JP7413768B2 - Method for manufacturing polycrystalline substrate - Google Patents

Method for manufacturing polycrystalline substrate Download PDF

Info

Publication number
JP7413768B2
JP7413768B2 JP2019233936A JP2019233936A JP7413768B2 JP 7413768 B2 JP7413768 B2 JP 7413768B2 JP 2019233936 A JP2019233936 A JP 2019233936A JP 2019233936 A JP2019233936 A JP 2019233936A JP 7413768 B2 JP7413768 B2 JP 7413768B2
Authority
JP
Japan
Prior art keywords
polycrystalline
film
substrate
silicon carbide
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019233936A
Other languages
Japanese (ja)
Other versions
JP2021102796A (en
Inventor
英一郎 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019233936A priority Critical patent/JP7413768B2/en
Publication of JP2021102796A publication Critical patent/JP2021102796A/en
Application granted granted Critical
Publication of JP7413768B2 publication Critical patent/JP7413768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多結晶基板の製造方法に関する。 The present invention relates to a method for manufacturing a polycrystalline substrate.

炭化ケイ素(SiC)は、ケイ素(Si)と炭素(C)で構成される、化合物半導体材料である。炭化ケイ素は、絶縁破壊電界強度がケイ素の10倍で、バンドギャップがケイ素の3倍であり、半導体材料として優れている。さらに、デバイスの作製に必要なp型、n型の制御が広い範囲で可能であることなどから、ケイ素の限界を超えるパワーデバイス用材料として期待されている。 Silicon carbide (SiC) is a compound semiconductor material composed of silicon (Si) and carbon (C). Silicon carbide has a dielectric breakdown field strength ten times that of silicon and a band gap three times that of silicon, making it excellent as a semiconductor material. Furthermore, since it is possible to control p-type and n-type over a wide range, which is necessary for device fabrication, it is expected to be a material for power devices that exceeds the limits of silicon.

しかしながら、炭化ケイ素半導体は、従来広く普及しているケイ素半導体と比較して、大面積の炭化ケイ素単結晶基板を得ることが難しく、製造工程も複雑である。これらの理由から、炭化ケイ素半導体は、ケイ素半導体と比較して大量生産が難しく、高価であった。 However, compared with silicon carbide semiconductors, which have been widely used in the past, it is difficult to obtain a silicon carbide single crystal substrate with a large area, and the manufacturing process is also complicated. For these reasons, silicon carbide semiconductors are difficult to mass produce and are expensive compared to silicon semiconductors.

これまでにも、炭化ケイ素半導体のコストを下げるために、様々な工夫が行われてきた。例えば、特許文献1には、炭化ケイ素基板の製造方法であって、少なくとも、マイクロパイプの密度が30個/cm以下の炭化ケイ素単結晶基板と炭化ケイ素多結晶基板を準備し、前記炭化ケイ素単結晶基板と前記炭化ケイ素多結晶基板とを貼り合わせる工程を行い、その後、単結晶基板を薄膜化する工程を行い、多結晶基板上に単結晶層を形成した基板(以下、「炭化ケイ素貼り合わせ基板」と記載することがある。)を製造することが記載されている。 Various efforts have been made to reduce the cost of silicon carbide semiconductors. For example, Patent Document 1 discloses a method for manufacturing a silicon carbide substrate, in which at least a silicon carbide single crystal substrate and a silicon carbide polycrystalline substrate having a density of micropipes of 30 pieces/cm 2 or less are prepared, and the silicon carbide A step of bonding a single crystal substrate and the silicon carbide polycrystalline substrate is performed, and then a step of thinning the single crystal substrate is performed to form a substrate with a single crystal layer formed on the polycrystalline substrate (hereinafter referred to as "silicon carbide bonded"). It is described that the manufacturing method is sometimes referred to as "laminated substrate").

更に、特許文献1には、単結晶基板と多結晶基板とを貼り合わせる工程の前に、単結晶基板に水素イオン注入を行って水素イオン注入層を形成する工程を行い、単結晶基板と多結晶基板とを貼り合わせる工程の後、単結晶基板を薄膜化する工程の前に、350℃以下の温度で熱処理を行い、単結晶基板を薄膜化する工程を、水素イオン注入層にて機械的に剥離する工程とする炭化ケイ素基板の製造方法が記載されている。 Furthermore, Patent Document 1 discloses that before the step of bonding the single crystal substrate and the polycrystalline substrate, a step of implanting hydrogen ions into the single crystal substrate to form a hydrogen ion implantation layer is performed, and the single crystal substrate and the polycrystalline substrate are bonded together. After the process of bonding with the crystal substrate and before the process of thinning the single crystal substrate, heat treatment is performed at a temperature of 350°C or less, and the process of thinning the single crystal substrate is mechanically performed using a hydrogen ion implantation layer. A method for manufacturing a silicon carbide substrate is described, which includes a step of peeling off the substrate.

このような方法により、1つの炭化ケイ素単結晶インゴットからより多くの炭化ケイ素貼り合わせ基板が得られるようになった。 With this method, more silicon carbide bonded substrates can be obtained from one silicon carbide single crystal ingot.

特開2009-117533号公報JP2009-117533A

例えば、炭化ケイ素半導体の製造過程において、特許文献1の方法で製造された炭化ケイ素貼り合わせ基板の大部分が、多結晶基板であり、炭化ケイ素多結晶基板の製造においては、化学気相蒸着法(化学気相成長法、CVD法)によって800℃程度以上の高温で黒鉛支持基板上に炭化ケイ素多結晶膜を成膜したのち、さらに焼成して黒鉛支持基板を気化させる等の手段により、支持基板と炭化ケイ素多結晶膜の積層体から支持基板を一部もしくは全てを除去して、炭化ケイ素多結晶基板を得ていた。 For example, in the manufacturing process of silicon carbide semiconductors, most of the silicon carbide bonded substrates manufactured by the method of Patent Document 1 are polycrystalline substrates, and in the manufacturing process of silicon carbide polycrystalline substrates, chemical vapor deposition After forming a silicon carbide polycrystalline film on a graphite support substrate at a high temperature of about 800°C or higher by (chemical vapor deposition method, CVD method), the silicon carbide polycrystalline film is further baked to vaporize the graphite support substrate. A silicon carbide polycrystalline substrate was obtained by removing part or all of the support substrate from a laminate of the substrate and silicon carbide polycrystalline film.

