JP3618048B2 - Components for semiconductor manufacturing equipment - Google Patents

Components for semiconductor manufacturing equipment Download PDF

Info

Publication number
JP3618048B2
JP3618048B2 JP26044698A JP26044698A JP3618048B2 JP 3618048 B2 JP3618048 B2 JP 3618048B2 JP 26044698 A JP26044698 A JP 26044698A JP 26044698 A JP26044698 A JP 26044698A JP 3618048 B2 JP3618048 B2 JP 3618048B2
Authority
JP
Japan
Prior art keywords
plasma
sintered body
less
fluoride
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26044698A
Other languages
Japanese (ja)
Other versions
JP2000086344A (en
Inventor
等 松之迫
裕見子 伊東
秀美 松本
祥二 高坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP26044698A priority Critical patent/JP3618048B2/en
Publication of JP2000086344A publication Critical patent/JP2000086344A/en
Application granted granted Critical
Publication of JP3618048B2 publication Critical patent/JP3618048B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特にフッ素系・塩素系プラズマに対して高い耐食性を有し、パーティクルやコンタミネーションの発生が少ない、プラズマ処理装置などの半導体製造用装置の内壁部材や被処理物を支持する支持体などの治具等としての使用に好適な高密度フッ化物焼結体を用いた半導体製造装置用部材に関するものである。
【0002】
【従来の技術】
半導体素子や液晶などの高集積回路形成に使用されるドライプロセスやプラズマコーティング等プラズマの利用が近年急速に進んでいる。半導体におけるプラズマプロセスとしては、フッ素系等のハロゲン系腐食ガスがその反応性の高さから、気相成長、エッチングやクリーニングに利用されている。
【0003】
これら腐食性ガスに接触する部材は、高い耐食性が要求され、従来から被処理物以外のこれらプラズマに接触する部材は、一般にガラスや石英などのSiOを主成分とする材料やステンレス、モネル等の金属が多用されている。
【0004】
また、半導体製造時において、ウェハを支持固定するサセプタ材としてアルミナ質焼結体、サファイア、AlN質焼結体、窒化珪素等の珪素質焼結体またはこれらをCVD法等により表面被覆したものが耐食性に優れるとして使用されている。また、グラファイト、窒化硼素をコーティングしたヒータ等も使用されている。
【0005】
さらに、特開平8−91932号公報では、腐食性ガスに接触する部材として、アルミニウム系材料のプラズマとの生成物であるAlFの焼結体を使用することにより耐プラズマ性が向上することが開示されている。
【0006】
【発明が解決しようとする課題】
しかし、従来から用いられているガラスや石英ではプラズマ中の耐食性が不充分で消耗が激しく、特にフッ素あるいは塩素プラズマに接すると接触面がエッチングされ、表面性状が変化してエッチングに影響する等の問題が生じていた。
【0007】
また、ステンレスなどの金属を使用した部材でも耐食性が不充分なため、腐食によって特に半導体製造においては不良品発生の原因となっていた。アルミナ、窒化アルミニウム、窒化珪素質焼結体やコーティング材は、上記の材料に比較してフッ素系ガスに対して耐食性に優れるものの、高温でプラズマと接すると腐食が徐々に進行して焼結体の表面から結晶粒子の脱粒が生じたり、プラズマとの反応生成物が析出・剥離してパーティクル発生の原因になるという問題が起きていた。
【0008】
このようなパーティクルの発生は、半導体の高集積化、プロセスのさらなるクリーン化が図られる中、イオン衝撃や、気相反応で生成したごく微細なパーティクルによってメタル配線の断線、パターンの欠陥等による素子特性の劣化や歩留まりの低下等の不具合を発生する恐れが生じている。
【0009】
また、特開平8−91932号公報のように、腐食性ガスに接触する部材として、AlFの焼結体を使用した場合、AlFは、比較的低温から昇華するため高温領域では不安定となることから、アルミナ、窒化アルミニウム、窒化珪素質焼結体に比べ耐食性が向上するものの、実用的には充分でなかった。さらに、AlF(融点1040℃)は、比較的低温で昇華することから、特に常圧焼成やホットプレス焼成等の雰囲気焼成においては、昇華を抑制しつつ焼成する必要があり、緻密な焼結体を得ることが難しいものであった。
【0010】
本発明者らは、このような問題を解決するため、先にフッ素・塩素系プラズマと接触する表面をプラズマに対して安定なハロゲン化物を形成しうる周期律表第2A、3A族元素を含有する酸化物、窒化物、炭化物の焼結体により形成し、プラズマにより焼結体表面にCaF等の周期律表第2A、3A族元素を含有するハロゲン化物を形成することを提案した。
【0011】
しかしながら、周期律表第2A、3A族元素を主成分とする材料は、フッ素・塩素系のプラズマに対しては安定ではあっても、室温における熱膨張係数が、例えば、酸化マグネシウム14×10−6/℃、フッ化マグネシウム10×10−6/℃と差があるために、熱サイクルにより焼結体表面に形成された周期律表第2A、3A族元素を含有するハロゲン化物が剥離しやすく、材料表面に形成されたハロゲン化物の脱落によってパーティクルが発生してしまうという問題があった。
【0012】
特に、CaFの溶融体は、へき開性があるため、表面層等が振動や衝撃等により容易に剥離し、多量のパーティクルの発生の要因となっていた。
【0013】
【課題を解決するための手段】
