner. It is preferable to adjust.

(原料ガス)
炭化珪素膜を成膜することができれば、特に限定されず、一般的に使用される原料ガスを用いることができる。例えば、トリクロロメチルシラン、トリクロロフェニルシラン、ジクロロメチルシラン、ジクロロジメチルシラン、クロロトリメチルシラン等、又はテトラクロロシラン(SiCl)、SiClとメタン、プロパンやアセチレン等の炭化水素ガスを原料ガスとして用いることができる。
(Raw material gas)
As long as the silicon carbide film can be formed, the raw material gas that is generally used is not particularly limited and can be used. For example, trichloromethylsilane, trichlorophenylsilane, dichloromethylsilane, dichlorodimethylsilane, chlorotrimethylsilane, etc., or tetrachlorosilane (SiCl 4 ), SiCl 2 and methane, propane, acetylene, or other hydrocarbon gas is used as the raw material gas. Can be done.

(キャリアガス)
成膜を阻害することなく、原料ガスを基板へ展開することができれば、一般的に使用されるキャリアガスを用いることができる。例えば、Hガス等をキャリアガスとして用いることができる。
(Carrier gas)
If the raw material gas can be developed on the substrate without inhibiting the film formation, a commonly used carrier gas can be used. For example, H 2 gas or the like can be used as the carrier gas.

〈その他の工程〉
本発明の炭化珪素の成膜方法は、成膜工程以外にも、他の工程を含むことができる。例えば、成膜装置内の基板ホルダーに黒鉛基材110を複数枚セットする工程や、セットした黒鉛基材110を加熱する工程、化学蒸着前の黒鉛基材110に、成膜を阻害するような何らかの反応が生じないよう、黒鉛基材110を不活性雰囲気下とするべく、アルゴン等の不活性ガスを流通させる工程等が挙げられる。
<Other processes>
The silicon carbide film forming method of the present invention can include other steps in addition to the film forming step. For example, a step of setting a plurality of graphite base materials 110 in the substrate holder in the film forming apparatus, a step of heating the set graphite base material 110, and a step of inhibiting film formation on the graphite base material 110 before chemical vapor deposition. Examples thereof include a step of circulating an inert gas such as argon so that the graphite substrate 110 is placed in an inert atmosphere so that some reaction does not occur.

[炭化珪素基板の製造方法]
次に、本発明の炭化珪素基板の製造方法について、その一態様を説明する。かかる製造方法は、露出工程と、燃焼除去工程とを含む。
[Manufacturing method of silicon carbide substrate]
Next, one aspect of the method for manufacturing the silicon carbide substrate of the present invention will be described. Such a manufacturing method includes an exposure step and a combustion removal step.

〈露出工程〉
露出工程の一例としては、上記した本発明の炭化珪素の成膜方法により得た、表面に炭化珪素膜600が成膜した黒鉛基材110に対し(図7(a))、円環状凸部31の少なくとも一部を除去して黒鉛基材110を露出させる工程が挙げられる(図7(b))。この工程により、円環状凸部31があった部分において、黒鉛基材110の側面35が露出され、黒鉛基材110が燃焼し易くなる。
<Exposure process>
As an example of the exposure step, the annular convex portion with respect to the graphite base material 110 having the silicon carbide film 600 formed on the surface obtained by the above-mentioned method for forming the silicon carbide film of the present invention (FIG. 7A). A step of removing at least a part of 31 to expose the graphite base material 110 can be mentioned (FIG. 7 (b)). By this step, the side surface 35 of the graphite base material 110 is exposed at the portion where the annular convex portion 31 is located, and the graphite base material 110 is easily burned.

具体的には、ダイアモンドやC-BN(立方晶BN)砥粒を用いたシングルワイヤソーで円環状凸部31とそこに成膜した炭化珪素膜630を切断する方法や、研磨ホイールで円環状凸部31とそこに成膜した炭化珪素膜600を削り落とすことにより、黒鉛基材110を露出させることができる。 Specifically, a method of cutting the annular convex portion 31 and the silicon carbide film 630 formed on the annular convex portion 31 with a single wire saw using diamond or C-BN (cubic BN) abrasive grains, or an annular convex portion with a polishing wheel. The graphite base material 110 can be exposed by scraping off the portion 31 and the silicon carbide film 600 formed therein.

また、黒鉛基材120のように、円環状凸部31が、第1曲面の直径よりも大きくかつ円環状凸部を折り取り可能な周溝31aや31bを有する場合には(図8(b))、露出工程において周溝31aや31b、またはその両方で、そこに成膜した炭化珪素膜600ごと円環状凸部31を折り取ることにより、黒鉛基材120を露出させることができる。例えば、周溝31a、31bへ円板打ち抜きカッター等をあてることにより、円環状凸部31を折り取ることができる。なお、周溝は円環状凸部31の上面と下面の両方にあってもよいが、上面の周溝31aのみでもよく、下面の周溝32aのみでも円環状凸部31を折り取ることができる。 Further, when the annular convex portion 31 has a peripheral groove 31a or 31b larger than the diameter of the first curved surface and capable of breaking off the annular convex portion as in the graphite base material 120 (FIG. 8 (b). )), The graphite base material 120 can be exposed by breaking off the annular convex portion 31 together with the silicon carbide film 600 formed therein in the peripheral grooves 31a, 31b, or both in the exposure step. For example, the annular convex portion 31 can be broken off by applying a disk punching cutter or the like to the peripheral grooves 31a and 31b. The peripheral groove may be provided on both the upper surface and the lower surface of the annular convex portion 31, but the peripheral groove 31a on the upper surface may be used alone, or the peripheral groove 32a on the lower surface alone may be used to break off the annular convex portion 31. ..