しかしながら、このようにして得られた炭化ケイ素等の多結晶膜基板は、冷却時に黒鉛支持基板と多結晶膜の熱膨脹係数差により内部応力が生じることに起因して、反りが生じることがあった。炭化ケイ素等の貼り合わせ基板を製造する等の用途に用いるためには、多結晶基板の平坦度を高くする必要があり、反りの大きい状態から平坦度の高い多結晶基板を得るため行われる平面研削の際の研削量が多くなり、製造歩留まりを低下させる要因となっていた。 However, polycrystalline film substrates such as silicon carbide obtained in this way sometimes warp due to internal stress generated due to the difference in coefficient of thermal expansion between the graphite support substrate and the polycrystalline film during cooling. . In order to use it for applications such as manufacturing bonded substrates made of silicon carbide, etc., it is necessary to increase the flatness of the polycrystalline substrate. The amount of grinding during grinding increases, which causes a decrease in manufacturing yield.

従って、本発明は、上記のような問題点に着目し、本発明は、多結晶基板の反りの発生を抑制することができる、多結晶基板の製造方法を提供することを目的とする。 Therefore, the present invention focuses on the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a polycrystalline substrate that can suppress the occurrence of warpage of the polycrystalline substrate.

本発明の多結晶基板の製造方法は、化学気相蒸着法により黒鉛製の支持基板上に多結晶膜を成膜する成膜工程と、前記支持基板と前記多結晶膜との積層体を加熱して、前記支持基板を燃焼除去する除去工程と、を含み、前記除去工程における前記積層体の加熱温度が、前記成膜工程における前記多結晶膜の成膜温度-50℃~前記成膜温度+50℃である。 The method for manufacturing a polycrystalline substrate of the present invention includes a film forming step of forming a polycrystalline film on a support substrate made of graphite by chemical vapor deposition, and heating a laminate of the support substrate and the polycrystalline film. and a removing step of burning and removing the support substrate, wherein the heating temperature of the laminate in the removing step is from −50° C. to the film forming temperature of the polycrystalline film in the film forming step. +50°C.

また、本発明の多結晶基板の製造方法において、前記成膜工程において、前記支持基板の両面を成膜対象面として前記多結晶膜を成膜してもよい。 Furthermore, in the method for manufacturing a polycrystalline substrate of the present invention, in the film forming step, the polycrystalline film may be formed on both surfaces of the support substrate as film-forming target surfaces.

また、本発明の多結晶基板の製造方法において、前記成膜工程と前記除去工程の間に、前記積層体の外周端部にある前記多結晶膜の少なくとも一部を除去して、前記支持基板の少なくとも一部を露出させる露出工程をさらに含んでもよい。 Further, in the method for manufacturing a polycrystalline substrate of the present invention, between the film forming step and the removing step, at least a part of the polycrystalline film at an outer peripheral end of the laminate is removed, and the supporting substrate is It may further include an exposing step of exposing at least a portion of the.

また、本発明の多結晶基板の製造方法において、前記除去工程後の前記多結晶膜の表面を研磨する研磨工程をさらに含んでもよい。 The method for manufacturing a polycrystalline substrate of the present invention may further include a polishing step of polishing the surface of the polycrystalline film after the removal step.

また、本発明の多結晶基板の製造方法において、前記多結晶膜が、炭化ケイ素多結晶膜であり、前記成膜温度が、1200℃~1700℃であってもよい。 Further, in the method for manufacturing a polycrystalline substrate of the present invention, the polycrystalline film may be a silicon carbide polycrystalline film, and the film forming temperature may be 1200°C to 1700°C.

本発明の多結晶基板の製造方法であれば、多結晶基板の反りの発生を抑制することができる。これにより、平坦度を高める等の後工程の負担が少なくなり、歩留まりやコストを改善させることができる。 With the method for manufacturing a polycrystalline substrate of the present invention, it is possible to suppress the occurrence of warpage of the polycrystalline substrate. This reduces the burden on post-processes such as increasing flatness, and improves yield and cost.

本発明の一実施形態にかかる多結晶基板の製造方法において用いる成膜装置の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of a film forming apparatus used in a method for manufacturing a polycrystalline substrate according to an embodiment of the present invention. 本発明の一実施形態にかかる多結晶基板の製造方法の各工程における、支持基板、多結晶膜、多結晶基板を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a support substrate, a polycrystalline film, and a polycrystalline substrate in each step of a method for manufacturing a polycrystalline substrate according to an embodiment of the present invention.

本発明の一実施形態にかかる多結晶基板の製造方法について、図面を参照して説明する。本実施形態の多結晶基板の製造方法は、化学気相蒸着法により黒鉛製の支持基板上に多結晶膜を成膜する成膜工程と、前記支持基板と前記多結晶膜との積層体を加熱して、前記支持基板を燃焼除去する除去工程と、を含むものである。本発明者等が鋭意研究し、試行錯誤を重ねた結果、本実施形態の多結晶基板の製造方法により、反りのない多結晶基板が得られることを見出すに至った。本実施形態の多結晶基板の製造方法は、例えば、炭化ケイ素(SiC)多結晶基板やシリコン(Si)多結晶基板の製造に適用することができる。以下の実施形態においては、多結晶基板として、炭化ケイ素多結晶基板を製造する場合を例示して説明する。 A method for manufacturing a polycrystalline substrate according to an embodiment of the present invention will be described with reference to the drawings. The method for manufacturing a polycrystalline substrate of this embodiment includes a film forming step of forming a polycrystalline film on a support substrate made of graphite by chemical vapor deposition, and a laminate of the support substrate and the polycrystalline film. The method includes a removing step of heating and burning away the supporting substrate. As a result of intensive research and repeated trial and error, the inventors of the present invention have discovered that the method for manufacturing a polycrystalline substrate of this embodiment allows a polycrystalline substrate without warping to be obtained. The method for manufacturing a polycrystalline substrate of this embodiment can be applied to, for example, manufacturing a silicon carbide (SiC) polycrystalline substrate or a silicon (Si) polycrystalline substrate. In the following embodiments, a case where a silicon carbide polycrystalline substrate is manufactured as a polycrystalline substrate will be exemplified and explained.

次に、本実施形態の多結晶基板の製造方法について、成膜工程、除去工程の順に説明する。 Next, the method for manufacturing a polycrystalline substrate according to the present embodiment will be described in the order of a film formation process and a removal process.

(成膜工程)
成膜工程について、図面を参照して説明する。以下の説明は成膜工程の一例であり、問題のない範囲で温度、圧力等の各条件や、手順等を変更してもよい。
(Film forming process)
The film forming process will be explained with reference to the drawings. The following description is an example of a film forming process, and conditions such as temperature and pressure, procedures, etc. may be changed within a range that causes no problems.