本発明者らは、フッ素系及び塩素系腐食プラズマに対して、高い耐食性を有し、パーティクルの発生を抑制できる材料について検討を重ねた結果、アルカリ土類金属のフッ化物焼結体の結晶粒径、不純物量および密度を特定の範囲に制御することにより、フッ素・塩素系腐食プラズマに対して高い耐食性を示し、パーティクルの発生を抑制して半導体素子の汚染を抑制した半導体製造装置用部材が得られることを見いだした。
【0014】
すなわち、本発明の高密度フッ化物焼結体は、少なくともハロゲン系腐食ガスあるいはそのプラズマと直接接触する表面を具備し、Mg、Ca、SrおよびBaの群から選ばれる少なくとも1種のアルカリ土類金属のフッ化物からなり、前記アルカリ土類金属以外の金属元素の総量が金属換算で100ppm以下、前記フッ化物の結晶粒子の平均粒径が30μm以下であり、かつ相対密度が95%以上の高密度フッ化物焼結体からなることを特徴とするものである。
【0015】
また、前記高密度フッ化物焼結体の開気孔率が0.2%以下であることが好ましい。
【0016】
さらに、前記高密度フッ化物焼結体の表面粗さRaが1μm以下であることが好ましい。
【0017】
【発明の実施の形態】
本発明の導体製造装置用部材は、少なくともハロゲン系腐食ガスあるいはそのプラズマと直接接触する表面を具備し、Mg、Ca、SrおよびBaの群から選ばれる少なくとも1種のアルカリ土類金属のフッ化物からなるもので、ハロゲン系プラズマ、特にフッ素プラズマに対する耐食性の観点から、前記アルカリ土類金属以外の金属元素の総量を金属換算で100ppm以下、望ましくは90ppm以下、特に50ppm以下、さらには10ppm以下に制御することが重要である。すなわち、前記アルカリ土類金属以外の金属元素の総量が金属換算で100ppmより多いと、プラズマ接触面でアルカリ土類金属以外の金属がプラズマと反応し、これによりエッチングが進行するとともに、その反応物がパーティクルの原因となるためである。
【0018】
また、フッ素プラズマに対する耐食性の点では、融点の高い材料が望ましく、CaF、MgF、BaF、SrF(それぞれの融点1360℃、1265℃、1280℃、1190℃)の順で好ましい。
【0019】
さらに、プラズマに対する耐食性を高める上では、焼結体の相対密度は95%以上、特に98%以上であることが必要がある。これは、焼結体の相対密度が95%より小さいと、プラズマとの接触面積が増加するために耐食性が低下し、またプラズマ接触面に存在する気孔からエッチングが進行してしまうためである。
【0020】
また、焼結体のフッ化物結晶の平均粒径は、30μm以下、望ましくは25μm以下、特に10μm以下、さらには5μm以下であることが望ましい。すなわち、この平均粒径が30μmより大きいと、脱粒等が発生した場合、半導体製造装置内に及ぼす影響が大きくなるためである。
【0021】
かかるハロゲン系プラズマに対し、高い耐食性を有する高密度フッ化物焼結体を作製する方法としては、アルカリ土類金属以外の金属元素の総量を金属換算で100ppm以下、望ましくは90ppm以下、特に50ppm以下、さらには10ppm以下であり、かつ平均粒径が30μm以下、望ましくは20μm以下、特に10μm以下、さらには3μm以下のフッ化物原料粉末を準備する。原料粉末の粒径が30μmよりも大きい場合は、所望の粉砕方法、例えば、ボールミル、振動ミル、アトライタミル、ジェットミル等により粉砕して用いればよく、また、メッシュパス等により粗粒を除去しておくほうが望ましい。
【0022】
この粉末を用いて、所定形状に所望の成形手段、例えば、金型プレス、冷間静水圧プレス、押し出し成形等により任意の形状に成形する。この時の成形体は、相対密度55%以上であることが望ましく、成形体密度が55%よりも低いと、その後の焼結過程で相対密度95%以上の緻密体を作製することが困難である。
【0023】
次に、上記のようにして作製した成形体を相対密度95%以上、特に98%以上に焼成する。相対密度95%以上に緻密化するには、上記の組成からなる成形体を非酸化性雰囲気中、加圧あるいは常圧下(非酸化性ガス圧1atm以上)で700〜1300℃の温度範囲で焼成することにより得られる。
【0024】
この場合、最適な焼成温度は材料によって異なり、例えば、MgFおよびBaFについては700〜1200℃、好ましくは800〜1100℃、さらには900〜1000℃が望ましく、CaFについては、800〜1300℃、好ましくは900〜1200℃、さらには1000〜1100℃が望ましく、SrFについては、800〜1100℃、好ましくは850〜1050℃、さらには900〜1000℃が望ましい。なお、AlFについては、融点が1040℃であり、かつ昇華しやすいため、焼成温度を1040℃以上に上げることができないため焼成により緻密化させることが難しい。
【0025】
また、上記焼成において、相対密度を向上させるためには50kgf/cm以上の加圧下でホットプレス焼成することが望ましく、さらに、得られた焼結体に対して熱間静水圧焼成を行ってもよい。
【0026】
なお、ホットプレスの場合、カーボンモールドによって焼結体中にわずかにカーボンが混入する場合があるが、その量は0.5重量%以下であれば特に問題ない。
【0027】
上記の焼成により、相対密度95%以上、特に98%以上の焼結体を得る。なお、上記焼結体が低密度で多量の気孔を有する場合は、それだけガスやプラズマとの接触面積が増加し消耗が早くなるため、開気孔率0.2%以下であることが望ましい。得られた焼結体に対し、適宜研削加工を施し、所定の寸法の製品形状に仕上げる。この時、耐食性を高める上では、前記腐食性ガスあるいはそのプラズマと接触する焼結体表面の表面粗さ(Ra)が、1μm以下、特に0.5μm以下、さらには0.1μm以下であることが望ましい。
【0028】
そして、かかる高密度フッ化物焼結体は、半導体素子を製造する際に用いられ、フッ素系または塩素系等のハロゲン系の腐食ガスまたはプラズマと表面が直接接触する部位に好適に用いられる。フッ素系ガスとしては、SF、NF、CF、CHF、ClF、HF等が、また塩素系ガスとしては、Cl、BCl、HCl等が挙げられ、これらのガスが導入された雰囲気にマイクロ波や高周波等を導入するとこれらのガスがプラズマ化される。
【0029】
本発明によれば、このようなハロゲン系の腐食ガスあるいはそのプラズマに直接接触する表面を、フッ化物焼結体から構成するものである。フッ化物焼結体は、フッ素、塩素との反応性が低いために、優れた耐食性を示す。
【0030】
