JP2001151559A - Corrosion-resistant member - Google Patents

Corrosion-resistant member

Info

Publication number
JP2001151559A
JP2001151559A JP33670999A JP33670999A JP2001151559A JP 2001151559 A JP2001151559 A JP 2001151559A JP 33670999 A JP33670999 A JP 33670999A JP 33670999 A JP33670999 A JP 33670999A JP 2001151559 A JP2001151559 A JP 2001151559A
Authority
JP
Japan
Prior art keywords
crystal
rare earth
corrosion
less
resistant member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33670999A
Other languages
Japanese (ja)
Inventor
Yumiko Ito
裕見子 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP33670999A priority Critical patent/JP2001151559A/en
Publication of JP2001151559A publication Critical patent/JP2001151559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion-resistant member in which evaporation or generation of particles is hardly caused by a gaseous halogenated compound or its plasma and which has a long service life and long cleaning intervals. SOLUTION: This member which contains, as metal components, Al and at least one of rare earth elements and is comprised of a sintered body whose main crystal phase consists essentially of a compound oxide of Al and the rare earth element(s), has: a <=500 ppm total content of metal elements other than Al and the rare earth element(s); a >=98% relative density; a <=10 μm maximum grain size of crystal grains of the main crystal phase; a dielectric constant of <=13 in the frequency range of 0.4 MHz to 10 GHz; and a dielectric loss of <=5×10-4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フッ素系及び塩素
系腐食性ガス雰囲気、特にフッ素系や塩素系プラスマに
対して高い耐食性を有する耐食性部材であって、特に半
導体製造装置の中でプラズマプロセスにおけるフォーカ
スリング、クランプリング、ベルジャー及びドーム等の
プラズマ処理装置用部材や、被処理物を支持する支持体
などの治具として使用される部材に好適な耐食性部材に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion-resistant member having high corrosion resistance to fluorine-based and chlorine-based corrosive gas atmospheres, particularly to fluorine-based and chlorine-based plasma, and more particularly to a plasma process in a semiconductor manufacturing apparatus. The present invention relates to a corrosion-resistant member suitable for a member used as a jig such as a member for a plasma processing apparatus such as a focus ring, a clamp ring, a bell jar and a dome, and a support for supporting an object to be processed.

【0002】[0002]

【従来技術】半導体素子や液晶などの高集積回路素子の
製造に使用されるドライプロセスやプラズマコーティン
グ等プラズマの利用は、近年急速に進んでいる。半導体
製造におけるプラズマプロセスとしては、フッ素系等の
ハロゲン系腐食ガスがその反応性の高さから、気相成
長、エッチングやクリーニングに利用されている。
2. Description of the Related Art In recent years, the use of plasma, such as a dry process and plasma coating, used for manufacturing highly integrated circuit devices such as semiconductor devices and liquid crystals has been rapidly advancing. As a plasma process in semiconductor manufacturing, a halogen-based corrosive gas such as a fluorine-based gas is used for vapor phase growth, etching and cleaning due to its high reactivity.

【0003】これら腐食性ガスに曝される部材は、高い
耐食性が要求される。従来より被処理物以外のこれらプ
ラズマに接触する部材は、高い耐食性とともに非処理物
を汚染したりパーティクルの原因となる不純物を極力含
有しないことが要求される。従来から被処理物以外のこ
れらプラズマに接触する部材は、一般にガラスや石英な
どのSiO2を主成分とする材料や、ステンレス、モネ
ルなどの金属、および、セラミック材料としてアルミナ
が使用され始めている。特に、アルミナは高純度の焼結
体が比較的安価に製造でき、耐食性にも優れることから
耐食性部材として半導体製造プロセスに用いられてい
る。
The members exposed to these corrosive gases are required to have high corrosion resistance. Conventionally, members that come into contact with the plasma other than the object to be processed are required to have high corrosion resistance and not contain impurities that cause contamination of non-processed objects or particles as much as possible. Conventionally, as members other than the object to be processed, which come into contact with the plasma, generally, a material mainly composed of SiO 2 such as glass or quartz, a metal such as stainless steel or Monel, and an alumina as a ceramic material have begun to be used. In particular, alumina is used in a semiconductor manufacturing process as a corrosion-resistant member because a high-purity sintered body can be manufactured relatively inexpensively and has excellent corrosion resistance.

【0004】例えば特開平5−217946号公報で
は、アルミナが99.9%以上で、SiO2が100p
pm未満で、アルカリ金属酸化物が50ppm以下の多
結晶アルミナ質焼結体で、比重が3.96以上、平均結
晶粒径が10μm以上、1〜10GHzのマイクロ波で
誘電損失tanδが8×10-4以下であることを特徴と
するアルミナ質ベルジャーが開示されている。このアル
ミナ質ベルジャーは、従来の石英ガラスに比べてフッ素
プラズマに対する耐食性が向上し、またマイクロ波の吸
収が少なくクラックや割れを防止できるものである。
[0004] For example, in Japanese Patent Application Laid-Open No. Hei 5-217946, alumina is 99.9% or more and SiO 2 is 100 p.
pm, a polycrystalline alumina-based sintered body containing 50 ppm or less of an alkali metal oxide, having a specific gravity of 3.96 or more, an average crystal grain size of 10 μm or more, and a dielectric loss tan δ of 8 × 10 4 at a microwave of 1 to 10 GHz. -4 or less is disclosed. The alumina-based bell jar has improved corrosion resistance to fluorine plasma as compared with conventional quartz glass, and has less absorption of microwaves and can prevent cracks and cracks.