本実施形態の成膜工程は、化学気相蒸着法により黒鉛製の支持基板100上に、炭化ケイ素多結晶膜200(多結晶膜)を成膜する工程である。炭化ケイ素多結晶膜200を成膜する場合には、炭化ケイ素多結晶膜の成膜温度は、炭化ケイ素多結晶膜の一般的な成膜温度である、1200℃~1700℃とすることができる。例えば、以下に説明する成膜装置1000(図1)を用いて行うことができる。支持基板100としては、黒鉛製の支持基板を好適に用いることができ、これにより、高温条件下で炭化ケイ素多結晶膜の蒸着を行う化学気相蒸着法においても、軟化や形状の変形等が発生し難い。また、支持基板100の厚さや成膜対象面の大きさ等の形状は特に限定されず、所望の炭化ケイ素多結晶基板500に合わせたものを用いることができる。なお、炭化ケイ素多結晶膜200の成膜は、成膜対象を支持基板100の両面とするか、片面とするかは特に限定されない。支持基板100の両面を成膜対象とすることで、1枚の支持基板100から2枚の炭化ケイ素多結晶基板を得ることができ、生産効率を向上させることができる。本実施形態においては、支持基板100の両面を成膜対象として炭化ケイ素多結晶基板を製造する方法を説明する。 The film forming process of this embodiment is a process of forming a silicon carbide polycrystalline film 200 (polycrystalline film) on a support substrate 100 made of graphite by a chemical vapor deposition method. When forming the silicon carbide polycrystalline film 200, the film formation temperature of the silicon carbide polycrystalline film can be set to 1200° C. to 1700° C., which is a general film forming temperature of silicon carbide polycrystalline film. . For example, it can be performed using a film forming apparatus 1000 (FIG. 1) described below. As the support substrate 100, a support substrate made of graphite can be suitably used, which prevents softening, shape deformation, etc. even in the chemical vapor deposition method in which a silicon carbide polycrystalline film is deposited under high temperature conditions. Hard to occur. Further, the shape of the support substrate 100, such as the thickness and the size of the surface to be film-formed, is not particularly limited, and a support substrate 100 that matches the desired silicon carbide polycrystalline substrate 500 can be used. Note that there is no particular limitation on whether the polycrystalline silicon carbide film 200 is formed on both sides or one side of the support substrate 100. By targeting both sides of support substrate 100 for film formation, two silicon carbide polycrystalline substrates can be obtained from one support substrate 100, and production efficiency can be improved. In this embodiment, a method for manufacturing a silicon carbide polycrystalline substrate will be described with film formation being performed on both sides of the support substrate 100.

成膜装置1000は、化学気相蒸着法によって、支持基板100に炭化ケイ素多結晶膜200を成膜するために用いることができる。成膜装置1000は、成膜装置1000の外装となる筐体1100と、支持基板100に炭化ケイ素多結晶膜200を成膜させる成膜室1010と、成膜室1010より排出された原料ガスやキャリアガスを後述のガス排出口1030へ導入する排出ガス導入室1040と、排出ガス導入室1040を覆うボックス1050と、ボックス1050の外部より成膜室1010内を加温する、カーボン製のヒーター1060と、成膜室1010の下部に設けられ、成膜室1010に原料ガスやキャリアガスを導入するガス導入口1020と、ガス排出口1030と、支持基板100を保持する基板ホルダー1070を有する。また、基板ホルダー1070は、2つの柱1071と、支持基板100を水平に載置する、柱1071に設けられた載置部1072を有する。 Film forming apparatus 1000 can be used to form silicon carbide polycrystalline film 200 on support substrate 100 by chemical vapor deposition. The film forming apparatus 1000 includes a housing 1100 serving as an exterior of the film forming apparatus 1000, a film forming chamber 1010 for forming a silicon carbide polycrystalline film 200 on a supporting substrate 100, and a source gas discharged from the film forming chamber 1010. An exhaust gas introduction chamber 1040 that introduces carrier gas into a gas exhaust port 1030 (described later), a box 1050 that covers the exhaust gas introduction chamber 1040, and a carbon heater 1060 that heats the inside of the film forming chamber 1010 from outside the box 1050. A gas inlet 1020 that is provided at the lower part of the film forming chamber 1010 and introduces a source gas and a carrier gas into the film forming chamber 1010, a gas exhaust port 1030, and a substrate holder 1070 that holds the support substrate 100. Further, the substrate holder 1070 includes two pillars 1071 and a mounting section 1072 provided on the pillars 1071 on which the supporting substrate 100 is horizontally mounted.

成膜に先立ち、予め、成膜室1010内に支持基板100を保持させて、排気ポンプを用いて減圧状態(例えば、25kPa程度)または酸素分圧が低い状態において、成膜の反応温度まで、ヒーター1060により支持基板100を加熱することが好ましい。また、このとき、炭化ケイ素多結晶が蒸着して成膜する前の支持基板100に、炭化ケイ素多結晶膜200の成膜を阻害するような反応が生じないよう、支持基板100を不活性雰囲気下とするために、Ar等の不活性ガス雰囲気下とすることが好ましい。成膜の反応温度まで達したら、不活性ガスの供給を止めて、成膜室1010内に炭化ケイ素多結晶膜200の成分を含む原料ガスやキャリアガス、ドーピングガスを供給して成膜工程を行う。 Prior to film formation, the support substrate 100 is held in the film formation chamber 1010 in advance, and is heated to a reaction temperature for film formation under a reduced pressure state (for example, about 25 kPa) or a low oxygen partial pressure using an exhaust pump. Preferably, the support substrate 100 is heated by the heater 1060. At this time, the support substrate 100 is placed in an inert atmosphere so that a reaction that would inhibit the formation of the silicon carbide polycrystalline film 200 does not occur on the support substrate 100 before the silicon carbide polycrystalline film is deposited. It is preferable to use an atmosphere of an inert gas such as Ar. When the reaction temperature for film formation is reached, the supply of inert gas is stopped, and a raw material gas, a carrier gas, and a doping gas containing the components of the silicon carbide polycrystalline film 200 are supplied into the film formation chamber 1010 to start the film formation process. conduct.