さらに、シリコンウェハの大口径化に伴い、製造装置や構成部品自体も大型化することから、強度および耐熱衝撃性を高める必要があり、また、塩素系ガス及びそのプラズマを使用する場合は、熱サイクルによる部品の劣化が問題視されてくることから耐熱信頼性を高める上でも、焼結体の相対密度は95%以上が必要である。
【0031】
【実施例】
(実施例1)
表1に示す平均粒径、アルカリ土類金属以外の金属含有量(不純物量と記す)のフッ化物原料粉末を用い、これをカーボン製モールドに充填し、真空中、200kgf/cmの加圧下、表1に示す焼成温度にて2時間ホットプレス焼成を行った。
【0032】
比較例として、純度99.99%以上のCaFの溶融体(試料No.32)を準備した。また、SiO、Al、AlN、AlFについて、表1に示す温度で焼成し同様に溶融体あるいは焼結体を作製した(試料No.28〜31)。
【0033】
得られた焼結体を用いて、まずアルキメデス法により焼結体の密度を測定し、理論密度に対する比率である相対密度(%)を算出した。結果は表1に示した。
【0034】
(耐食性試験)
得られた焼結体に対して、表面を表面粗さ(Ra)が0.1μm以下となるように鏡面加工した直径22cmの円盤を作製し、RIEプラズマエッチング装置にて、CF(60sccm)+ Ar(60sccm)のフッ素系プラズマに室温で曝し、エッチングレートとパーティクルの有無を調査した。エッチング条件は圧力10Pa、RF出力1KW、プラズマ照射時間3時間とした。エッチングレートはテスト前後の重量変化を基に算出した。パーティクルの有無は、プラズマ照射後の円盤上に8インチのSiウェハを載せたのち、ウェハの接触面の凹凸をレーザー散乱によって検出し、パーティクルカウンタにて0.3μm以上のパーティクル個数を計測した。結果を表1に示す。
【0035】
【表1】

Figure 0003618048
【0036】
表1の結果によれば、試料No.1、9は、焼成温度が低く、相対密度を95%以上に緻密化できないために、耐食性が低下するとともに脱粒によって30個以上のパーティクルが発生し、使用に耐えない。また、試料No.23は、焼成温度が高く溶融してしまった。さらに、原料粉末の粒径が30μmを越える試料No.6、14、22、27では、緻密化できず、耐食性が低下した。また、アルカリ土類金属以外の金属元素の総量が金属換算で100ppmより多い試料No.5、13は、多量のパーティクルの発生が認められた。
【0037】
一方、アルカリ土類金属のフッ化物以外のSiO、Al、AlN、AlFの焼結体およびCaFの溶融体については、緻密な焼結体が得られるものの、耐食性は不十分であった。
【0038】
これに対し、本発明による試料No.2〜4、7〜8、10〜12、15〜21、24〜26は、相対密度95%以上、かつエッチングレート25Å/min.以下、特に15Å/min.以下、パーティクル発生量15個/8インチウエハ、特に10個/8インチウエハの良好な耐食性を示した。
【0039】
(実施例2)
平均粒径10μm、焼結体中におけるアルカリ土類金属以外の金属元素含有量(不純物量)83ppmのCaF粉末を用い、3ton/cmの圧力でCIP処理を行った後、Ar雰囲気中、焼成温度1100℃にて雰囲気焼成(PLS)を行った。得られた試料について、実施例1と同様の評価を行ったところ、相対密度95%、結晶の平均粒径13μm、エッチングレート22Å/min.、パーティクル発生量15個/8インチウエハの良好な耐食性を示した。
【0040】
【発明の効果】
以上詳述したように、本発明によれば、フッ素系及び塩素系腐食性ガス或いはプラズマに曝される部材としてMg、Ca、SrおよびBaの群から選ばれる少なくとも1種のアルカリ土類金属のフッ化物からなり、前記アルカリ土類金属以外の金属元素の総量が金属換算で100ppm以下であり、平均粒径が30μm以下、かつ相対密度95%以上の焼結体を使用することにより、高温・高密度のフッ素系及び塩素系腐食雰囲気に長時間の耐久性を有し、且つコンタミネーションやパーティクルを発生しないこと、大型部品としての機械的強度を保持することから、半導体製造用装置、とりわけプラズマ処理装置の内壁部材や被処理物を支持する支持体などの治具等の部材として使用することにより、半導体製造の歩留り向上とともに高品質の半導体素子を作製することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention is a support for supporting an inner wall member or an object to be processed of a semiconductor manufacturing apparatus such as a plasma processing apparatus, which has high corrosion resistance particularly against fluorine-based and chlorine-based plasma and generates less particles and contamination. It is related with the member for semiconductor manufacturing apparatuses using the high-density fluoride sintered compact suitable for use as jigs.
[0002]
[Prior art]
In recent years, the use of plasma such as dry process and plasma coating used for forming highly integrated circuits such as semiconductor elements and liquid crystals has been rapidly progressing. As plasma processes in semiconductors, halogen-based corrosive gases such as fluorine are used for vapor phase growth, etching and cleaning because of their high reactivity.
[0003]