【0005】しかし、特開平5−217946号公報で
開示されたアルミナは、ガラスや石英などのSiO2
主成分とする材料や、ステンレス、モネルなどの金属な
どの材料に比較してフッ素系ガスや塩素系ガスのプラズ
マに対して耐食性に優れるものの十分ではないため、こ
れらのガスのプラズマに曝されると、徐々に腐食が進行
する。腐食は、フッ化物や塩化物などとして蒸発し、比
較的プラズマ密度の低い部位や温度の低い部位で析出
し、Al化合物が析出する。
However, alumina disclosed in Japanese Patent Application Laid-Open No. 5-217946 has a fluorine-based gas as compared with a material containing SiO 2 as a main component such as glass or quartz, or a metal such as stainless steel or Monel. Although they are excellent in corrosion resistance to plasmas of chlorine and chlorine-based gases, they are not sufficient, so that when they are exposed to plasmas of these gases, corrosion gradually progresses. Corrosion evaporates as fluoride, chloride, or the like, and precipitates at a portion having a relatively low plasma density or a portion having a low temperature, thereby depositing an Al compound.

【0006】このように、プロセスチャンバー内に析出
物が堆積し、時間とともに厚さを増していく。そして、
一定の厚みに達すると内部応力が付着力を上回り、壁面
または治具表面から剥離する。さらに、厚くなると膜が
割れて、プロセスチャンバー内に飛散する。
[0006] As described above, deposits are deposited in the process chamber, and the thickness increases with time. And
When a certain thickness is reached, the internal stress exceeds the adhesive force and peels off from the wall surface or the jig surface. Further, when the film becomes thicker, the film breaks and scatters in the process chamber.

【0007】現在、素子の集積度をあげるために高密度
プラズマの利用が進み、特に絶縁膜の加工プロセスでは
これら部材に対して更なる高純度化と同時に、パーティ
クルの発生のないノンパーティクル化が求められている
ため、このような異物の発生はパーティクル発生と同様
の扱いを受け、半導体の高集積化、プロセスのさらなる
クリーン化に伴い、メタル配線の断線、パターンの欠陥
等により素子特性の劣化や歩留りの低下等の不具合を発
生させる恐れがあった。
At present, the use of high-density plasma has been promoted in order to increase the degree of integration of elements. In particular, in the process of processing an insulating film, these members have been further purified and, at the same time, have been made non-particle-free without generation of particles. Therefore, the generation of such foreign matter is treated in the same way as the generation of particles, and as the integration of semiconductors increases and the process becomes even cleaner, the element characteristics deteriorate due to disconnection of metal wiring and pattern defects. There is a risk of causing problems such as a decrease in yield and yield.

【0008】また、付着物に対しては、一定の時間毎に
チャンバー内のクリーニング処理を行ったり、治具の交
換を行う必要があった。そのためには、通常の半導体製
造プロセスを停止するので、スループットが悪くなり、
半導体コストが割高となる原因の一つとなっていた。す
なわち、従来材料に比べて、アルミナをチャンバー内壁
や治具として使用したときは、クリーニングまでの時間
は改善されているが、まだ満足のいくものではなかっ
た。
Further, it is necessary to clean the inside of the chamber at regular intervals and replace the jig with respect to the attached matter. In order to do so, the normal semiconductor manufacturing process is stopped, so the throughput becomes worse,
This has been one of the causes of higher semiconductor costs. That is, when alumina is used as the inner wall and the jig of the chamber as compared with the conventional material, the time until cleaning is improved, but it is not yet satisfactory.

【0009】そこで、本発明者は、特開平10−675
54号公報で示したように、Alと希土類元素との複合
酸化物を主結晶相とし、周期律表2a、3a族、Cr、
CoまたはNiのうちの少なくとも1種を主体とする化
合物からなる粒界相を具備するセラミック焼結体からな
る耐食性セラミック部材を提案した。この部材は、アル
ミナに比べて耐食性が顕著に優れるとともに、粒界を強
化してパーティクルの発生を抑制し、寿命を長くしてク
リーニングまでの時間を長くすることができた。
Therefore, the present inventor has disclosed in Japanese Patent Laid-Open No. 10-675.
As shown in Japanese Patent Publication No. 54, a composite oxide of Al and a rare earth element is used as a main crystal phase, and the periodic table 2a, 3a group, Cr,
A corrosion-resistant ceramic member made of a ceramic sintered body having a grain boundary phase made of a compound mainly containing at least one of Co and Ni has been proposed. This member was significantly superior in corrosion resistance as compared with alumina, and was able to strengthen the grain boundaries to suppress the generation of particles, prolong the life and extend the time until cleaning.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記耐
食性セラミック部材、特にプラズマ内部やプラズマの周
囲に用いるチャンバーや治具に用いられた場合、誘電損
失が大きいとプラズマを発生するために導入された高周
波によりチャンバーや治具が加熱され、室温では良好で
あった耐食性が悪くなることがあり、扱うガスやプラズ
マ条件によっては蒸発量が増えて寿命が短くなったり、
クリーニングまでの時間が短くなったりして、安定した
特性が得られないと言う問題があった。
However, when used in the above-mentioned corrosion-resistant ceramic member, particularly a chamber or a jig used inside or around the plasma, if the dielectric loss is large, the high frequency introduced to generate the plasma is generated. The chambers and jigs are heated by, the corrosion resistance which was good at room temperature may be deteriorated, and depending on the gas and plasma conditions to be handled, the evaporation amount increases and the life is shortened,
There is a problem that the time until cleaning becomes short and stable characteristics cannot be obtained.

【0011】また、粒界相の誘電損失が高いために高周
波で加熱され、温度が上昇するので粒界相の腐食が早く
なり、パーティクルが発生して、メタル配線の断線、パ
ターンの欠陥等により素子特性の劣化や歩留りの低下等
の不具合を発生させる問題があった。
Further, since the dielectric loss of the grain boundary phase is high, it is heated at a high frequency and the temperature rises, so that the corrosion of the grain boundary phase is accelerated, particles are generated, and disconnection of the metal wiring, pattern defects, etc. There has been a problem of causing inconveniences such as deterioration of device characteristics and yield.