原料ガスとしては、炭化ケイ素多結晶膜200を成膜させることができれば、特に限定されず、一般的に炭化ケイ素多結晶膜の成膜に使用されるSi系原料ガスやC系原料ガスを用いることができる。Si系原料ガスとしては、例えば、シラン(SiH)を用いることができるほか、モノクロロシラン(SiHCl)、ジクロロシラン(SiHCl)、トリクロロシラン(SiHCl)、テトラクロロシラン(SiCl)などのエッチング作用があるClを含む塩素系Si原料含有ガス(クロライド系原料)を用いることもできる。また、C系原料ガスとしては、例えば、メタン(CH)、プロパン(C)、アセチレン(C)等の炭化水素ガスを用いることができる。また、上記のほか、トリクロロメチルシラン(CHClSi)、トリクロロフェニルシラン(CClSi)、ジクロロメチルシラン(CHClSi)、ジクロロジメチルシラン((CHSiCl)、クロロトリメチルシラン((CHSiCl)等のSiとCとを両方含むガスも、原料ガスとして用いることができる。 The source gas is not particularly limited as long as it can form the silicon carbide polycrystalline film 200, and Si-based source gas or C-based source gas that is generally used for forming a silicon carbide polycrystalline film is used. be able to. As the Si-based source gas, for example, silane (SiH 4 ) can be used, as well as monochlorosilane (SiH 3 Cl), dichlorosilane (SiH 2 Cl 2 ), trichlorosilane (SiHCl 3 ), tetrachlorosilane (SiCl 4 It is also possible to use a chlorine-based Si raw material-containing gas (chloride-based raw material) containing Cl, which has an etching effect such as ). Further, as the C-based raw material gas, for example, hydrocarbon gas such as methane (CH 4 ), propane (C 3 H 8 ), acetylene (C 2 H 2 ), etc. can be used. In addition to the above, trichloromethylsilane (CH 3 Cl 3 Si), trichlorophenylsilane (C 6 H 5 Cl 3 Si), dichloromethylsilane (CH 4 Cl 2 Si), dichlorodimethylsilane ((CH 3 ) 2 A gas containing both Si and C, such as SiCl 2 ) or chlorotrimethylsilane ((CH 3 ) 3 SiCl), can also be used as the raw material gas.

また、キャリアガスとしては、炭化ケイ素多結晶膜200の成膜を阻害することなく、原料ガスを支持基板100へ展開することができれば、一般的に使用されるキャリアガスを用いることができる。例えば、熱伝導率に優れ、SiCに対してエッチング作用がある水素(H)を用いることができる。また、これらの原料ガスおよびキャリアガスと同時に、第3のガスとして、不純物ドーピングガスを同時に供給することもできる。例えば、導電型をn型とする場合には窒素(N)ガス、p型とする場合にはトリメチルアルミニウム(TMA)ガスを用いることができる。 Further, as the carrier gas, a commonly used carrier gas can be used as long as it can spread the raw material gas to the support substrate 100 without inhibiting the formation of the silicon carbide polycrystalline film 200. For example, hydrogen (H 2 ), which has excellent thermal conductivity and has an etching effect on SiC, can be used. Further, an impurity doping gas can be supplied as a third gas simultaneously with these source gas and carrier gas. For example, nitrogen (N 2 ) gas can be used when the conductivity type is n-type, and trimethylaluminum (TMA) gas can be used when the conductivity type is p-type.

炭化ケイ素多結晶膜200を成膜させる際には、上記のガスを適宜混合して、または、個別に成膜室1010内に供給する。具体的には、加熱した支持基板100に、1200~1700℃の温度において、炭化ケイ素多結晶膜200の成分を含む原料ガスやキャリアガス等の混合ガスを供給し、減圧下(例えば、25kPa程度)において支持基板100の二酸化ケイ素膜の表面や気相での化学反応を所定時間行うことで炭化ケイ素多結晶膜200を堆積することより、炭化ケイ素多結晶膜200を得る。また、所望の炭化ケイ素多結晶膜200の性状に応じて、上記条件内において、成膜工程の途中でガスの混合割合、供給量等の条件を変更してもよい。 When forming silicon carbide polycrystalline film 200, the above gases are appropriately mixed or individually supplied into film forming chamber 1010. Specifically, a mixed gas such as a raw material gas and a carrier gas containing the components of the silicon carbide polycrystalline film 200 is supplied to the heated support substrate 100 at a temperature of 1200 to 1700° C., and the mixture is heated under reduced pressure (for example, about 25 kPa). ), a silicon carbide polycrystalline film 200 is obtained by depositing a silicon carbide polycrystalline film 200 by performing a chemical reaction on the surface of the silicon dioxide film of the supporting substrate 100 or in the gas phase for a predetermined period of time. Furthermore, depending on the desired properties of polycrystalline silicon carbide film 200, conditions such as the gas mixture ratio and supply amount may be changed within the above conditions during the film forming process.

ここで、支持基板上にシリコン多結晶膜を成膜する場合には、原料ガスとして、例えば、シラン(SiH)やトリクロロシラン(SiHCl)など、シリコン多結晶膜の成膜に一般的に用いられるガスを用いることができる。また、成膜温度は、例えば、800℃~1000℃程度とすることができる。 Here, when forming a silicon polycrystalline film on the support substrate, the raw material gas is typically silane (SiH 4 ), trichlorosilane (SiHCl 3 ), etc. Any gas used can be used. Further, the film forming temperature can be, for example, about 800°C to 1000°C.

支持基板100の表面や気相での化学反応により、加熱した支持基板100に炭化ケイ素多結晶膜200を成膜させることができる。これにより、図2(B)に示すように、支持基板100に炭化ケイ素多結晶膜200が成膜された、支持基板100と炭化ケイ素多結晶膜200との積層体300が得られる。その後、成膜時に供給していたガスの供給、および、排気ポンプを停止して、次いで減圧下、または、酸素分圧が低い状態において、Ar等の不活性ガスを成膜室1010内に供給しながら、室温まで冷却させる。以上のように形成された積層体300は、常温程度まで冷却されたのちに、除去工程に供される。 Silicon carbide polycrystalline film 200 can be formed on heated support substrate 100 by a chemical reaction on the surface of support substrate 100 or in the gas phase. As a result, as shown in FIG. 2(B), a laminate 300 of the support substrate 100 and the silicon carbide polycrystalline film 200, in which the silicon carbide polycrystalline film 200 is formed on the support substrate 100, is obtained. After that, the supply of the gas supplied during film formation and the exhaust pump are stopped, and then an inert gas such as Ar is supplied into the film formation chamber 1010 under reduced pressure or in a state where the oxygen partial pressure is low. While cooling to room temperature. The laminate 300 formed as described above is cooled to about room temperature and then subjected to a removal process.

(除去工程)
次に、成膜工程により得られた積層体300を、除去工程に供する。除去工程は、支持基板100と炭化ケイ素多結晶膜200との積層体300から支持基板100を除去する工程である。
(Removal process)
Next, the laminate 300 obtained by the film forming process is subjected to a removing process. The removal step is a step of removing support substrate 100 from laminate 300 of support substrate 100 and silicon carbide polycrystalline film 200 .