These members that come into contact with corrosive gases are required to have high corrosion resistance. Conventionally, members that come into contact with these plasmas other than the object to be processed are generally made of materials mainly composed of SiO 2 such as glass and quartz, stainless steel, monel, etc. Often used.
[0004]
Also, during semiconductor manufacturing, as a susceptor material for supporting and fixing a wafer, an alumina sintered body, a sapphire, an AlN sintered body, a silicon sintered body such as silicon nitride, or the like, which is surface-coated by a CVD method or the like. It is used as having excellent corrosion resistance. In addition, heaters coated with graphite and boron nitride are also used.
[0005]
Furthermore, in JP-A-8-91932, plasma resistance is improved by using a sintered body of AlF 3 which is a product of plasma of an aluminum-based material as a member that contacts a corrosive gas. It is disclosed.
[0006]
[Problems to be solved by the invention]
However, conventionally used glass and quartz have insufficient corrosion resistance in the plasma and are very exhausted, especially when they come into contact with fluorine or chlorine plasma, the contact surface is etched, the surface properties change and affect the etching, etc. There was a problem.
[0007]
Further, even a member using a metal such as stainless steel has insufficient corrosion resistance, so that corrosion has caused a defective product particularly in semiconductor manufacturing. Alumina, aluminum nitride, silicon nitride-based sintered bodies and coating materials are superior in corrosion resistance to fluorine-based gases compared to the above materials. There have been problems that crystal grains are shed from the surface, and that a reaction product with plasma is precipitated and separated to cause generation of particles.
[0008]
The generation of such particles is due to the high integration of semiconductors and the further cleanliness of the process, the element caused by ion bombardment, disconnection of metal wiring, pattern defects, etc. due to very fine particles generated by gas phase reaction. There is a possibility that problems such as deterioration of characteristics and a decrease in yield occur.
[0009]
Also, as in JP-8-91932 and JP-as a member for contacting the corrosive gas, when using the sintered body of AlF 3, AlF 3 is unstable in the high temperature region for sublimation from a relatively low temperature Therefore, although the corrosion resistance is improved as compared with alumina, aluminum nitride, and silicon nitride sintered body, it is not sufficient for practical use. Furthermore, since AlF 3 (melting point 1040 ° C.) sublimes at a relatively low temperature, it is necessary to perform firing while suppressing sublimation, particularly in atmospheric firing such as atmospheric pressure firing and hot press firing, and dense sintering. It was difficult to get a body.