【0012】従って、本発明は、ハロゲン化ガスやその
プラズマに対して蒸発やパーティクルの発生が少なく、
寿命が長く、かつクリーニングの間隔が長い耐食性部材
を提供することを目的とする。
Therefore, according to the present invention, evaporation and generation of particles with respect to the halogenated gas and its plasma are reduced,
An object of the present invention is to provide a corrosion-resistant member having a long life and a long cleaning interval.

【0013】[0013]

【課題を解決するための手段】本発明の耐食性部材は、
金属成分としてAlと、希土類元素の内の少なくとも1
種とを含み、主結晶相がAlと希土類元素の複合酸化物
を主体とする焼結体からなり、Alおよび希土類元素以
外の金属元素が500ppm以下、相対密度が98%以
上、および前記主結晶相の結晶粒子の最大粒径が10μ
m以下であり、また周波数0.4MHz〜10GHzの
範囲における誘電率が13以下、誘電損失が5×10-4
以下であることを特徴とする。
The corrosion-resistant member of the present invention comprises:
Al as a metal component and at least one of rare earth elements
A main crystal phase comprising a sintered body mainly composed of a composite oxide of Al and a rare earth element, a metal element other than Al and the rare earth element being 500 ppm or less, a relative density of 98% or more, and the main crystal Maximum phase particle size of 10μ
m or less, a dielectric constant of 13 or less and a dielectric loss of 5 × 10 −4 in a frequency range of 0.4 MHz to 10 GHz.
It is characterized by the following.

【0014】この構成を採用することにより、アルミナ
に比べてAlおよび希土類元素の蒸発量が著しく減少
し、チャンバー壁面や治具表面に付着する析出物量が大
幅に減少する。析出物の厚みも徐々に成長するが、アル
ミナに比べて2〜10倍の時間を要するために、クリー
ニングまでの間隔を延ばすことができ、また、耐食性に
優れているので、寿命が延び、部品の交換サイクルも長
くすることができる。さらに、結晶質および非晶質アル
ミナの量が粒界に少ないため選択的な粒界エッチングが
なく、パーティクルの発生を抑制する。
By employing this configuration, the amount of evaporation of Al and rare earth elements is significantly reduced as compared with alumina, and the amount of deposits adhering to the chamber wall surface and the jig surface is significantly reduced. Although the thickness of the precipitate gradually grows, it takes 2 to 10 times as long as that of alumina, so that the interval until cleaning can be extended. In addition, since the corrosion resistance is excellent, the life is extended, and the parts are extended. The replacement cycle can be lengthened. Furthermore, since the amount of crystalline and amorphous alumina is small at the grain boundaries, there is no selective grain boundary etching, and the generation of particles is suppressed.

【0015】前記複合酸化物がガーネット型結晶を主体
とし、さらにペロブスカイト型結晶および/または希土
類酸化物結晶を含むことによって、耐食性に劣るアルミ
ナが結晶や粒界相として単体で存在することを抑制し、
プラズマ照射による表面の劣化を防ぐと共に、プラズマ
中で容易に気化・析出を繰り返すAl元素を希土類複合
酸化物中に取り込みプラズマ中へのAl元素解離を防止
することが出来る。
Since the composite oxide is mainly composed of a garnet-type crystal and further contains a perovskite-type crystal and / or a rare-earth oxide crystal, it is possible to prevent alumina having poor corrosion resistance from existing alone as a crystal or a grain boundary phase. ,
In addition to preventing deterioration of the surface due to plasma irradiation, the Al element that repeatedly vaporizes and precipitates easily in the plasma can be incorporated into the rare-earth composite oxide to prevent dissociation of the Al element into the plasma.

【0016】ここで、アルミナ結晶粒子が全量中1体積
%以下であり、アルミニウム元素(Al)に対する希土
類元素(RE)のRE/Alで表される原子比率が0.
6〜0.7であることが、プラズマ照射時のアルミナ選
択的エッチングによる材料表面の劣化を防ぐ上で好まし
い。
Here, the amount of the alumina crystal particles is 1% by volume or less in the total amount, and the atomic ratio represented by RE / Al of the rare earth element (RE) to the aluminum element (Al) is 0.1%.
It is preferably 6 to 0.7 in order to prevent deterioration of the material surface due to selective etching of alumina during plasma irradiation.

【0017】あるいはまた、複合酸化物がペロブスカイ
ト型結晶を主体とし、さらにメリライト型結晶および/
または希土類酸化物結晶を含むことによって、Al元素
を希土類複合酸化物中に取り込みプラズマ中へのAl元
素解離を容易に防止する事ができる。
Alternatively, the composite oxide is mainly composed of perovskite-type crystals, and further has a melilite-type crystal and / or
Alternatively, by containing the rare earth oxide crystal, the Al element is taken into the rare earth composite oxide, and the dissociation of the Al element into the plasma can be easily prevented.

【0018】ここで、アルミナ結晶粒子が全量中1体積
%以下であり、アルミニウム元素(Al)に対する希土
類元素(RE)のRE/Alで表される原子比率が0.
67〜1.7であることがアルミナ単体の析出を抑制す
る上で好ましい。
Here, the amount of the alumina crystal particles is 1% by volume or less in the total amount, and the atomic ratio represented by RE / Al of the rare earth element (RE) to the aluminum element (Al) is 0.1%.
It is preferable that it is 67 to 1.7 in order to suppress the precipitation of alumina alone.

【0019】さらには、複合酸化物がメリライト型結晶
を主体とし、さらにペロブスカイト型結晶および/また
は希土類酸化物結晶を含むことによって、希土類元素の
比率が増大し、Al元素を希土類複合酸化物中に取り込
みやすくなり、プラズマ中へのAl元素解離防止がより
容易となる。
Further, since the composite oxide is mainly composed of a melilite-type crystal and further contains a perovskite-type crystal and / or a rare-earth oxide crystal, the ratio of the rare-earth element is increased, and the Al element is contained in the rare-earth composite oxide. It becomes easier to take in, and it becomes easier to prevent dissociation of the Al element into the plasma.