成膜工程と除去工程の間に、積層体300の外周端部にある炭化ケイ素多結晶膜200の少なくとも一部を除去して、支持基板100の少なくとも一部を露出させる露出工程をさらに含んでいてもよい。すなわち、端面加工装置等を用いて、例えば、図2(B)の線Aの箇所で、外周部200Aを端面から内側へ2~4mm研削して、支持基板100の少なくとも一部(本実施形態においては支持基板100の側面110)を露出させて、支持基板100と炭化ケイ素多結晶膜200の本体部200Bとの積層体300Aを得る(図2(C))。これにより、黒鉛製の支持基板100の側面110が露出して、除去工程により黒鉛製の支持基板100を気化させ易くなる。なお、支持基板100の外周端部にリング状の黒鉛等によりマスキングしておき、炭化ケイ素多結晶膜200を成膜したのちに、炭化ケイ素多結晶膜200をマスキングした材料ごと除去することにより、支持基板100を露出させてもよい。なお、リング状の黒鉛に、例えばタブのような把持部等を形成しておくなどして、炭化ケイ素多結晶膜200がリング状の黒鉛上に成膜しても除去しやすいようにすることが好ましい。また、支持基板100の片面を成膜対象として炭化ケイ素多結晶膜を成膜した場合には、裏面に蒸着した炭化ケイ素多結晶を除去することにより、支持基板の一部を露出させてもよい。さらに、積層体300Aを加熱して、支持基板100を燃焼させることにより支持基板100を除去することができる。加熱温度は、成膜工程における炭化ケイ素多結晶膜200の成膜温度-50℃(成膜温度よりも50℃低い温度)~前記成膜温度+50℃(成膜温度よりも50℃高い温度)とする。燃焼時間は、例えば、10時間程度とすることができる。燃焼による支持基板100の除去工程は、例えば、二珪化モリブデン製のヒーターを備える燃焼炉等を用いることができる。まず、積層体300Aを燃焼炉内に保持して、燃焼炉内にOや空気等の酸化性ガスを供給しながら、大気圧下、または、酸素分圧が高い状態において、ヒーターにより燃焼炉内を加熱する。なお、燃焼炉内を加熱温度まで昇温するときには、減圧下、または、酸素分圧低い状態において、燃焼炉内にArガス等の不活性ガスを供給して、燃焼炉内を不活性条件にすることが好ましい。加熱により、支持基板100のみが燃焼して、支持基板100が除去された炭化ケイ素多結晶膜が得られ、図2(D)に示すように、これを炭化ケイ素多結晶基板500として用いる。 Between the film forming step and the removing step, the method further includes an exposing step of removing at least a portion of the silicon carbide polycrystalline film 200 at the outer peripheral end of the laminate 300 to expose at least a portion of the supporting substrate 100. You can stay there. That is, at least a portion of the support substrate 100 (this embodiment In this step, the side surface 110) of the support substrate 100 is exposed to obtain a laminate 300A of the support substrate 100 and the main body portion 200B of the silicon carbide polycrystalline film 200 (FIG. 2(C)). This exposes the side surface 110 of the support substrate 100 made of graphite, making it easier to vaporize the support substrate 100 made of graphite during the removal process. Note that by masking the outer peripheral edge of the support substrate 100 with ring-shaped graphite or the like, forming the silicon carbide polycrystalline film 200, and then removing the silicon carbide polycrystalline film 200 together with the masked material, The support substrate 100 may be exposed. Note that, even if the silicon carbide polycrystalline film 200 is formed on the ring-shaped graphite, it can be easily removed by forming a gripping part such as a tab on the ring-shaped graphite. is preferred. Furthermore, when a polycrystalline silicon carbide film is formed on one side of the support substrate 100, a part of the support substrate may be exposed by removing the polycrystalline silicon carbide deposited on the back side. . Further, the support substrate 100 can be removed by heating the stacked body 300A and burning the support substrate 100. The heating temperature ranges from -50°C (50°C lower than the film forming temperature) to the film forming temperature of the silicon carbide polycrystalline film 200 in the film forming process to +50°C (50°C higher than the film forming temperature). shall be. The combustion time can be, for example, about 10 hours. For the step of removing the support substrate 100 by combustion, for example, a combustion furnace or the like equipped with a heater made of molybdenum disilicide can be used. First, the stacked body 300A is held in a combustion furnace, and while supplying an oxidizing gas such as O 2 or air into the combustion furnace, the heater is used to Heat the inside. In addition, when raising the temperature inside the combustion furnace to the heating temperature, an inert gas such as Ar gas is supplied into the combustion furnace under reduced pressure or in a state where the oxygen partial pressure is low to bring the inside of the combustion furnace into an inert condition. It is preferable to do so. By heating, only the support substrate 100 is burned, and a silicon carbide polycrystalline film from which the support substrate 100 has been removed is obtained, which is used as a silicon carbide polycrystalline substrate 500 as shown in FIG. 2(D).

また、除去工程後の炭化ケイ素多結晶膜について、必要に応じて、厚さや表面粗さの調整、また、平坦度を高める等のために、除去工程後の炭化ケイ素多結晶膜の表面を研磨する研磨工程をさらに行って、炭化ケイ素多結晶基板500を得てもよい。炭化ケイ素多結晶基板500は、半導体の製造に用いられる基板とするのであれば、半導体製造プロセスで使用できる程度の面精度が必要となる。そこで、研磨工程により、支持基板100を除去した後の炭化ケイ素多結晶膜の表面を平滑化することが好ましい。例えば、支持基板100を除去した後の炭化ケイ素多結晶膜をダイアモンドスラリーでラップ処理し、ダイアモンドとアルミナとの混合スラリーでハードポリッシュした後に、シリカスラリー(コロイダルシリカ、pH11)でポリッシュするという工程を経て、平滑化した炭化ケイ素多結晶基板500を得ることができる。 In addition, the surface of the silicon carbide polycrystalline film after the removal process is polished as necessary to adjust the thickness and surface roughness, and to increase flatness. The silicon carbide polycrystalline substrate 500 may be obtained by further performing a polishing step. If the silicon carbide polycrystalline substrate 500 is to be used as a substrate for manufacturing semiconductors, it needs to have a surface precision that can be used in semiconductor manufacturing processes. Therefore, it is preferable to smooth the surface of the silicon carbide polycrystalline film after removing the support substrate 100 by a polishing process. For example, after removing the supporting substrate 100, the silicon carbide polycrystalline film is lapped with diamond slurry, hard polished with a mixed slurry of diamond and alumina, and then polished with silica slurry (colloidal silica, pH 11). Through this process, a smoothed silicon carbide polycrystalline substrate 500 can be obtained.