〈燃焼除去工程〉
燃焼除去工程の一例としては、露出工程後、黒鉛基材110を燃焼させて除去する工程が挙げられる(図7(c))。この工程により、黒鉛基材110が消滅して、炭化珪素膜600が残ってこれが炭化珪素基板700となる。
<Combustion removal process>
As an example of the combustion removing step, there is a step of burning and removing the graphite base material 110 after the exposure step (FIG. 7 (c)). By this step, the graphite base material 110 disappears, and the silicon carbide film 600 remains, which becomes the silicon carbide substrate 700.

黒鉛基材110の燃焼除去は、空気中で加熱する等の適宜な方法で行うことができる。加熱条件としては、例えば大気雰囲気下にて1000℃程度に加熱する条件が挙げられる。 Combustion removal of the graphite base material 110 can be performed by an appropriate method such as heating in air. Examples of the heating conditions include conditions for heating to about 1000 ° C. in an atmospheric atmosphere.

〈研磨工程〉
本発明の炭化珪素基板の製造方法は、燃焼除去工程後、成膜した炭化珪素膜600の表面を研磨する研磨工程を含んでもよい。炭化珪素基板は、半導体の製造に用いられる基板とするのであれば、半導体製造プロセスで使用できる面精度が必要となる。そこで、本工程により、炭化珪素基板700の表面を平滑化することが好ましい。
<Polishing process>
The method for manufacturing a silicon carbide substrate of the present invention may include a polishing step of polishing the surface of the formed silicon carbide film 600 after the combustion removing step. If the silicon carbide substrate is a substrate used for semiconductor manufacturing, surface accuracy that can be used in the semiconductor manufacturing process is required. Therefore, it is preferable to smooth the surface of the silicon carbide substrate 700 by this step.

例えば、炭化珪素基板700をダイアモンドスラリーでラップ処理し、ダイアモンドとアルミナとの混合スラリーでハードポリッシュした後に、シリカスラリー(コロイダルシリカ、pH11)でポリッシュするという工程を経て、炭化珪素基板700の表面を平滑化することができる。 For example, the surface of the silicon carbide substrate 700 is subjected to a step of wrapping the silicon carbide substrate 700 with a diamond slurry, hard polishing with a mixed slurry of diamond and alumina, and then polishing with a silica slurry (coloidal silica, pH 11). Can be smoothed.

〈その他の工程〉
本発明の炭化珪素基板の製造方法は、上記の工程以外にも、他の工程を含むことができる。例えば、燃焼除去工程後の炭化珪素基板700を冷却する冷却工程等が挙げられる。
<Other processes>
The method for manufacturing a silicon carbide substrate of the present invention can include other steps in addition to the above steps. For example, a cooling step of cooling the silicon carbide substrate 700 after the combustion removal step can be mentioned.

本発明の炭化珪素の成膜方法および炭化珪素基板の製造方法によれば、凸状の曲面形状を有する第1曲面および第2曲面に炭化珪素膜を成膜させた後、円環状凸部を切断してから、黒鉛基材を燃焼除去するものであるから、凹方向に作用する炭化珪素膜の内部応力を巧みに緩和することができる。更に、空隙があることによって、黒鉛基材の表面全体に炭化珪素膜が一体的に形成することを防止できるので、反りおよび亀裂の少ない炭化珪素基板を製造することが可能となる。 According to the method for forming a silicon carbide film and the method for manufacturing a silicon carbide substrate of the present invention, after forming a silicon carbide film on the first curved surface and the second curved surface having a convex curved surface shape, an annular convex portion is formed. Since the graphite substrate is burnt and removed after cutting, the internal stress of the silicon carbide film acting in the concave direction can be skillfully relieved. Further, since the presence of the voids can prevent the silicon carbide film from being integrally formed on the entire surface of the graphite base material, it is possible to manufacture a silicon carbide substrate having less warpage and cracks.

以下、実施例に基づいて本発明をさらに具体的に説明する。ただし、本発明は以下の実施例の内容に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail based on Examples. However, the present invention is not limited to the contents of the following examples.