【0020】ここで、アルミナ結晶粒子が全量中1体積
%以下であり、アルミニウム元素(Al)に対する希土
類元素(RE)のRE/Alで表される原子比率が1.
6以上であることがアルミナ単体の析出を抑制する上で
好ましい。
Here, the amount of alumina crystal particles is 1% by volume or less in the total amount, and the atomic ratio represented by RE / Al of the rare earth element (RE) to the aluminum element (Al) is 1.
It is preferable that it is 6 or more in order to suppress the precipitation of the alumina alone.

【0021】したがって、本発明では、ハロゲン系ガス
プラズマに対して蒸発やパーティクル発生が少なく、寿
命が長い耐食部材を提供することができる。
Therefore, according to the present invention, it is possible to provide a corrosion-resistant member having a long life with little evaporation and generation of particles with respect to the halogen-based gas plasma.

【0022】[0022]

【発明の実施の形態】本発明の耐食性部材は、金属成分
としてAlと、希土類元素の内の少なくとも1種とを含
み、主結晶相がAlと希土類元素の複合酸化物を主体と
する焼結体からなるものであるが、不純物元素の存在は
プラズマ腐食の基点となったり、パーティクル、コンタ
ミの原因となりデバイス特性に悪影響を及ぼすため、5
00ppm以下が必要である。また、材料中の気孔は誘
電損失の増大をもたらすと同時に、不純物同様エッチン
グの基点となり材料寿命を損なうため、98%以上の相
対密度が必要である。
BEST MODE FOR CARRYING OUT THE INVENTION The corrosion-resistant member of the present invention contains Al as a metal component and at least one of rare earth elements, and has a main crystal phase mainly composed of a composite oxide of Al and a rare earth element. Although it is composed of a body, the presence of an impurity element can be a starting point for plasma corrosion, cause particles and contamination, and adversely affect device characteristics.
00 ppm or less is required. In addition, the pores in the material cause an increase in dielectric loss and, at the same time, serve as a starting point of etching like impurities, thereby impairing the life of the material. Therefore, a relative density of 98% or more is required.

【0023】また、主結晶相の結晶粒子の最大粒径を1
0μm以下とするのは、粒径が大きいとパーティクルの
発生が増えるためであり、10μm以下にすることによ
り発生するパーティクル数を減らすことができる。
Also, the maximum grain size of the crystal grains of the main crystal phase is 1
The reason why the particle diameter is set to 0 μm or less is that generation of particles increases when the particle diameter is large, and the number of generated particles can be reduced by setting the particle diameter to 10 μm or less.

【0024】さらに、プラズマプロセスでは、0.4M
Hz〜10GHzの周波数帯が一般的に利用されてお
り、特に外部からプラズマ形成エネルギーを導入するE
CR(電子サイクロトロン共鳴)やICP(誘導結合プ
ラズマ)等の方式では、エネルギーを吸収して温度が上
昇し、耐食性が低下することを防ぐために、誘電率を1
3以下および誘電損失を5×10-4以下とすることが必
要である。
Further, in the plasma process, 0.4M
A frequency band of 10 Hz to 10 GHz is generally used.
In systems such as CR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma), the dielectric constant is set to 1 in order to prevent energy from being raised due to energy absorption and deterioration in corrosion resistance.
It is necessary that the dielectric loss be 3 or less and the dielectric loss be 5 × 10 −4 or less.

【0025】また、耐食性に劣りプラズマ中で選択的に
エッチングされ、脱粒や表面性状の劣化を引き起こすア
ルミナ結晶粒子は全量中1体積%以下に抑制することが
望ましい。
Further, it is desirable that the alumina crystal particles which are poor in corrosion resistance and are selectively etched in the plasma to cause degranulation and deterioration of surface properties are suppressed to 1% by volume or less in the total amount.

【0026】さらに、前記複合酸化物はガーネット型結
晶、ペロブスカイト型結晶、メリライト型結晶のいずれ
かを主体とし、これらの結晶および/または希土類酸化
物結晶を含むことを特徴とする。
Further, the composite oxide is mainly composed of one of a garnet-type crystal, a perovskite-type crystal, and a melilite-type crystal, and is characterized by containing these crystals and / or a rare-earth oxide crystal.

【0027】耐食性部材が、ガーネット型結晶を主体と
し、ペロブスカイト型結晶および/または希土類酸化物
結晶を含有する場合、アルミニウム元素(Al)に対す
る希土類元素(RE)のRE/Alで表される原子比率
がの0.6〜0.7であることが好適である。これによ
り、耐食性に劣るアルミナが単体で結晶粒子や粒界相と
して析出し、プラズマ中で選択的にエッチングされるこ
とを防止すると共に、Al元素を希土類複合酸化物中に
取り込むことでプラズマ中へのAl元素の解離・再析出
を抑制し、部材の長寿命化を実現できる。
When the corrosion-resistant member is mainly composed of a garnet-type crystal and contains a perovskite-type crystal and / or a rare-earth oxide crystal, the atomic ratio represented by RE / Al of the rare-earth element (RE) to the aluminum element (Al). Is preferably 0.6 to 0.7. This prevents alumina, which is inferior in corrosion resistance, from precipitating alone as a crystal grain or a grain boundary phase and preventing it from being selectively etched in the plasma, and incorporating Al element into the rare-earth composite oxide into the plasma. Dissociation and reprecipitation of the Al element can be suppressed, and the life of the member can be prolonged.