また、本実施形態の炭化ケイ素多結晶基板の製造方法において、上述した工程以外に、他の工程を含んでいてもよい。他の工程としては、例えば、研磨工程後の炭化ケイ素基板において、研磨工程により炭化ケイ素多結晶基板の表面に付着した付着物を除去するための洗浄工程等が挙げられる。 Further, the method for manufacturing a silicon carbide polycrystalline substrate according to the present embodiment may include other steps in addition to the steps described above. Other steps include, for example, a cleaning step for removing deposits that have adhered to the surface of the silicon carbide polycrystalline substrate after the polishing step in the silicon carbide substrate after the polishing step.

本実施形態の炭化ケイ素多結晶基板の製造方法においては、除去工程における積層体の加熱温度が、成膜工程における成膜温度-50℃~前記成膜温度+50℃である。炭化ケイ素多結晶膜の成膜工程において、支持基板100と炭化ケイ素多結晶膜200の積層体が成膜温度帯にあるときには、成膜した炭化ケイ素多結晶膜と支持基板のサイズは一致しており、反りは生じない。 In the method for manufacturing a silicon carbide polycrystalline substrate of the present embodiment, the heating temperature of the laminate in the removal step is from −50° C. to the film forming temperature in the film forming step to +50° C. above the film forming temperature. In the step of forming a polycrystalline silicon carbide film, when the stack of support substrate 100 and polycrystalline silicon carbide film 200 is in the film formation temperature range, the sizes of the polycrystalline silicon carbide film and the support substrate do not match. There will be no warping.

支持基板の燃焼温度は、従来の炭化ケイ素多結晶基板の製造方法において、炭化ケイ素多結晶膜の成膜温度よりも例えば200℃程度以上低いことが多い。ここで、支持基板の片面に炭化ケイ素多結晶膜を成膜した場合、炭化ケイ素多結晶膜成膜後の冷却過程において、炭化ケイ素と支持基板の材料である黒鉛との熱膨張係数が異なる場合、炭化ケイ素多結晶膜と黒鉛製支持基板との収縮量に差が生じ、積層体に反りが発生し得る。積層体が反った状態で支持基板を燃焼除去すると、炭化ケイ素基板に反りが固定化されるため得られた炭化ケイ素基板も反ってしまうこととなる。また、支持基板の両面に炭化ケイ素多結晶膜を成膜した場合、炭化ケイ素多結晶膜成膜後の冷却工程において、黒鉛と炭化ケイ素との熱膨張係数の違いによる収縮量の差に起因する反りは発生しないものの、各層の内部に応力が発生する。この状態で支持基板を燃焼除去すると、内部応力に起因して、炭化ケイ素基板に反りが生じうる。 In conventional methods of manufacturing silicon carbide polycrystalline substrates, the combustion temperature of the support substrate is often lower, for example, by about 200° C. or more, than the film formation temperature of the silicon carbide polycrystalline film. Here, when a polycrystalline silicon carbide film is formed on one side of the support substrate, in the cooling process after the polycrystalline silicon carbide film is formed, if the thermal expansion coefficients of silicon carbide and graphite, which is the material of the support substrate, differ. , a difference occurs in the amount of shrinkage between the silicon carbide polycrystalline film and the graphite support substrate, and warpage may occur in the laminate. If the support substrate is burned and removed with the laminate in a warped state, the warp will be fixed on the silicon carbide substrate, so the obtained silicon carbide substrate will also be warped. In addition, when a polycrystalline silicon carbide film is formed on both sides of the support substrate, in the cooling process after forming the polycrystalline silicon carbide film, shrinkage occurs due to the difference in the amount of shrinkage due to the difference in coefficient of thermal expansion between graphite and silicon carbide. Although no warpage occurs, stress is generated inside each layer. If the supporting substrate is burned and removed in this state, the silicon carbide substrate may warp due to internal stress.

一方、本実施形態の炭化ケイ素多結晶基板の製造方法のように、除去工程における積層体300Aの加熱温度を、成膜工程における成膜温度-50℃~前記成膜温度+50℃として、支持基板100を燃焼除去することで、成膜後の冷却において反りが発生した場合でも、成膜温度と同程度の温度に加熱されることにより、再び反りがほとんどない状態の積層体となる。また、内部に応力が発生していた場合においても、成膜温度と同程度の温度に加熱されることにより、発生した応力が相殺される。このような状態で、支持基板100が燃焼除去されるため、反りの小さい炭化ケイ素多結晶基板500を得ることが出来る。 On the other hand, as in the method for manufacturing a silicon carbide polycrystalline substrate of the present embodiment, the heating temperature of the laminate 300A in the removal step is set to the film-forming temperature in the film-forming step -50° C. to the film-forming temperature +50° C. By burning and removing 100, even if warpage occurs during cooling after film formation, the laminate is heated to a temperature comparable to the film formation temperature, resulting in a laminate with almost no warpage. Furthermore, even if stress is generated inside, the generated stress is canceled out by being heated to a temperature comparable to the film forming temperature. Since supporting substrate 100 is burned and removed in this state, silicon carbide polycrystalline substrate 500 with small warpage can be obtained.

本実施形態の多結晶基板の製造方法であれば、多結晶基板の反りの発生を抑制することができる。これにより、平坦度を高める等の後工程の負担が少なくなり、歩留まりやコストを改善させることができる。 With the method for manufacturing a polycrystalline substrate of this embodiment, it is possible to suppress the occurrence of warpage of the polycrystalline substrate. This reduces the burden on post-processes such as increasing flatness, and improves yield and cost.

その他、本発明を実施するための最良の構成、方法などは、以上の記載で開示されているが、本発明は、これに限定されるものではない。すなわち、本発明は、主に特定の実施形態に関して特に説明されているが、本発明の技術的思想及び目的の範囲から逸脱することなく、以上述べた実施形態に対し、形状、材質、数量、その他の詳細な構成において、当業者が様々な変形を加えることができるものである。従って、上記に開示した形状、材質などを限定した記載は、本発明の理解を容易にするために例示的に記載したものであり、本発明を限定するものではないから、それらの形状、材質などの限定の一部、もしくは全部の限定を外した部材の名称での記載は、本発明に含まれるものである。 In addition, the best configuration, method, etc. for carrying out the present invention have been disclosed in the above description, but the present invention is not limited thereto. That is, although the present invention has been specifically described mainly with respect to specific embodiments, there may be changes in shape, material, quantity, Various modifications can be made by those skilled in the art in other detailed configurations. Therefore, the descriptions that limit the shapes, materials, etc. disclosed above are provided as examples to facilitate understanding of the present invention, and do not limit the present invention. Descriptions of names of members that exclude some or all of the limitations such as these are included in the present invention.

以下、本発明の実施例および比較例によって、本発明をさらに詳細に説明するが、本発明は、これらの実施例によって何ら限定されることはない。 EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these Examples in any way.