[実施例1~6、比較例1、2]
(黒鉛基材120の製造)
熱膨張係数が異なる黒鉛材を加工して、直径D1およびD2が150.6mm、第1側面部14の厚みt1および第2側面部24の厚みt2が0.2mm、第1曲面10および第2曲面20の曲率半径が7000mmである、第1黒鉛材15および第2黒鉛材25を作製した。接合層40としては、円環状凸部31を形成するべく、カーボンシート(東洋炭素製PF-UHPL)を直径D1およびD2よりも大きくなるように、直径158mmの円板上に切り出し、図6に示すように幅wが20mmの空隙を、空隙の開口方向と直交し、かつカーボンシートの中心を通る直線Cとカーボンシートの円周との交点C1、C2とした場合に、C1から24.5mm、C1から69mm、C2から24.5mmの3か所に形成した。また、コンパスで直径153mmとなるように円状の溝31a、31bを形成した。そして、カーボン接着剤50(日清紡ST-201)を用いて、第1黒鉛材15および第2黒鉛材25と、接合層40とを接着した。
[Examples 1 to 6, Comparative Examples 1 and 2]
(Manufacturing of graphite base material 120)
By processing graphite materials having different coefficients of thermal expansion, the diameters D1 and D2 are 150.6 mm, the thickness t1 of the first side surface portion 14 and the thickness t2 of the second side surface portion 24 are 0.2 mm, the first curved surface 10 and the second surface portion 24 and the second. The first graphite material 15 and the second graphite material 25 having a radius of curvature of the curved surface 20 of 7,000 mm were produced. As the bonding layer 40, a carbon sheet (PF-UHPL manufactured by Toyo Carbon Co., Ltd.) was cut out on a disk having a diameter of 158 mm so as to be larger than the diameters D1 and D2 in order to form the annular convex portion 31, and FIG. As shown, when the void with a width w of 20 mm is orthogonal to the opening direction of the void and is the intersection point C1 and C2 between the straight line C passing through the center of the carbon sheet and the circumference of the carbon sheet, it is 24.5 mm from C1. , C1 to 69 mm and C2 to 24.5 mm. Further, circular grooves 31a and 31b were formed with a compass so as to have a diameter of 153 mm. Then, the carbon adhesive 50 (Nisshinbo ST-201) was used to bond the first graphite material 15 and the second graphite material 25 to the bonding layer 40.

接着後、大気中にて80℃で4時間、120℃で4時間、200℃で1時間の加熱硬化を行った後、窒素雰囲気中で、0.8℃/分の昇温速度で1000℃まで昇温し、接着剤の炭素化を行った。接合層40の厚みt3は0.8mmとした。表2に、実施例1~6および比較例1、2の黒鉛基材120に使用した第1黒鉛材15および第2黒鉛材25の熱膨張係数、第1曲面10および第2曲面20の曲率半径を示す。なお、各実施例および各比較例において、第1黒鉛材15および第2黒鉛材25は熱膨張係数が同じものを使用した。 After bonding, heat curing was performed in the air at 80 ° C. for 4 hours, 120 ° C. for 4 hours, and 200 ° C. for 1 hour, and then in a nitrogen atmosphere at a heating rate of 0.8 ° C./min at 1000 ° C. The temperature was raised to the above, and the adhesive was carbonized. The thickness t3 of the bonding layer 40 was set to 0.8 mm. Table 2 shows the coefficients of thermal expansion of the first graphite material 15 and the second graphite material 25 used for the graphite base materials 120 of Examples 1 to 6 and Comparative Examples 1 and 2, and the curvatures of the first curved surface 10 and the second curved surface 20. Indicates the radius. In each Example and each Comparative Example, the first graphite material 15 and the second graphite material 25 had the same coefficient of thermal expansion.

(炭化珪素基板700の製造)
作製した黒鉛基材120を基板として、その表面に化学蒸着によって炭化珪素を成膜させた。具体的には、基板を10mm間隔で5枚積層するように成膜装置の石英反応管内にセットし、大気圧下において反応温度1400℃で、トリクロロメチルシランと水素との混合ガス(トリクロロメチルシランの濃度7.5vol%)を190l/minの流量で石英反応管内に送入し、40時間化学蒸着反応を行うことで炭化珪素を析出被着させて、基板中央部での厚さ0.7mmの炭化珪素膜600を形成した(図7(a))。円環状凸部31とそこへ成膜した炭化珪素膜600の厚みの合計Eは、1.3mmであった。また、炭化珪素膜600の熱膨張係数は、4.4×10-6/℃であった。
(Manufacturing of Silicon Carbide Substrate 700)
Using the prepared graphite base material 120 as a substrate, silicon carbide was formed on the surface thereof by chemical vapor deposition. Specifically, five substrates are set in the quartz reaction tube of the film forming apparatus so as to be laminated at intervals of 10 mm, and a mixed gas of trichloromethylsilane and hydrogen (trichloromethylsilane) is set at a reaction temperature of 1400 ° C. under atmospheric pressure. (Concentration of 7.5 vol%) was sent into the quartz reaction tube at a flow rate of 190 l / min, and a chemical vapor deposition reaction was carried out for 40 hours to deposit and deposit silicon carbide, and the thickness at the center of the substrate was 0.7 mm. The silicon carbide film 600 of the above was formed (FIG. 7 (a)). The total thickness E of the annular convex portion 31 and the silicon carbide film 600 formed therein was 1.3 mm. The coefficient of thermal expansion of the silicon carbide film 600 was 4.4 × 10 -6 / ° C.