【0028】また、耐食性部材が、ペロブスカイト型結
晶を主体とし、メリライト型結晶及び/または希土類酸
化物結晶からなる場合、アルミニウム元素(Al)に対
する希土類元素(RE)のRE/Alで表される原子比
率がの0.67〜1.7であることが、好適である。こ
れにより、耐食性に劣るアルミナが単体で結晶粒子や粒
界相として析出し、プラズマ中で選択的にエッチングさ
れることを防止すると共に、Al元素を希土類複合酸化
物中に取り込むことでプラズマ中へのAl元素の解離・
再析出を抑制し、部材の長寿命化を実現できる。
When the corrosion-resistant member is mainly composed of a perovskite crystal and is composed of a melilite crystal and / or a rare-earth oxide crystal, an atom represented by RE / Al of the rare-earth element (RE) with respect to the aluminum element (Al). Preferably, the ratio is between 0.67 and 1.7. This prevents alumina, which is inferior in corrosion resistance, from precipitating alone as a crystal grain or a grain boundary phase and preventing it from being selectively etched in the plasma, and incorporating Al element into the rare-earth composite oxide into the plasma. Dissociation of Al
It is possible to suppress re-deposition and prolong the life of the member.

【0029】さらに、耐食性部材が、メリライト型結晶
を主体とし、ペロブスカイト型結晶及び/または希土類
酸化物結晶からなる場合、アルミニウム元素(Al)に
対する希土類元素(RE)のRE/Alで表される原子
比率がの1.6以上であることが、好適である。これに
より、耐食性に劣るアルミナが単体で結晶粒子や粒界相
として析出し、プラズマ中で選択的にエッチングされる
ことを防止すると共に、Al元素を希土類複合酸化物中
に取り込むことでプラズマ中へのAl元素の解離・再析
出を抑制し、部材の長寿命化を実現できる。
Further, when the corrosion resistant member is mainly composed of a melilite type crystal and is composed of a perovskite type crystal and / or a rare earth oxide crystal, an atom represented by RE / Al of the rare earth element (RE) with respect to the aluminum element (Al). Preferably, the ratio is at least 1.6. This prevents alumina, which is inferior in corrosion resistance, from precipitating alone as a crystal grain or a grain boundary phase and preventing it from being selectively etched in the plasma, and incorporating Al element into the rare-earth composite oxide into the plasma. Dissociation and reprecipitation of the Al element can be suppressed, and the life of the member can be prolonged.

【0030】本発明の耐食性部材は以下のように製造で
きる。
The corrosion-resistant member of the present invention can be manufactured as follows.

【0031】まず、出発原料である純度99%以上、平
均粒径0.1μm〜5μmのアルミナ粉末に対し、純度
99%以上、平均粒径0.1μm〜5μmのイットリウ
ム(Y)、エルビウム(Er)、イッテルビウム(Y
b)、ランタン(La)、セリウム(Ce)、およびネ
オジウム(Nd)等の希土類酸化物粉末を、所定の比率
で混合する。これらをそのまま利用しても構わないが、
1200℃〜1500℃の温度で仮焼してAlと希土類
元素の複合酸化物を合成し、5μm以下の粒径に粉砕し
た原料を利用することが望ましい。
First, yttrium (Y) and erbium (Er) having a purity of 99% or more and an average particle diameter of 0.1 μm to 5 μm are used for a starting material of alumina powder having a purity of 99% or more and an average particle diameter of 0.1 μm to 5 μm. ), Ytterbium (Y
b), a rare earth oxide powder such as lanthanum (La), cerium (Ce), and neodymium (Nd) are mixed at a predetermined ratio. You can use these as they are,
It is desirable to use a raw material that has been calcined at a temperature of 1200 ° C. to 1500 ° C. to synthesize a composite oxide of Al and a rare earth element and pulverized to a particle size of 5 μm or less.

【0032】上記混合粉末に対し、所望により有機バイ
ンダを添加した後、所定形状に周知の成形手段、例え
ば、金型プレス、冷間静水圧プレス等のプレス成形法、
スリップキャスティング法、或いはドクターブレード
法、圧延法等のテープ成形法、押し出し成形等により成
形する。その後、この成形体を所望により大気中、真空
中または窒素中で脱脂した後、酸化雰囲気中(La、C
eは非酸化雰囲気中)、1400℃〜1800℃、特に
1600℃〜1750℃で1〜10時間焼成することに
より98%以上の緻密体を作製することができる。焼成
方法としては、常圧焼成、ホットプレス法あるいはガス
圧焼成法等が用いることができるが、実現の容易さから
常圧焼成法が好ましい。また、密度向上のため熱間静水
圧プレスを行っても良い。
After adding an organic binder to the mixed powder as required, a known molding means, for example, a press molding method such as a mold press, a cold isostatic press, etc.
It is formed by a slip casting method, a tape forming method such as a doctor blade method, a rolling method, an extrusion method, or the like. Thereafter, the molded body is degreased in air, vacuum, or nitrogen, if desired, and then oxidized (La, C
e is in a non-oxidizing atmosphere) By baking at 1400 ° C. to 1800 ° C., particularly 1600 ° C. to 1750 ° C. for 1 to 10 hours, a dense body of 98% or more can be produced. As the firing method, a normal pressure firing method, a hot press method, a gas pressure firing method, or the like can be used, but the normal pressure firing method is preferable because of easy realization. Further, hot isostatic pressing may be performed to improve the density.

【0033】[0033]

【実施例】純度99.9%、平均粒径1.0μmのイッ
トリウム、エルビウムのアルミニウム・ガーネット原
料、YAM原料、NdAlO3を用い、純度99.8
%、平均粒径1.0μmのY23、Er23、Nd
23、CeO2、La23を所定量添加した。
EXAMPLE The purity of 99.8% was obtained using yttrium and erbium aluminum garnet raw material, YAM raw material and NdAlO 3 having a purity of 99.9% and an average particle diameter of 1.0 μm.
%, Average particle size of 1.0 μm, Y 2 O 3 , Er 2 O 3 , Nd
Predetermined amounts of 2 O 3 , CeO 2 and La 2 O 3 were added.

【0034】これらの原料粉体にバインダーとしてパラ
フィンワックスを添加し、IPAを溶媒としてボールミ
ルにて混合し、乾燥、造粒した後加圧成形した。その成
形体を真空中にて脱脂し、大気中で表1に示す温度にて
焼成した。
Paraffin wax was added as a binder to these raw material powders, mixed with a ball mill using IPA as a solvent, dried, granulated, and pressed. The molded body was degreased in a vacuum and fired in the atmosphere at a temperature shown in Table 1.