本実施例においては、成膜装置1000を用いて黒鉛製の支持基板に炭化ケイ素多結晶膜を成膜する成膜工程を行ったのち、露出工程、支持基板の除去工程を行うことで炭化ケイ素多結晶基板を得た実施例を例示して説明する。 In this example, after performing a film formation step of forming a silicon carbide polycrystalline film on a support substrate made of graphite using the film formation apparatus 1000, an exposure step and a support substrate removal step are performed to form a polycrystalline silicon carbide film. An example in which a polycrystalline substrate was obtained will be illustrated and explained.

(実施例1)
[炭化ケイ素多結晶基板の製造]
直径6インチ、厚み0.6mmの黒鉛製の支持基板を前述した実施形態の成膜装置1000の成膜室に保持して、成膜工程を行った。まず、成膜室1010内へArガスを流入させながら、成膜室1010内を不図示の排気ポンプにより25kPaに減圧した後、1350℃まで加熱して、1350℃に達したのちArガスの供給を停止した。原料ガスとして、SiClガスとCHガスを各800sccm(standard cc/min、1気圧、0℃での値に換算したガス流量)、キャリアガスとして水素ガスを5000sccmで導入し、25kPaで、20時間の成膜を実施して炭化ケイ素多結晶膜を成膜した。
(Example 1)
[Manufacture of silicon carbide polycrystalline substrate]
A support substrate made of graphite with a diameter of 6 inches and a thickness of 0.6 mm was held in the film forming chamber of the film forming apparatus 1000 of the embodiment described above, and a film forming process was performed. First, while flowing Ar gas into the film forming chamber 1010, the pressure inside the film forming chamber 1010 is reduced to 25 kPa using an exhaust pump (not shown), and then heated to 1350°C. After reaching 1350°C, Ar gas is supplied. has been stopped. SiCl 4 gas and CH 4 gas were introduced at 800 sccm each (standard cc/min, 1 atm, gas flow rate converted to the value at 0°C) as raw material gases, and hydrogen gas was introduced at 5000 sccm as a carrier gas. A silicon carbide polycrystalline film was formed by performing film formation for several hours.

炭化ケイ素多結晶膜を成膜後、端面加工装置を使用し、炭化ケイ素多結晶膜の外周部を研磨することで、黒鉛製の支持基板の側面を露出させた。その後、燃焼炉内を減圧した状態で加熱温度まで昇温させたのち、O雰囲気下で、圧力は1気圧で、加熱温度を1350℃で、10時間保持して、支持基板と炭化ケイ素多結晶膜との積層体を燃焼させ、支持基板を完全に除去し、炭化ケイ素多結晶基板を得た。 After forming the silicon carbide polycrystalline film, the outer periphery of the silicon carbide polycrystalline film was polished using an end face processing device to expose the side surface of the graphite support substrate. After that, the temperature in the combustion furnace was raised to the heating temperature while the pressure inside the combustion furnace was reduced, and then the pressure was 1 atm and the heating temperature was maintained at 1350°C for 10 hours in an O 2 atmosphere. The laminate with the crystal film was burned and the supporting substrate was completely removed to obtain a silicon carbide polycrystalline substrate.

[炭化ケイ素多結晶基板の評価]
炭化ケイ素多結晶基板の表面の中心線上を斜入射型光学測定器により測定し、得られた測定値の最大値と最小値との差を反り量とした。測定は5点とし、中心、円周端部、および中心と円周端部との間にあり、中心からの距離と円周端部からの距離が同じ地点について、測定した。反り量が、50μm以下の場合を◎、150μm以下の場合を○、150μmよりも大きい場合を×と評価した。結果を表1に示した。また、表1には、成膜温度、加熱温度、温度差(加熱温度-成膜温度(℃))を併せて示した。
[Evaluation of silicon carbide polycrystalline substrate]
The center line of the surface of the silicon carbide polycrystalline substrate was measured using an oblique incidence type optical measuring device, and the difference between the maximum value and the minimum value of the obtained measurement values was defined as the amount of warpage. Measurements were made at five points: the center, the circumferential end, and a point between the center and the circumferential end, the distance from the center being the same as the distance from the circumferential end. When the amount of warpage was 50 μm or less, it was evaluated as ◎, when it was 150 μm or less, it was evaluated as ◯, and when it was larger than 150 μm, it was evaluated as ×. The results are shown in Table 1. Table 1 also shows the film forming temperature, heating temperature, and temperature difference (heating temperature - film forming temperature (°C)).

(実施例2、実施例3、比較例1~比較例4)
除去工程における加熱温度を種々変更したこと以外は、実施例1と同様の方法により炭化ケイ素多結晶基板を製造した。除去工程における加熱温度、炭化ケイ素多結晶基板の評価結果を表1に示した。
(Example 2, Example 3, Comparative Examples 1 to 4)
A silicon carbide polycrystalline substrate was manufactured in the same manner as in Example 1, except that the heating temperature in the removal step was variously changed. Table 1 shows the heating temperature in the removal process and the evaluation results of the silicon carbide polycrystalline substrate.

Figure 0007413768000001
Figure 0007413768000001

本発明の例示的実施例1~実施例3において、炭化ケイ素多結晶基板の反り量を確認したところ、加熱温度が1350℃(成膜温度と同じ温度)とした実施例1においては、反り量が50μm以下となり、反り量がとても少ない基板が得られた。また、実施例2(加熱温度が成膜温度よりも50℃低い)、実施例3(加熱温度が成膜温度よりも50℃高い)においては、反り量が150μm以下となり、反り量が少ない基板が得られた。また、比較例1~比較例4(いずれも、加熱温度が成膜温度-50℃よりも低い、または、成膜温度+50℃よりも高い)の炭化ケイ素多結晶基板においては、反り量が150μmよりも大きかった。よって、本発明の多結晶基板の製造方法であれば、多結晶基板の反りの発生を抑制することができ、平坦度を高める等の後工程の負担が少なくなり、歩留まりやコストを改善させることができることが示された。 In exemplary embodiments 1 to 3 of the present invention, when the amount of warpage of the silicon carbide polycrystalline substrate was confirmed, the amount of warpage was was 50 μm or less, and a substrate with a very small amount of warpage was obtained. In addition, in Example 2 (heating temperature is 50°C lower than the film-forming temperature) and Example 3 (heating temperature is 50°C higher than the film-forming temperature), the amount of warpage is 150 μm or less, and the substrate has a small amount of warpage. was gotten. In addition, in the silicon carbide polycrystalline substrates of Comparative Examples 1 to 4 (in each case, the heating temperature was lower than the film-forming temperature -50°C or higher than the film-forming temperature +50°C), the amount of warpage was 150 μm. It was bigger than Therefore, with the polycrystalline substrate manufacturing method of the present invention, it is possible to suppress the occurrence of warpage of the polycrystalline substrate, reduce the burden on post-processes such as increasing flatness, and improve yield and cost. It was shown that it is possible.