次に、円環状凸部をそこへ成膜した炭化珪素膜600ごと、溝31a、31bに沿って超音波カッターで切断して黒鉛基材120の側面35を露出させた(露出工程 図7(b))。その後、黒鉛基材120を空気中で加熱して燃焼除去し(燃焼除去工程)、更に炭化珪素膜600の両面を研磨加工して(研磨工程)、直径150mm、厚さ0.5mmの平板状の炭化珪素基板700を製造した(図7(c))。 Next, the side surface 35 of the graphite base material 120 was exposed by cutting the annular convex portion together with the silicon carbide film 600 formed therein with an ultrasonic cutter along the grooves 31a and 31b (exposure step FIG. 7 (exposure step FIG. 7). b)). After that, the graphite base material 120 is heated in air to be burned and removed (combustion removal step), and both sides of the silicon carbide film 600 are polished (polishing step) to form a flat plate having a diameter of 150 mm and a thickness of 0.5 mm. Silicon Carbide Substrate 700 was manufactured (FIG. 7 (c)).

(炭化珪素基板700の評価)
このようにして得られた炭化珪素基板700について、三次元形状測定機を用いて反り量を測定した。また、顕微鏡により炭化珪素基板700の表面のクラックや側面のチッピングの発生状況を観察した。得られた結果を、黒鉛の機械的性質(硬度、ヤング率)と共に表2に示す。なお、硬度は、「JIS Z-2246ショア硬さ試験-試験方法」に基づき、指示形試験機より測定した硬さである。
(Evaluation of Silicon Carbide Substrate 700)
The amount of warpage of the silicon carbide substrate 700 thus obtained was measured using a three-dimensional shape measuring machine. In addition, the state of occurrence of cracks on the surface of the silicon carbide substrate 700 and chipping on the side surfaces was observed with a microscope. The obtained results are shown in Table 2 together with the mechanical properties (hardness, Young's modulus) of graphite. The hardness is the hardness measured by an instruction type tester based on "JIS Z-2246 Shore hardness test-test method".

Figure 0007081453000002
Figure 0007081453000002

表2の結果より、第1黒鉛材15および第2黒鉛材25の熱膨張係数が3.8×10-6/℃~5.6×10-6/℃であることにより、得られた炭化珪素基板700は反りが少なく、クラックやチッピングの発生は認められなかった(実施例1~6)。一方で、熱膨張係数が小さいと、得られた炭化珪素基板700の反りが大きくなり、また、クラックの発生が認められた(比較例1、2)。なお、表2において、反り量がマイナスとなっている実施例1、2では、炭化珪素基板700が、第1曲面10や第2曲面20の突出状態とは反対に、内側に突出して反った状態のものである。また、反り量がプラスとなっている実施例3~6、比較例1、2では、炭化珪素基板700が、第1曲面10や第2曲面20の突出状態と同様に、外側に突出して反った状態のものである。 From the results in Table 2, the carbonization obtained by the thermal expansion coefficients of the first graphite material 15 and the second graphite material 25 being 3.8 × 10 -6 / ° C to 5.6 × 10 -6 / ° C. The silicon substrate 700 had little warpage, and no cracks or chippings were observed (Examples 1 to 6). On the other hand, when the coefficient of thermal expansion was small, the warp of the obtained silicon carbide substrate 700 was large, and the occurrence of cracks was observed (Comparative Examples 1 and 2). In Table 2, in Examples 1 and 2 in which the amount of warpage is negative, the silicon carbide substrate 700 protrudes inward and warps, contrary to the protruding state of the first curved surface 10 and the second curved surface 20. It is in a state. Further, in Examples 3 to 6 and Comparative Examples 1 and 2 in which the amount of warpage is positive, the silicon carbide substrate 700 protrudes outward and warps in the same manner as in the protruding state of the first curved surface 10 and the second curved surface 20. It is in a state of being.

[実施例7~9、比較例3~5]
熱膨張係数が実施例4と同一の黒鉛材を用いて、曲率半径を2000~12000mmまで2000mmごとに変えた黒鉛基材120を、実施例4と同様の方法により作製した。次いで、実施例4と同一の方法により、平板状の炭化珪素基板700を製造した。このようにして得られた炭化珪素基板700について、同様に三次元形状測定機を用いて反り量を測定し、また顕微鏡により炭化珪素基板700の表面のクラックや側面のチッピングの発生状況を観察した。黒鉛基材120の曲率半径、厚みTと共に、炭化珪素基板700の反り量およびクラックの発生の評価結果を、表3に示す。
[Examples 7 to 9, Comparative Examples 3 to 5]
Using a graphite material having the same coefficient of thermal expansion as in Example 4, a graphite base material 120 having a radius of curvature of 2000 to 12000 mm changed every 2000 mm was produced by the same method as in Example 4. Next, a flat plate-shaped silicon carbide substrate 700 was manufactured by the same method as in Example 4. With respect to the silicon carbide substrate 700 thus obtained, the amount of warpage was similarly measured using a three-dimensional shape measuring machine, and the state of occurrence of cracks on the surface and chipping of the side surface of the silicon carbide substrate 700 was observed with a microscope. .. Table 3 shows the evaluation results of the amount of warpage and the occurrence of cracks in the silicon carbide substrate 700 together with the radius of curvature and the thickness T of the graphite base material 120.