【0035】この焼結体中の結晶相は、粉末X線回折法
により同定した。又その希土類元素含有化合物結晶相の
含有量は、あらかじめ希土類元素含有化合物結晶を含む
混合物をX線回折測定する事によって作成した検量線か
ら求めた。また、最大粒径は、鏡面研磨された表面をエ
ッチングして顕微鏡写真を撮影し、100個の粒子のう
ちで最大の粒径を最大粒径とした。
The crystal phase in this sintered body was identified by a powder X-ray diffraction method. Further, the content of the rare earth element-containing compound crystal phase was determined from a calibration curve prepared by previously performing a X-ray diffraction measurement of a mixture containing the rare earth element-containing compound crystal. The maximum particle size was determined by etching a mirror-polished surface, taking a micrograph, and setting the largest particle size among the 100 particles as the maximum particle size.

【0036】希土類元素とアルミニウムの元素比率は焼
結体の蛍光X線分析から、不純物金属量はICPを利用
して分析した。アルミナ結晶相比率の測定は、X線回折
において、あらかじめ作製してある検量線を用いてピー
ク強度から算出した。
The element ratio between the rare earth element and aluminum was analyzed by X-ray fluorescence analysis of the sintered body, and the amount of impurity metal was analyzed by using ICP. The measurement of the alumina crystal phase ratio was calculated from the peak intensity using a calibration curve prepared in advance in X-ray diffraction.

【0037】また、誘電率(ε')、誘電損失(tanδ)
は、0.4MHz〜10GHzの周波数範囲で測定し、
その最大値を記載した。相対密度は、まずアルキメデス
法から嵩密度をもとめた後、焼結体を粉砕してJISR
1620に基づいたヘリウム置換法によって得られた真
密度と比較して算出した。
The dielectric constant (ε ′) and dielectric loss (tan δ)
Is measured in the frequency range of 0.4 MHz to 10 GHz,
The maximum value is described. The relative density is determined by first determining the bulk density from the Archimedes method, then crushing the sintered body
Calculated by comparing with the true density obtained by the helium substitution method based on 1616.

【0038】エッチング率についてはフッ素系及び塩素
系のプラズマに曝した場合のエッチング率について評価
した。評価方法としては、各セラミックスについて20
mm×20mmで厚みが1mmの試験片を作製し、表面
を鏡面加工したものを試料とし、RIE(リアクティブ
・イオン・エッチング)装置を用いてフッ素系はC
4、塩素系はCl2を、ガス流量100sccm、エッ
チング圧力5Pa、RF出力1.0W/cm2の条件で
5時間エッチングを行った。エッチング率は、テスト前
後の重量変化から算出した。
Regarding the etching rate, fluorine and chlorine
Of etching rate when exposed to system plasma
did. The evaluation method is as follows.
A test piece with a thickness of 1 mm and a thickness of 1 mm
Mirror (reactive)
・ Ion etching) Fluorine using C
F Four, Chlorine is ClTwoAt a gas flow rate of 100 sccm
Ching pressure 5Pa, RF output 1.0W / cmTwoUnder the conditions
Etching was performed for 5 hours. Etching rate before test
It was calculated from the later weight change.

【0039】パーティクルの有無は、各セラミックスを
直径8インチ、厚さ2mmの円板に加工し、片面を鏡面
研磨してプラズマエッチング処理した後、エッチング面
に8インチのSiバージンウェハを接触させ、Siウェ
ハの接触面の凹凸をレーザー散乱によって検出し、パー
ティクルカウンタにて0.3μm以上のパーティクル個
数を計数した。
The presence or absence of particles was determined by processing each ceramic into a disk having a diameter of 8 inches and a thickness of 2 mm, polishing one side of the disk with a mirror surface and performing plasma etching. Then, an 8-inch Si virgin wafer was brought into contact with the etched surface. Irregularities on the contact surface of the Si wafer were detected by laser scattering, and the number of particles of 0.3 μm or more was counted by a particle counter.

【0040】[0040]

【表1】 [Table 1]

【0041】本発明の試料では、エッチング率が5nm
/min以下、パーティクル数が30個以下と腐食性が
高く、パーティクルの発生が少ない。すなわち、YとA
lとのガーネットを主結晶とする本発明の試料No.2
〜6は、エッチング率が4.2nm/min以下、パー
ティクル数が30個以下であり、ErとAlとのガーネ
ットを主結晶とする本発明の試料No.9〜11は、エ
ッチング率が3.1nm/min以下、パーティクル数
が28個以下であった。
In the sample of the present invention, the etching rate was 5 nm.
/ Min or less, the number of particles is 30 or less, and the corrosiveness is high, and the generation of particles is small. That is, Y and A
1 of the present invention having garnet as the main crystal. 2
Sample Nos. To 6 have an etching rate of 4.2 nm / min or less, the number of particles is 30 or less, and have a garnet of Er and Al as a main crystal. In Nos. 9 to 11, the etching rate was 3.1 nm / min or less and the number of particles was 28 or less.

【0042】また、メリライト結晶を主とする本発明の
試料No.12、13は、エッチング率が2.4nm/
min以下、パーティクル数が26個以下であり、ペロ
ブスカイト結晶を主とする本発明の試料No.15、1
6は、エッチング率が2.6nm/min以下、パーテ
ィクル数が23個以下であった。
The sample No. 1 of the present invention mainly containing melilite crystals was used. 12 and 13 have an etching rate of 2.4 nm /
min or less, the number of particles is 26 or less, and the sample No. of the present invention mainly composed of perovskite crystals is used. Fifteen, one
Sample No. 6 had an etching rate of 2.6 nm / min or less and the number of particles was 23 or less.