100 支持基板
200 炭化ケイ素多結晶膜(多結晶膜)
300 積層体
500 炭化ケイ素多結晶基板(多結晶基板)
100 Support substrate 200 Silicon carbide polycrystalline film (polycrystalline film)
300 Laminated body 500 Silicon carbide polycrystalline substrate (polycrystalline substrate)

Claims (4)

化学気相蒸着法により厚み0.6mmの黒鉛製の支持基板上に多結晶膜を成膜する成膜工程と、
前記支持基板と前記多結晶膜との積層体を加熱して、前記支持基板を燃焼除去する除去工程と、を含み、
前記除去工程における前記積層体の加熱温度が、前記成膜工程における前記多結晶膜の成膜温度-50℃~前記成膜温度+50℃であ
前記成膜工程において、前記支持基板の両面を成膜対象面として前記多結晶膜を成膜し、
前記多結晶膜が、炭化ケイ素多結晶膜であり、
前記成膜温度が、1200℃~1700℃である、反り量が150μm以下の多結晶基板の製造方法。
A film forming step of forming a polycrystalline film on a support substrate made of graphite with a thickness of 0.6 mm by chemical vapor deposition method;
a removing step of heating the laminate of the support substrate and the polycrystalline film to burn and remove the support substrate,
The heating temperature of the laminate in the removing step is from -50° C. to the film forming temperature of the polycrystalline film in the film forming step +50° C.,
In the film forming step, the polycrystalline film is formed using both sides of the support substrate as film formation target surfaces,
The polycrystalline film is a silicon carbide polycrystalline film,
A method for producing a polycrystalline substrate having a warpage of 150 μm or less, wherein the film forming temperature is 1200° C. to 1700° C.
前記成膜工程と前記除去工程の間に、前記積層体の外周端部にある前記多結晶膜の少なくとも一部を除去して、前記支持基板の少なくとも一部を露出させる露出工程をさらに含む、請求項1に記載の多結晶基板の製造方法。 Between the film forming step and the removing step, the method further includes an exposing step of removing at least a portion of the polycrystalline film at an outer peripheral end of the laminate to expose at least a portion of the supporting substrate. The method for manufacturing a polycrystalline substrate according to claim 1 . 前記除去工程後の前記多結晶膜の表面を研磨する研磨工程をさらに含む、請求項1または2に記載の多結晶基板の製造方法。 3. The method for manufacturing a polycrystalline substrate according to claim 1 , further comprising a polishing step of polishing the surface of the polycrystalline film after the removal step. 前記成膜温度が1350℃であり、The film forming temperature is 1350°C,
前記除去工程における前記積層体の加熱温度が1350℃である、請求項1~3のいずれか1項に記載の多結晶基板の製造方法。The method for manufacturing a polycrystalline substrate according to any one of claims 1 to 3, wherein the heating temperature of the laminate in the removing step is 1350°C.
JP2019233936A 2019-12-25 2019-12-25 Method for manufacturing polycrystalline substrate Active JP7413768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019233936A JP7413768B2 (en) 2019-12-25 2019-12-25 Method for manufacturing polycrystalline substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019233936A JP7413768B2 (en) 2019-12-25 2019-12-25 Method for manufacturing polycrystalline substrate

Publications (2)

Publication Number Publication Date
JP2021102796A JP2021102796A (en) 2021-07-15
JP7413768B2 true JP7413768B2 (en) 2024-01-16

Family

ID=76754869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019233936A Active JP7413768B2 (en) 2019-12-25 2019-12-25 Method for manufacturing polycrystalline substrate

Country Status (1)

Country Link
JP (1) JP7413768B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158666A (en) 1999-11-26 2001-06-12 Toshiba Ceramics Co Ltd Cvd-sic self-supported membrane structure and production process therefor
JP2009041060A (en) 2007-08-08 2009-02-26 Tokai Carbon Co Ltd METHOD FOR PRODUCING CVD-SiC

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001158666A (en) 1999-11-26 2001-06-12 Toshiba Ceramics Co Ltd Cvd-sic self-supported membrane structure and production process therefor
JP2009041060A (en) 2007-08-08 2009-02-26 Tokai Carbon Co Ltd METHOD FOR PRODUCING CVD-SiC

Also Published As

Publication number Publication date
JP2021102796A (en) 2021-07-15

Similar Documents

Publication Publication Date Title
JP7163756B2 (en) LAMINATED PRODUCT, METHOD FOR MANUFACTURING LAMINATED BODY, AND METHOD FOR MANUFACTURING SILICON CARBIDE POLYCRYSTALLINE SUBSTRATE
JP4551106B2 (en) Susceptor
JP7400337B2 (en) Method for manufacturing silicon carbide polycrystalline substrate
JP7294021B2 (en) Method for surface treatment of graphite support substrate, method for depositing polycrystalline silicon carbide film, and method for manufacturing polycrystalline silicon carbide substrate
JP7255473B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
JP7413768B2 (en) Method for manufacturing polycrystalline substrate
JP5267361B2 (en) Epitaxial growth method
JP7273267B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
JP7220844B2 (en) Manufacturing method of SiC polycrystalline substrate
JP7220845B2 (en) Susceptor, susceptor regeneration method, and film formation method
JP7247819B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
JPH10251062A (en) Production of silicon carbide formed body
JP7338193B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
JP7367497B2 (en) Method for forming a silicon carbide polycrystalline film and manufacturing method for a silicon carbide polycrystalline substrate
JP7322408B2 (en) Polycrystalline silicon carbide substrate, method for producing polycrystalline silicon carbide film, and method for producing polycrystalline silicon carbide substrate
JP7371510B2 (en) Film formation method and substrate manufacturing method
JP7367541B2 (en) Method for manufacturing silicon carbide polycrystalline substrate
JP7247749B2 (en) Silicon carbide polycrystalline film deposition method, susceptor, and deposition apparatus
JP7103182B2 (en) Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method
JP2022067842A (en) Deposition method for silicon carbide polycrystalline film, and production method for silicon carbide polycrystalline substrate
JP7322371B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
JP2020090420A (en) Graphite or ceramic substrate, substrate manufacturing method, silicon carbide film forming method, and silicon carbide substrate manufacturing method
JP7375580B2 (en) Support substrate for film formation and manufacturing method of polycrystalline substrate
JP7279465B2 (en) SUPPORTING SUBSTRATE, SUPPORTING SUBSTRATE HOLDING METHOD, AND FILM-FORMING METHOD
JP7081453B2 (en) Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231211

R150 Certificate of patent or registration of utility model

Ref document number: 7413768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150