Figure 0007081453000003
Figure 0007081453000003

表3の結果より、黒鉛基材120の曲率半径が6000mm~10000mmであることにより、得られた炭化珪素基板700は反りが少なく、クラックやチッピングの発生は認められなかった(実施例7~9)。一方で、黒鉛基材110の曲率半径が2000~4000mmの場合や12000mmの場合には、得られた炭化珪素基板700の反りが大きくなり、また、クラックの発生が認められた(比較例3~5)。 From the results in Table 3, since the radius of curvature of the graphite base material 120 was 6000 mm to 10000 mm, the obtained silicon carbide substrate 700 had little warpage, and no cracks or chippings were observed (Examples 7 to 9). ). On the other hand, when the radius of curvature of the graphite base material 110 is 2000 to 4000 mm or 12000 mm, the obtained silicon carbide substrate 700 warps significantly and cracks are observed (Comparative Examples 3 to 3). 5).

[比較例6~8]
接合層40の直径を直径D1およびD2と同様に150.6mmとし、円環状凸部31の無い黒鉛基材130(図9)を用いたこと以外は、実施例7~9と同じ方法で炭化珪素膜600を成膜した(図9(a))。黒鉛基材130の第1曲面140および第2曲面150に成膜させた炭化珪素基板600が一体化し、外周端部を形成してしまって黒鉛基材130が完全に被覆されてしまい、燃焼除去することが不可能となったので、炭化珪素膜600の外周側面640を切断除去して黒鉛基材130の側面36を露出させた(図9(b))。そして、実施例7~9と同じ方法で黒鉛基材130を燃焼除去して炭化珪素基板710を得た(図9(c))。このようにして得られた炭化珪素基板710について、同様に三次元形状測定機を用いて反り量を測定し、また顕微鏡により炭化珪素基板710の表面のクラックや端部720の表面におけるチッピングの発生状況を観察した。黒鉛基材130の曲率半径、厚みTと共に、炭化珪素基板710の反り量、クラックおよびチッピングの発生の評価結果を表4に示す。
[Comparative Examples 6 to 8]
The diameter of the bonding layer 40 is 150.6 mm, which is the same as the diameters D1 and D2, and the graphite substrate 130 (FIG. 9) without the annular protrusion 31 is used. A silicon film 600 was formed (FIG. 9 (a)). The silicon carbide substrate 600 formed on the first curved surface 140 and the second curved surface 150 of the graphite substrate 130 is integrated to form an outer peripheral end portion, and the graphite substrate 130 is completely covered with combustion removal. Since it became impossible to do so, the outer peripheral side surface 640 of the silicon carbide film 600 was cut off to expose the side surface 36 of the graphite base material 130 (FIG. 9 (b)). Then, the graphite base material 130 was burnt off and removed by the same method as in Examples 7 to 9 to obtain a silicon carbide substrate 710 (FIG. 9 (c)). With respect to the silicon carbide substrate 710 thus obtained, the amount of warpage was similarly measured using a three-dimensional shape measuring machine, and cracks on the surface of the silicon carbide substrate 710 and chipping on the surface of the end portion 720 were generated by a microscope. I observed the situation. Table 4 shows the evaluation results of the amount of warpage, cracks, and chipping of the silicon carbide substrate 710, as well as the radius of curvature and the thickness T of the graphite base material 130.

Figure 0007081453000004
Figure 0007081453000004

表4の結果より、円環状凸部31の無い黒鉛基材130を用いたことにより、その成膜させた炭化珪素基板600が一体化して黒鉛基材130を完全に被覆してしまったため、黒鉛基材130を燃焼除去するためには、炭化珪素膜600の外周側面640を切断除去する工程が必要となった。その結果、この切断除去の工程により、炭化珪素膜600にチッピングが発生してしまい、10枚の炭化珪素基板710のうち、端部720が細かく欠けてしまったものが、3枚以上あった。 From the results in Table 4, since the graphite base material 130 without the annular convex portion 31 was used, the formed silicon carbide substrate 600 was integrated and completely covered the graphite base material 130. In order to burn and remove the base material 130, a step of cutting and removing the outer peripheral side surface 640 of the silicon carbide film 600 was required. As a result, chipping occurred in the silicon carbide film 600 by this cutting and removing step, and among the 10 silicon carbide substrates 710, there were 3 or more of the 10 silicon carbide substrates 720 in which the end portion 720 was finely chipped.