【0043】さらに、Yb、Ce、Laを希土類元素と
して用いた本発明の試料No.18〜20は、エッチン
グ率が2.9nm/min以下、パーティクル数が23
個以下であった。また、YとYbとを希土類元素として
同時に使用した本発明の試料No.21は、エッチング
率が2.4nm/min以下、パーティクル数が20個
以下であった。
Further, the sample No. 1 of the present invention using Yb, Ce and La as rare earth elements. Nos. 18 to 20 have an etching rate of 2.9 nm / min or less and a particle number of 23.
Or less. In addition, Sample No. of the present invention in which Y and Yb were simultaneously used as rare earth elements. In No. 21, the etching rate was 2.4 nm / min or less and the number of particles was 20 or less.

【0044】一方、相対密度が98%に満たず、その結
果誘電率が13を越え、誘電損失(tanδ)が5×1
-4より大きい本発明の範囲外の試料No.1、14
は、エッチング率が5.5nm/min以上、パーティ
クル数が41個以上であった。
On the other hand, the relative density is less than 98%, so that the dielectric constant exceeds 13, and the dielectric loss (tan δ) is 5 × 1.
Sample No. larger than 0-4 is out of the range of the present invention. 1, 14
Has an etching rate of 5.5 nm / min or more and a particle number of 41 or more.

【0045】また、誘電率が13を越え、誘電損失(t
anδ)が5×10-4より大きい本発明の範囲外の試料
No.8は、エッチング率が5.6nm/min以上、
パーティクル数が48個であった。
The dielectric constant exceeds 13, and the dielectric loss (t
sample No. an.delta.) larger than 5.times.10.sup.- 4 outside the range of the present invention. 8 has an etching rate of 5.6 nm / min or more,
The number of particles was 48.

【0046】さらに、最大粒径が10μmを越える試料
No.7は、エッチング率が3.0および4.1nm/
minであったが、パーティクル数が45、52個と大
きかった。また、不純物金属量が500ppmを越える
試料No.17は、エッチング率が6.8nm/min
以上、パーティクル数が50個以上であった。
Further, in Sample No. having a maximum particle size exceeding 10 μm. 7 has etching rates of 3.0 and 4.1 nm /
min, but the number of particles was as large as 45 and 52. Further, in sample no. 17 is an etching rate of 6.8 nm / min.
As described above, the number of particles was 50 or more.

【0047】[0047]

【発明の効果】本発明の耐食性部材では、アルミニウム
と希土類の複合酸化物を形成することによって、腐食量
を少なくできるため、材料の蒸発による壁面や治具表面
への析出量を減らし、寿命を長くできるとともに、クリ
ーニングの間隔を延ばし、パーティクルの発生を抑える
ことができる。
According to the corrosion-resistant member of the present invention, the amount of corrosion can be reduced by forming a composite oxide of aluminum and a rare earth, so that the amount of material deposited on the wall surface and the jig surface due to evaporation of the material is reduced, and the life is shortened. The length can be increased, the cleaning interval can be extended, and generation of particles can be suppressed.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】金属成分としてAlと、希土類元素の内の
少なくとも1種とを含み、主結晶相がAlと希土類元素
の複合酸化物を主体とする焼結体からなり、Alおよび
希土類元素以外の金属元素が500ppm以下、相対密
度が98%以上、および前記主結晶相の結晶粒子の最大
粒径が10μm以下であり、また周波数0.4MHz〜
10GHzの範囲における誘電率が13以下、誘電損失
が5×10-4以下であることを特徴とする耐食性部材。
1. A sintered body mainly containing a composite oxide of Al and a rare earth element, wherein the sintered body contains Al as a metal component and at least one of rare earth elements, and other than Al and the rare earth element. The metal element is 500 ppm or less, the relative density is 98% or more, and the maximum particle size of the crystal grains of the main crystal phase is 10 μm or less, and the frequency is 0.4 MHz to
A corrosion resistant member having a dielectric constant of 13 or less and a dielectric loss of 5 × 10 −4 or less in a range of 10 GHz.
【請求項2】前記複合酸化物がガーネット型結晶を主体
とし、さらにペロブスカイト型結晶および/または希土
類酸化物結晶を含むことを特徴とする請求項1記載の耐
食性部材。
2. The corrosion-resistant member according to claim 1, wherein the composite oxide is mainly composed of a garnet-type crystal and further contains a perovskite-type crystal and / or a rare-earth oxide crystal.
【請求項3】アルミナ結晶粒子が全量中1体積%以下で
あり、アルミニウム元素(Al)に対する希土類元素
(RE)のRE/Alで表される原子比率が0.6〜
0.7であることを特徴とする請求項2記載の耐食性部
材。
3. The method according to claim 1, wherein the alumina crystal particles are 1% by volume or less of the total amount, and the atomic ratio represented by RE / Al of the rare earth element (RE) to the aluminum element (Al) is from 0.6 to 0.6.
The corrosion resistant member according to claim 2, wherein the ratio is 0.7.
【請求項4】前記複合酸化物がペロブスカイト型結晶を
主体とし、さらにメリライト型結晶および/または希土
類酸化物結晶を含むことを特徴とする請求項1記載の耐
食性部材。
4. The corrosion-resistant member according to claim 1, wherein said composite oxide is mainly composed of a perovskite crystal and further contains a melilite crystal and / or a rare earth oxide crystal.
【請求項5】アルミナ結晶粒子が全量中1体積%以下で
あり、アルミニウム元素(Al)に対する希土類元素
(RE)のRE/Alで表される原子比率が0.67〜
1.7であることを特徴とする請求項4記載の耐食性部
材。
5. The method according to claim 1, wherein the content of the alumina crystal particles is 1% by volume or less based on the total amount, and the atomic ratio represented by RE / Al of the rare earth element (RE) to the aluminum element (Al) is 0.67 to less.
The corrosion-resistant member according to claim 4, wherein the ratio is 1.7.
【請求項6】前記複合酸化物がメリライト型結晶を主体
とし、さらにペロブスカイト型結晶および/または希土
類酸化物結晶を含むことを特徴とする請求項1記載の耐
食性部材。
6. The corrosion-resistant member according to claim 1, wherein said composite oxide is mainly composed of a melilite type crystal and further contains a perovskite type crystal and / or a rare earth oxide crystal.
【請求項7】アルミナ結晶粒子が全量中1体積%以下で
あり、アルミニウム元素(Al)に対する希土類元素
(RE)のRE/Alで表される原子比率が1.6以上
であることを特徴とする請求項6記載の耐食性部材。
7. The method according to claim 1, wherein the alumina crystal particles are 1% by volume or less of the total amount, and the atomic ratio represented by RE / Al of the rare earth element (RE) to the aluminum element (Al) is 1.6 or more. The corrosion-resistant member according to claim 6, wherein
JP33670999A 1999-11-26 1999-11-26 Corrosion-resistant member Pending JP2001151559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33670999A JP2001151559A (en) 1999-11-26 1999-11-26 Corrosion-resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33670999A JP2001151559A (en) 1999-11-26 1999-11-26 Corrosion-resistant member