[0010]
In order to solve such a problem, the inventors of the present invention include elements 2A and 3A in the periodic table that can form a halide that is stable against the plasma on the surface that comes into contact with the fluorine-chlorine plasma. It was proposed to form a halide containing 2A, 3A group elements of the periodic table such as CaF 2 on the surface of the sintered body by plasma.
[0011]
However, although the material mainly composed of Group 2A and 3A elements of the periodic table is stable against fluorine / chlorine plasma, the thermal expansion coefficient at room temperature is, for example, magnesium oxide 14 × 10 − Since there is a difference between 6 / ° C. and magnesium fluoride 10 × 10 −6 / ° C., the halide containing 2A and 3A group elements of the periodic table formed on the surface of the sintered body by thermal cycling is easy to peel off. There has been a problem that particles are generated by the falling off of the halide formed on the material surface.
[0012]
In particular, since the CaF 2 melt has a cleavage property, the surface layer and the like easily peeled off due to vibration, impact, and the like, causing a large amount of particles to be generated.
[0013]
[Means for Solving the Problems]
As a result of repeated investigations on materials that have high corrosion resistance against fluorine-based and chlorine-based corrosive plasma and that can suppress the generation of particles, the inventors have found that the crystal grains of the alkaline earth metal fluoride sintered body By controlling the diameter, impurity amount, and density to a specific range, a member for a semiconductor manufacturing apparatus that exhibits high corrosion resistance against fluorine / chlorine-based corrosive plasma and suppresses the generation of particles to suppress contamination of semiconductor elements. I found out that I could get it.
[0014]
That is, the high-density fluoride sintered body of the present invention has at least a surface that is in direct contact with a halogen-based corrosive gas or plasma thereof, and at least one alkaline earth selected from the group consisting of Mg, Ca, Sr, and Ba. It is made of a metal fluoride, the total amount of metal elements other than the alkaline earth metal is 100 ppm or less in terms of metal, the average particle diameter of the fluoride crystal particles is 30 μm or less, and the relative density is 95% or more. It consists of a density fluoride sintered compact .
[0015]
The open porosity of the high-density fluoride sintered body is preferably 0.2% or less.
[0016]
Furthermore, the surface roughness Ra of the high-density fluoride sintered body is preferably 1 μm or less.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Semiconductors manufacturing equipment member of the present invention comprises a surface which contacts at least a halogen-based corrosive gas or directly with the plasma, Mg, Ca, at least one alkaline earth metal fluoride selected from the group consisting of Sr and Ba From the viewpoint of corrosion resistance to halogen-based plasma, particularly fluorine plasma, the total amount of metal elements other than the alkaline earth metal is 100 ppm or less, desirably 90 ppm or less, particularly 50 ppm or less, more preferably 10 ppm or less. It is important to control. That is, when the total amount of the metal elements other than the alkaline earth metal is more than 100 ppm in terms of metal, the metal other than the alkaline earth metal reacts with the plasma at the plasma contact surface, whereby the etching proceeds and the reaction product This is because it causes particles.
[0018]
Further, in terms of corrosion resistance against fluorine plasma, a material having a high melting point is desirable, and CaF 2 , MgF 2 , BaF 2 , SrF 2 (respective melting points 1360 ° C., 1265 ° C., 1280 ° C., 1190 ° C.) are preferable in this order.
[0019]
Furthermore, in order to improve the corrosion resistance against plasma, the relative density of the sintered body needs to be 95% or more, particularly 98% or more. This is because when the relative density of the sintered body is less than 95%, the contact area with the plasma is increased, so that the corrosion resistance is lowered, and the etching proceeds from the pores existing on the plasma contact surface.
[0020]
The average particle size of the fluoride crystals of the sintered body is 30 μm or less, desirably 25 μm or less, particularly 10 μm or less, and further desirably 5 μm or less. That is, when the average particle size is larger than 30 μm, the effect on the semiconductor manufacturing apparatus increases when degranulation occurs.
[0021]
As a method for producing a high-density fluoride sintered body having high corrosion resistance against such halogen-based plasma, the total amount of metal elements other than alkaline earth metals is 100 ppm or less, desirably 90 ppm or less, particularly 50 ppm or less in terms of metal. Further, a fluoride raw material powder having 10 ppm or less and an average particle size of 30 μm or less, desirably 20 μm or less, particularly 10 μm or less, and further 3 μm or less is prepared. When the particle size of the raw material powder is larger than 30 μm, it may be used after being pulverized by a desired pulverization method, for example, a ball mill, a vibration mill, an attritor mill, a jet mill, etc. It is better to leave it.