[まとめ]
以上より、本発明によれば、反り量が少なく平坦性に優れ、かつ亀裂や割れのない炭化珪素基板を容易に製造することができる。また、黒鉛基材に空隙があることで燃焼除去し易いために、黒鉛基材を横断方向に切断して上下に2分割する処理が必要ないため、この処理によって生じるおそれのある炭化珪素膜の割れの発生を防止することができる。よって、本発明であれば、高純度で緻密性、耐蝕性等に優れ、反りや亀裂のない炭化珪素基板、例えばデバイス作製用のウエハとして有用な炭化珪素基板を容易に製造することが可能であるため、産業上有用である。
[summary]
From the above, according to the present invention, it is possible to easily manufacture a silicon carbide substrate having a small amount of warpage, excellent flatness, and no cracks or cracks. Further, since the graphite base material has voids and is easily removed by combustion, it is not necessary to cut the graphite base material in the transverse direction and divide the graphite base material into upper and lower parts. It is possible to prevent the occurrence of cracks. Therefore, according to the present invention, it is possible to easily manufacture a silicon carbide substrate having high purity, excellent density, corrosion resistance, etc., and having no warp or crack, for example, a silicon carbide substrate useful as a wafer for manufacturing a device. Therefore, it is industrially useful.

10 第1曲面
11 円周
12 第1裏面
13 円周
14 第1側面部
15 第1黒鉛材
20 第2曲面
21 円周
22 第2裏面
23 円周
24 第2側面部
25 第2黒鉛材
30 側面部
31 円環状凸部
31a 周溝
31b 周溝
32 空隙
32a 開口部
32b 開口部
35 側面
36 側面
40 接合層
50 カーボン接着剤
100 黒鉛基材
110 黒鉛基材
120 黒鉛基材
130 黒鉛基材
140 第1曲面
150 第2曲面
500 黒鉛基材
550 表面
600 炭化珪素膜
610 柱状組織
620 微細組織
630 炭化珪素膜
640 外周側面
650 表面
660 表面
700 炭化珪素基板
710 炭化珪素基板
720 端部
b 幅
C 直線
C1 交点
C2 交点
D 直径
D1 直径
D2 直径
E 厚みの合計
r 曲率半径
s 厚み
s1 厚み
s2 厚み
T 厚み
t1 厚み
t2 厚み
t3 厚み
α1 熱膨張係数
α2-L 熱膨張係数
α2-S 熱膨張係数
w 幅
W 直径
10 1st curved surface 11 Circumference 12 1st back surface 13 Circumference 14 1st side surface part 15 1st graphite material 20 2nd curved surface 21 Circumference 22 2nd back surface 23 Circumference 24 2nd side surface part 25 2nd graphite material 30 Side surface Part 31 Circular convex part 31a Circumferential groove 31b Circumferential groove 32 Void 32a Opening 32b Opening 35 Side 36 Side 40 Bonding layer 50 Carbon adhesive 100 Graphite base material 110 Graphite base material 120 Graphite base material 130 Graphite base material 140 1st Curved surface 150 Second curved surface 500 Graphite base material 550 Surface 600 Silicon carbide film 610 Columnar structure 620 Fine structure 630 Silicon carbide film 640 Outer peripheral side surface 650 Surface 660 Surface 700 Silicon carbide substrate 710 Silicon carbide substrate 720 End b Width C Straight line C1 Intersection point C2 Intersection D Diameter D1 Diameter D2 Diameter E Total thickness r Radical radius s Thickness s1 Thickness s2 Thickness T Thickness t1 Thickness t2 Thickness t3 Thickness α1 Thermal expansion coefficient α2-L Thermal expansion coefficient α2-S Thermal expansion coefficient w Width W Diameter

Claims (14)