Publications (1)

Publication Number Publication Date
JP2001151559A true JP2001151559A (en) 2001-06-05

Family

ID=18301990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33670999A Pending JP2001151559A (en) 1999-11-26 1999-11-26 Corrosion-resistant member

Country Status (1)

Country Link
JP (1) JP2001151559A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063883A (en) * 2001-08-29 2003-03-05 Shin Etsu Chem Co Ltd Oxide member containing rare earths
JP2003095735A (en) * 2001-09-19 2003-04-03 Toshiba Ceramics Co Ltd Plasma resisting member, and production method therefor
JP2003297906A (en) * 2002-03-28 2003-10-17 Kyocera Corp Member for semiconductor manufacturing device and manufacturing method thereof
JP2008266095A (en) * 2007-04-24 2008-11-06 Kyocera Corp Member for plasma treatment apparatus and plasma treatment apparatus using the same
JP2011136877A (en) * 2009-12-28 2011-07-14 Sumitomo Osaka Cement Co Ltd Corrosion-resistant member and method for producing the same
JP2011151336A (en) * 2009-12-21 2011-08-04 Sumitomo Osaka Cement Co Ltd Electrostatic chuck, production method thereof and electrostatic chuck device
US8158544B2 (en) 2008-04-28 2012-04-17 Ferrotec Ceramics Corporation Yttria sintered body and component used for plasma processing apparatus
JP2013004900A (en) * 2011-06-21 2013-01-07 Sumitomo Osaka Cement Co Ltd Electrostatic chuck device
JP2021138581A (en) * 2020-03-06 2021-09-16 日本特殊陶業株式会社 Ceramic sintered compact and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003063883A (en) * 2001-08-29 2003-03-05 Shin Etsu Chem Co Ltd Oxide member containing rare earths
JP4663927B2 (en) * 2001-08-29 2011-04-06 信越化学工業株式会社 Rare earth-containing oxide member
JP2003095735A (en) * 2001-09-19 2003-04-03 Toshiba Ceramics Co Ltd Plasma resisting member, and production method therefor
JP2003297906A (en) * 2002-03-28 2003-10-17 Kyocera Corp Member for semiconductor manufacturing device and manufacturing method thereof
JP2008266095A (en) * 2007-04-24 2008-11-06 Kyocera Corp Member for plasma treatment apparatus and plasma treatment apparatus using the same
US8158544B2 (en) 2008-04-28 2012-04-17 Ferrotec Ceramics Corporation Yttria sintered body and component used for plasma processing apparatus
JP2011151336A (en) * 2009-12-21 2011-08-04 Sumitomo Osaka Cement Co Ltd Electrostatic chuck, production method thereof and electrostatic chuck device
JP2011136877A (en) * 2009-12-28 2011-07-14 Sumitomo Osaka Cement Co Ltd Corrosion-resistant member and method for producing the same
JP2013004900A (en) * 2011-06-21 2013-01-07 Sumitomo Osaka Cement Co Ltd Electrostatic chuck device
US9837296B2 (en) 2011-06-21 2017-12-05 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck apparatus
JP2021138581A (en) * 2020-03-06 2021-09-16 日本特殊陶業株式会社 Ceramic sintered compact and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6933254B2 (en) Plasma-resistant articles and production method thereof
JPH1045461A (en) Corrosion resistant member
JP2006273584A (en) Aluminum nitride sintered compact, member for manufacturing semiconductor, and method for manufacturing aluminum nitride sintered compact
JP4683783B2 (en) Method for manufacturing plasma-resistant member for semiconductor manufacturing apparatus
JPH1045467A (en) Corrosion resistant member
JP4780932B2 (en) Corrosion-resistant member, method for manufacturing the same, and member for semiconductor / liquid crystal manufacturing apparatus
JP3527839B2 (en) Components for semiconductor device manufacturing equipment
JP3618048B2 (en) Components for semiconductor manufacturing equipment
JP2001151559A (en) Corrosion-resistant member
JP2002249379A (en) Aluminum nitride sintered compact and member for device for manufacturing of semiconductor
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
US20020155940A1 (en) Corrosion-resistive ceramic materials, method of producing the same, and members for semiconductor manufacturing
JP3706488B2 (en) Corrosion-resistant ceramic material
JP4641609B2 (en) Corrosion resistant material
JP3808245B2 (en) Chamber component for semiconductor manufacturing
JP2001240482A (en) Plasma resistance material, high-frequency transmission material, and plasma equipment
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP4480951B2 (en) Corrosion resistant material
KR20090101245A (en) Ceramic member and corrosion-resistant member
JP2009234877A (en) Member used for plasma processing apparatus
JP3769416B2 (en) Components for plasma processing equipment
JP2001199762A (en) Corrosion-resisting ceramic material
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP4651145B2 (en) Corrosion resistant ceramics
JP3732966B2 (en) Corrosion resistant material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219