[0022]
Using this powder, it is formed into a desired shape by a desired forming means such as a die press, cold isostatic pressing, extrusion molding or the like. The molded body at this time desirably has a relative density of 55% or more. If the density of the molded body is lower than 55%, it is difficult to produce a dense body having a relative density of 95% or more in the subsequent sintering process. is there.
[0023]
Next, the molded body produced as described above is fired to a relative density of 95% or more, particularly 98% or more. For densification to a relative density of 95% or more, the molded product having the above composition is fired in a non-oxidizing atmosphere under a pressure or normal pressure (non-oxidizing gas pressure of 1 atm or more) in a temperature range of 700 to 1300 ° C. Can be obtained.
[0024]
In this case, the optimum firing temperature varies depending on the material, for example, 700 to 1200 ° C., preferably 800 to 1100 ° C., more preferably 900 to 1000 ° C. for MgF 2 and BaF 2 , and 800 to 1300 for CaF 2. ° C, preferably 900 to 1200 ° C, more preferably 1000 to 1100 ° C, and SrF 2 is 800 to 1100 ° C, preferably 850 to 1050 ° C, more preferably 900 to 1000 ° C. Since AlF 3 has a melting point of 1040 ° C. and is easily sublimated, the firing temperature cannot be increased to 1040 ° C. or higher, and it is difficult to make it dense by firing.
[0025]
Further, in the above firing, in order to improve the relative density, it is desirable to perform hot press firing under a pressure of 50 kgf / cm 2 or more, and further, hot isostatic firing is performed on the obtained sintered body. Also good.
[0026]
In the case of hot pressing, carbon may be slightly mixed in the sintered body by the carbon mold, but there is no particular problem if the amount is 0.5% by weight or less.
[0027]
By the firing, a sintered body having a relative density of 95% or more, particularly 98% or more is obtained. When the sintered body has a low density and a large amount of pores, the contact area with the gas or plasma increases correspondingly and the wear becomes faster. Therefore, the open porosity is preferably 0.2% or less. The obtained sintered body is appropriately ground and finished into a product shape having a predetermined dimension. At this time, in order to improve the corrosion resistance, the surface roughness (Ra) of the surface of the sintered body that is in contact with the corrosive gas or plasma thereof is 1 μm or less, particularly 0.5 μm or less, and further 0.1 μm or less. Is desirable.
[0028]
Such a high-density fluoride sintered body is used when manufacturing a semiconductor element, and is preferably used in a portion where the surface directly contacts with a halogen-based corrosive gas or plasma such as fluorine-based or chlorine-based. Examples of the fluorine-based gas include SF 6 , NF 3 , CF 4 , CHF 3 , ClF 3 , and HF. Examples of the chlorine-based gas include Cl 2 , BCl 3 , and HCl, and these gases are introduced. When microwaves or high frequencies are introduced into the atmosphere, these gases are turned into plasma.
[0029]
According to the present invention, the surface directly in contact with such a halogen-based corrosive gas or its plasma is formed of a fluoride sintered body. Since the fluoride sintered body has low reactivity with fluorine and chlorine, it exhibits excellent corrosion resistance.
[0030]
Furthermore, as the diameter of silicon wafers increases, the manufacturing equipment and components themselves become larger, so it is necessary to increase the strength and thermal shock resistance, and when using chlorine-based gas and its plasma, Since the deterioration of parts due to the cycle is regarded as a problem, the relative density of the sintered body needs to be 95% or more in order to improve the heat resistance reliability.
[0031]
【Example】
Example 1
Using a fluoride raw material powder having an average particle size and a metal content (referred to as impurity amount) other than the alkaline earth metal shown in Table 1, this was filled into a carbon mold and subjected to a pressure of 200 kgf / cm 2 in vacuum. The hot press firing was performed at the firing temperature shown in Table 1 for 2 hours.
[0032]
As a comparative example, a CaF 2 melt (sample No. 32) having a purity of 99.99% or more was prepared. Further, SiO 2, Al 2 O 3 , AlN, for AlF 3, and baked at a temperature shown in Table 1 were prepared melt or sinter in the same manner (Sample No.28~31).
[0033]
Using the obtained sintered body, first, the density of the sintered body was measured by the Archimedes method, and the relative density (%), which is the ratio to the theoretical density, was calculated. The results are shown in Table 1.
[0034]
(Corrosion resistance test)
For the obtained sintered body, a disk having a diameter of 22 cm was produced by mirror-finishing the surface so that the surface roughness (Ra) was 0.1 μm or less, and CF 4 (60 sccm) was produced using an RIE plasma etching apparatus. The substrate was exposed to fluorine plasma of + Ar (60 sccm) at room temperature, and the etching rate and the presence or absence of particles were investigated. Etching conditions were a pressure of 10 Pa, an RF output of 1 kW, and a plasma irradiation time of 3 hours. The etching rate was calculated based on the weight change before and after the test. Presence / absence of particles was determined by placing an 8-inch Si wafer on the plasma-irradiated disk, then detecting irregularities on the contact surface of the wafer by laser scattering, and measuring the number of particles of 0.3 μm or more with a particle counter. The results are shown in Table 1.