外側に突出する半楕円体形状の第1曲面と、
前記第1曲面とは反対の面であって、かつ、直径が同一であり、外側に突出する半楕円体形状の第2曲面と、
前記第1曲面および前記第2曲面の直径と同一の直径であり、前記第1曲面の円周と前記第2曲面の円周とをつなぐ円柱状の側面部と、
前記側面部を周回し、外側に突出する円環状凸部と、を備え、
前記側面部は、外部へ開口する複数の開口部を有する空隙を備える、円盤形状の黒鉛基材。
A semi-elliptical first curved surface protruding outward,
A semi-elliptical second curved surface that is opposite to the first curved surface and has the same diameter and protrudes outward.
A columnar side surface portion having the same diameter as the diameters of the first curved surface and the second curved surface and connecting the circumference of the first curved surface and the circumference of the second curved surface.
It is provided with an annular convex portion that circulates around the side surface portion and projects outward.
The side surface portion is a disk-shaped graphite base material having voids having a plurality of openings that open to the outside.
前記円環状凸部は、前記第1曲面の直径よりも大きく、前記円環状凸部を折り取り可能な周溝を有する、請求項1に記載の黒鉛基材。 The graphite base material according to claim 1, wherein the annular convex portion is larger than the diameter of the first curved surface and has a peripheral groove in which the annular convex portion can be cut off. 前記第1曲面および前記第2曲面の曲率半径が5000mm~11000mmである、請求項1または2に記載の黒鉛基材。 The graphite substrate according to claim 1 or 2, wherein the first curved surface and the second curved surface have a radius of curvature of 5000 mm to 11000 mm. 厚みが1.4mm~3.1mmである、請求項1~3のいずれか1項に記載の黒鉛基材。 The graphite substrate according to any one of claims 1 to 3, which has a thickness of 1.4 mm to 3.1 mm. 前記空隙の数が3~5である、請求項1~4のいずれか1項に記載の黒鉛基材。 The graphite substrate according to any one of claims 1 to 4, wherein the number of voids is 3 to 5. 前記第1曲面を表面とし、前記第1曲面の直径と同一の直径を有する平面状の第1裏面、および、前記第1曲面および前記第1裏面の直径と同一の直径であり、前記第1曲面の円周と前記第1裏面の円周とをつなぐ円柱状の第1側面部を備える第1黒鉛材と、
前記第2曲面を表面とし、前記第2曲面の直径と同一の直径を有する平面状の第2裏面、および、前記第2曲面および前記第2裏面の直径と同一の直径であり、前記第2曲面の円周と前記第2裏面の円周とをつなぐ円柱状の第2側面部を備える第2黒鉛材と、
前記第1裏面および前記第2裏面と接合し、前記円環状凸部を有する接合層と、を備え、
前記黒鉛基材の側面部は、前記第1側面部、前記第1裏面、前記接合層、前記第2裏面、前記第2側面部を有する、請求項1~5のいずれか1項に記載の黒鉛基材。
The first curved surface is a front surface, and the first back surface is a plane having the same diameter as the diameter of the first curved surface, and the diameter is the same as the diameters of the first curved surface and the first back surface. A first graphite material having a columnar first side surface portion connecting the circumference of the curved surface and the circumference of the first back surface,
The second curved surface is a front surface, and the diameter is the same as the diameters of the second curved surface and the second back surface, which are planar and have the same diameter as the diameter of the second curved surface. A second graphite material having a columnar second side surface portion connecting the circumference of the curved surface and the circumference of the second back surface, and
A bonding layer that is bonded to the first back surface and the second back surface and has the annular convex portion is provided.
The aspect according to any one of claims 1 to 5, wherein the side surface portion of the graphite substrate has the first side surface portion, the first back surface portion, the bonding layer, the second back surface portion, and the second side surface portion. Graphite substrate.
前記第1黒鉛材および前記第2黒鉛材の熱膨張係数が3.0×10-6/℃~6.0×10-6/℃である、請求項6に記載の黒鉛基材。 The graphite substrate according to claim 6, wherein the first graphite material and the second graphite material have a coefficient of thermal expansion of 3.0 × 10 -6 / ° C to 6.0 × 10 -6 / ° C. 前記接合層は、カーボン接着剤によって前記第1裏面および前記第2裏面と接合する、請求項6または7に記載の黒鉛基材。 The graphite base material according to claim 6 or 7, wherein the bonding layer is bonded to the first back surface and the second back surface with a carbon adhesive. 前記第1側面部および前記第2側面部の厚みは、0.2mm~0.6mmである、請求項6~8のいずれか1項に記載の黒鉛基材。 The graphite base material according to any one of claims 6 to 8, wherein the thickness of the first side surface portion and the second side surface portion is 0.2 mm to 0.6 mm. 前記接合層の厚みは、0.8mm~1.8mmである、請求項6~9のいずれか1項に記載の黒鉛基材。 The graphite base material according to any one of claims 6 to 9, wherein the thickness of the bonding layer is 0.8 mm to 1.8 mm. 請求項1~10のいずれか1項に記載の黒鉛基材の表面に、化学蒸着によって炭化珪素を成膜する成膜工程を含む、炭化珪素の成膜方法。 A method for forming silicon carbide, which comprises a film forming step of forming silicon carbide on the surface of the graphite substrate according to any one of claims 1 to 10 by chemical vapor deposition. 請求項11に記載の成膜方法により得た、表面に前記炭化珪素が成膜した前記黒鉛基材の前記円環状凸部の少なくとも一部を除去して前記黒鉛基材を露出させる露出工程と、
前記露出工程後、黒鉛基材を燃焼させて除去する燃焼除去工程と、を含む、炭化珪素基板の製造方法。
An exposure step obtained by the film forming method according to claim 11, wherein at least a part of the annular convex portion of the graphite substrate having the silicon carbide deposited on the surface is removed to expose the graphite substrate. ,
A method for manufacturing a silicon carbide substrate, which comprises a combustion removing step of burning and removing a graphite base material after the exposure step.
前記円環状凸部は、前記第1曲面の直径よりも大きく、前記円環状凸部を折り取り可能な周溝を有し、前記露出工程において前記周溝を折り取って前記黒鉛基材を露出させる、請求項12に記載の炭化珪素基板の製造方法。 The annular convex portion is larger than the diameter of the first curved surface and has a peripheral groove capable of breaking the annular convex portion. In the exposure step, the peripheral groove is broken to expose the graphite base material. The method for manufacturing a silicon carbide substrate according to claim 12. 前記燃焼除去工程後、成膜した前記炭化珪素の表面を研磨する研磨工程を含む、請求項12または13に記載の炭化珪素基板の製造方法。 The method for manufacturing a silicon carbide substrate according to claim 12 or 13, further comprising a polishing step of polishing the surface of the formed silicon carbide after the combustion removing step.
JP2018214979A 2018-11-15 2018-11-15 Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method Active JP7081453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018214979A JP7081453B2 (en) 2018-11-15 2018-11-15 Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018214979A JP7081453B2 (en) 2018-11-15 2018-11-15 Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method

Publications (2)

Publication Number Publication Date
JP2020083666A JP2020083666A (en) 2020-06-04
JP7081453B2 true JP7081453B2 (en) 2022-06-07

Family

ID=70909628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018214979A Active JP7081453B2 (en) 2018-11-15 2018-11-15 Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP7081453B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7484516B2 (en) * 2020-07-13 2024-05-16 住友金属鉱山株式会社 Exhaust gas treatment method and silicon carbide polycrystalline wafer manufacturing method
JP7484515B2 (en) * 2020-07-13 2024-05-16 住友金属鉱山株式会社 Exhaust gas treatment method and silicon carbide polycrystalline wafer manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273632A (en) 1999-03-25 2000-10-03 Ibiden Co Ltd Production of flat ceramic bulk material free from warpage by chemical vapor deposition method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188408A (en) * 1994-12-29 1996-07-23 Toyo Tanso Kk Silicon carbide molded product by chemical vapor deposition and its production
JPH08188468A (en) * 1994-12-29 1996-07-23 Toyo Tanso Kk Formed silicon carbide produced by chemical vapor deposition and its production
JPH1017382A (en) * 1996-06-28 1998-01-20 Mitsubishi Pencil Co Ltd Production of silicon carbide formed body
JPH1053464A (en) * 1996-08-06 1998-02-24 Toyo Tanso Kk Production of chemical vapor deposition-silicon carbide material
JP3958397B2 (en) * 1997-02-17 2007-08-15 東洋炭素株式会社 Method for producing chemical vapor deposition silicon carbide material
JP3811540B2 (en) * 1997-03-11 2006-08-23 東海カーボン株式会社 Method for producing silicon carbide molded body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000273632A (en) 1999-03-25 2000-10-03 Ibiden Co Ltd Production of flat ceramic bulk material free from warpage by chemical vapor deposition method

Also Published As

Publication number Publication date
JP2020083666A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
JP3938361B2 (en) Carbon composite material
JP5125098B2 (en) Manufacturing method of nitride semiconductor free-standing substrate
JP2012214376A (en) Seventy five millimeter silicon carbide wafer with low warp, bow, and ttv
WO2005116307A1 (en) Process for producing wafer of silicon carbide single-crystal
WO2017164233A1 (en) Manufacturing method for aluminum nitride single-crystal substrate
JP7081453B2 (en) Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method
JP2006348388A (en) Carbon composite material
JP7163756B2 (en) LAMINATED PRODUCT, METHOD FOR MANUFACTURING LAMINATED BODY, AND METHOD FOR MANUFACTURING SILICON CARBIDE POLYCRYSTALLINE SUBSTRATE
JP7103182B2 (en) Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method
CN109312491B (en) Nitride semiconductor template, method for manufacturing nitride semiconductor template, and method for manufacturing nitride semiconductor free-standing substrate
JP3094312B2 (en) Susceptor
JP3811540B2 (en) Method for producing silicon carbide molded body
JP4619036B2 (en) Carbon composite material
JP7294021B2 (en) Method for surface treatment of graphite support substrate, method for depositing polycrystalline silicon carbide film, and method for manufacturing polycrystalline silicon carbide substrate
JP7255473B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
JP7220844B2 (en) Manufacturing method of SiC polycrystalline substrate
JP7400337B2 (en) Method for manufacturing silicon carbide polycrystalline substrate
JP2022067844A (en) Deposition method for silicon carbide polycrystalline film, and production method for silicon carbide polycrystalline substrate
JP7322783B2 (en) Film formation support substrate, method for producing film formation support substrate, method for forming polycrystalline film, and method for producing polycrystalline substrate
JP7413768B2 (en) Method for manufacturing polycrystalline substrate
JP7367541B2 (en) Method for manufacturing silicon carbide polycrystalline substrate
JP7371448B2 (en) Method for removing graphite support substrate and method for manufacturing silicon carbide polycrystalline substrate
JP2020111495A (en) Silicon carbide polycrystalline substrate, method of manufacturing silicon carbide polycrystalline film, and method of manufacturing silicon carbide polycrystalline substrate
JP7375580B2 (en) Support substrate for film formation and manufacturing method of polycrystalline substrate
JP7204625B2 (en) Group III compound substrate manufacturing method and substrate manufactured by the manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220509

R150 Certificate of patent or registration of utility model

Ref document number: 7081453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150