[0035]
[Table 1]
Figure 0003618048
[0036]
According to the results in Table 1, sample No. In Nos. 1 and 9, the firing temperature is low and the relative density cannot be densified to 95% or more, so that the corrosion resistance is lowered and 30 or more particles are generated by degranulation and cannot be used. Sample No. No. 23 was melted at a high firing temperature. Furthermore, the sample No. with the particle size of the raw material powder exceeding 30 μm. 6, 14, 22, and 27 could not be densified, and the corrosion resistance decreased. In addition, Sample No. in which the total amount of metal elements other than alkaline earth metal is more than 100 ppm in terms of metal. In Nos. 5 and 13, generation of a large amount of particles was observed.
[0037]
On the other hand, with respect to a sintered body of SiO 2 , Al 2 O 3 , AlN, AlF 3 and a molten body of CaF 2 other than the alkaline earth metal fluoride, a dense sintered body is obtained, but the corrosion resistance is insufficient. Met.
[0038]
On the other hand, sample no. 2 to 4, 7 to 8, 10 to 12, 15 to 21, and 24 to 26 have a relative density of 95% or more and an etching rate of 25 Å / min. Hereinafter, in particular, 15 kg / min. In the following, good corrosion resistance of a particle generation amount of 15/8 inch wafers, particularly 10/8 inch wafers was shown.
[0039]
(Example 2)
After performing CIP treatment at a pressure of 3 ton / cm 2 using CaF 2 powder having an average particle size of 10 μm and a metal element content (impurity amount) of 83 ppm other than alkaline earth metal in the sintered body, in an Ar atmosphere, Atmospheric firing (PLS) was performed at a firing temperature of 1100 ° C. The obtained sample was evaluated in the same manner as in Example 1. As a result, the relative density was 95%, the average crystal grain size was 13 μm, the etching rate was 22 Å / min. The particle generation amount of 15/8 inch wafers showed good corrosion resistance.
[0040]
【The invention's effect】
As described above in detail, according to the present invention, at least one alkaline earth metal selected from the group consisting of Mg, Ca, Sr and Ba is used as a member exposed to fluorine-based and chlorine-based corrosive gas or plasma. By using a sintered body made of fluoride and having a total amount of metal elements other than the alkaline earth metal of 100 ppm or less in terms of metal, an average particle size of 30 μm or less, and a relative density of 95% or more, Because it has long-term durability in high-density fluorine-based and chlorine-based corrosive atmospheres, does not generate contamination and particles, and maintains mechanical strength as a large component, it is especially suitable for semiconductor manufacturing equipment, especially plasma. By using it as a member such as jigs such as the inner wall member of the processing equipment and the support to support the object to be processed, it improves the yield of semiconductor manufacturing and high quality It can be manufactured of a semiconductor device.

Claims (4)

少なくともハロゲン系腐食ガスあるいはそのプラズマと直接接触する表面を具備し、Mg、Ca、SrおよびBaの群から選ばれる少なくとも1種のアルカリ土類金属のフッ化物からなり、前記アルカリ土類金属以外の金属元素の総量が金属換算で100ppm以下、前記フッ化物の結晶粒子の平均粒径が30μm以下であり、かつ相対密度が95%以上の高密度フッ化物焼結体からなることを特徴とする半導体製造装置用部材。It has at least a surface that is in direct contact with the halogen-based corrosive gas or its plasma, and is made of a fluoride of at least one alkaline earth metal selected from the group consisting of Mg, Ca, Sr, and Ba. A semiconductor comprising a high-density fluoride sintered body having a total amount of metal elements of 100 ppm or less in terms of metal, an average particle size of the fluoride crystal particles of 30 μm or less, and a relative density of 95% or more Manufacturing equipment member. 前記高密度フッ化物焼結体の開気孔率が0.2%以下であることを特徴とする請求項1記載の半導体製造装置用部材 2. The member for a semiconductor manufacturing apparatus according to claim 1, wherein an open porosity of the high-density fluoride sintered body is 0.2% or less . 前記高密度フッ化物焼結体の表面粗さRaが1μm以下であることを特徴とする請求項1又は2記載の半導体製造装置用部材 The member for a semiconductor manufacturing apparatus according to claim 1, wherein a surface roughness Ra of the high-density fluoride sintered body is 1 μm or less . 前記高密度フッ化物体の結晶粒子の平均粒径が9μm以上であることを特徴とする請求項1〜3のいずれかに記載の半導体製造装置用部材 The member for a semiconductor manufacturing apparatus according to any one of claims 1 to 3, wherein an average particle diameter of crystal particles of the high-density fluoride object is 9 µm or more .
JP26044698A 1998-09-14 1998-09-14 Components for semiconductor manufacturing equipment Expired - Fee Related JP3618048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26044698A JP3618048B2 (en) 1998-09-14 1998-09-14 Components for semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26044698A JP3618048B2 (en) 1998-09-14 1998-09-14 Components for semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2000086344A JP2000086344A (en) 2000-03-28
JP3618048B2 true JP3618048B2 (en) 2005-02-09

Family

ID=17348057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26044698A Expired - Fee Related JP3618048B2 (en) 1998-09-14 1998-09-14 Components for semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3618048B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9580331B2 (en) 2011-05-27 2017-02-28 Nikon Corporation CaF2 polycrystalline body, focus ring, plasma processing apparatus, and method for producing CaF2 polycrystalline body

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073818A (en) * 2001-09-05 2003-03-12 Nikko Materials Co Ltd Fluoride sputtering target and manufacturing method therefor
JP5118276B2 (en) * 2001-09-05 2013-01-16 Jx日鉱日石金属株式会社 Sputtering target for forming gate insulating film for semiconductor device, manufacturing method thereof, and gate insulating film for semiconductor device
US6780787B2 (en) * 2002-03-21 2004-08-24 Lam Research Corporation Low contamination components for semiconductor processing apparatus and methods for making components
JP5185213B2 (en) * 2009-06-16 2013-04-17 株式会社大興製作所 Method for producing plasma-resistant fluoride sintered body
JP5578507B2 (en) * 2009-11-05 2014-08-27 株式会社大興製作所 CaF2-MgF2 binary sintered body and method for producing plasma-resistant fluoride sintered body
JP5711511B2 (en) * 2010-12-09 2015-04-30 株式会社大興製作所 CaF2-MgF2 binary sintered body and method for producing plasma-resistant fluoride sintered body
JP5577287B2 (en) * 2011-03-30 2014-08-20 日本碍子株式会社 Magnesium fluoride sintered body, manufacturing method thereof, and member for semiconductor manufacturing apparatus
CN104428271B (en) 2012-07-05 2017-03-08 株式会社尼康 Polycrystalline CaF2Component, for plasma processing apparatus component, plasma processing apparatus and focusing ring manufacture method
WO2015005006A1 (en) 2013-07-08 2015-01-15 国立大学法人筑波大学 Fluoride sintered compact for neutron moderator, and method for producing said fluoride sintered compact
US9789335B2 (en) 2014-09-24 2017-10-17 Techno Eye Corporation MgF2—CaF2 binary system sintered body for radiation moderator and method for producing the same
EP3885329A1 (en) 2014-12-26 2021-09-29 University of Tsukuba Mgf2 sintered body for radiation moderator
KR101924308B1 (en) * 2015-07-21 2018-11-30 니폰게이긴조쿠가부시키가이샤 Magnesium sintered body, method of producing magnesium sintered body, method of producing neutron moderator and neutron moderator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9580331B2 (en) 2011-05-27 2017-02-28 Nikon Corporation CaF2 polycrystalline body, focus ring, plasma processing apparatus, and method for producing CaF2 polycrystalline body

Also Published As

Publication number Publication date
JP2000086344A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
JP4679366B2 (en) Y2O3 sintered body, corrosion-resistant member, method for producing the same, and member for semiconductor / liquid crystal production apparatus
JP3618048B2 (en) Components for semiconductor manufacturing equipment
JPH1180925A (en) Corrosion resistant member, wafer mounting member, and manufacture of corrosion resistant member
JP3527839B2 (en) Components for semiconductor device manufacturing equipment
CN116018329A (en) Ceramic sintered body comprising magnesium aluminate spinel
EP0708065A1 (en) Plasma fluorine resistant polycristalline alumina ceramic material and method of making
JP3706488B2 (en) Corrosion-resistant ceramic material
JP3808245B2 (en) Chamber component for semiconductor manufacturing
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP3769416B2 (en) Components for plasma processing equipment
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
JP4641609B2 (en) Corrosion resistant material
JP2009234877A (en) Member used for plasma processing apparatus
KR20090101245A (en) Ceramic member and corrosion-resistant member
JP2001151559A (en) Corrosion-resistant member
JP2008007350A (en) Yttria ceramic sintered compact
KR20070021061A (en) Yttria sintered body and manufacturing method therefor
JP3784180B2 (en) Corrosion resistant material
US7476634B2 (en) Yttria sintered body and manufacturing method therefor
JP4651145B2 (en) Corrosion resistant ceramics
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JP2000247728A (en) Alumina ceramic sintered compact having excellent corrosion resistance
JP4376881B2 (en) Yttria ceramic sintered body and manufacturing method thereof
JP2001240461A (en) Corrosion resistant alumina material and plasma device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees