JP2000239066A - Corrosionproof member and its production, and member for plasma treatment device using the same - Google Patents

Corrosionproof member and its production, and member for plasma treatment device using the same

Info

Publication number
JP2000239066A
JP2000239066A JP11043860A JP4386099A JP2000239066A JP 2000239066 A JP2000239066 A JP 2000239066A JP 11043860 A JP11043860 A JP 11043860A JP 4386099 A JP4386099 A JP 4386099A JP 2000239066 A JP2000239066 A JP 2000239066A
Authority
JP
Japan
Prior art keywords
plasma
less
group
metal
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11043860A
Other languages
Japanese (ja)
Inventor
Yumiko Ito
裕見子 伊東
Hitoshi Matsunosako
等 松之迫
Hidemi Matsumoto
秀美 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP11043860A priority Critical patent/JP2000239066A/en
Publication of JP2000239066A publication Critical patent/JP2000239066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a corrosionproof member excellent in corrosionproofness and suppressed in particle production, to provide a method for producing the member, and to provide a plasma treatment device using the member. SOLUTION: This corrosionproof member is a sintered compact obtained by firing in an inert atmosphere at temperatures of 600-1,400 deg.C such powder as to be <=30 μm in average particle size, consist of a fluoride of at least one metal selected from group IIIA elements and contain a total of <=100 ppm of the metallic elements except the group IIIA elements. The sintered compact thus obtained contains a total of <=100 ppm of the metallic elements except the group IIIA elements, has the average size of the fluoride crystal grains of <=30 μm and a relative density of >=95%. This sintered compact is used as a member subject to direct contact with halogen-based corrosive gases or plasma thereof, in particular as a support for the inner wall members and/or objects to be treated for a plasma treatment device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特にフッ素系及び
塩素系腐食性ガス或いはフッ素系・塩素系プラズマに対
して高い耐食性を有し、パーティクルやコンタミネーシ
ョンの発生が少ない、半導体製造時に用いられるプラズ
マ処理装置の内壁部材や被処理物を支持する支持体など
の治具等としての使用に好適な耐食性部材およびその製
造方法、並びにそれを用いたプラズマ処理装置用部材に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in the manufacture of semiconductors, in particular, having high corrosion resistance to fluorine-based and chlorine-based corrosive gases or fluorine-based / chlorine-based plasma, and generating little particles or contamination. The present invention relates to a corrosion-resistant member suitable for use as a jig or the like for an inner wall member of a plasma processing apparatus or a support for supporting an object to be processed, a method of manufacturing the same, and a member for a plasma processing apparatus using the same.

【0002】[0002]

【従来技術】半導体素子や液晶などの高集積回路形成に
使用されるドライプロセスやプラズマコーティング等プ
ラズマの利用が近年急速に進んでいる。半導体における
プラズマプロセスとしては、フッ素系等のハロゲン系腐
食ガスがその反応性の高さから、気相成長、エッチング
やクリーニングに利用されている。
2. Description of the Related Art In recent years, the use of plasma, such as a dry process and plasma coating, used for forming highly integrated circuits such as semiconductor elements and liquid crystals has been rapidly advancing. As a plasma process in a semiconductor, a halogen-based corrosive gas such as a fluorine-based gas is used for vapor phase growth, etching and cleaning due to its high reactivity.

【0003】これら腐食性ガスに接触する部材は、高い
耐食性が要求され、従来から被処理物以外のこれらプラ
ズマに接触する部材は、一般にガラスや石英などのSi
2を主成分とする材料やステンレス、モネル等の金属
が多用されている。
[0003] The members that come into contact with these corrosive gases are required to have high corrosion resistance. Conventionally, the members that come into contact with these plasmas other than the object to be processed are generally made of Si such as glass or quartz.
Materials containing O 2 as a main component and metals such as stainless steel and Monel are frequently used.

【0004】また、半導体製造時において、プラズマ処
理装置内にてウェハを支持固定するサセプタ材としてア
ルミナ質焼結体、サファイア、AlN質焼結体、炭化珪
素等の珪素質焼結体またはこれらをCVD法等により表
面被覆したものが耐食性に優れるとして使用されてい
る。また、グラファイト、窒化硼素をコーティングした
ヒータ等も使用されている。
In the manufacture of semiconductors, a silicon-based sintered body such as an alumina-based sintered body, sapphire, an AlN-based sintered body, silicon carbide, or the like is used as a susceptor material for supporting and fixing a wafer in a plasma processing apparatus. Those coated by the CVD method or the like are used because they have excellent corrosion resistance. Further, a heater coated with graphite or boron nitride is also used.

【0005】さらに、特開平8−91932号公報で
は、腐食性ガスに接触する部材として、アルミニウム系
材料のプラズマとの生成物であるAlF3 の焼結体を使
用することにより耐プラズマ性が向上することが開示さ
れている。
Further, in Japanese Patent Application Laid-Open No. 8-91932, the plasma resistance is improved by using a sintered body of AlF 3 which is a product of the plasma of an aluminum material as a member to be brought into contact with a corrosive gas. Is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来から用い
られているガラスや石英ではプラズマ中の耐食性が不充
分で消耗が激しく、特にフッ素あるいは塩素プラズマに
接すると接触面がエッチングされ、表面性状が変化して
エッチングに影響する等の問題が生じていた。特に高密
度プラズマの普及に伴ってプラズマのコントロールはよ
り重要視されるようになっており、エッチングされた部
材の構成元素がプラズマ中に混入することによりプラズ
マ制御に支障を与えるという問題も生じていた。
However, conventionally used glass and quartz have insufficient corrosion resistance in plasma and are intensely depleted. In particular, when they come into contact with fluorine or chlorine plasma, the contact surface is etched and the surface properties are reduced. There have been problems such as changes that affect etching. In particular, with the spread of high-density plasma, plasma control has become more important, and a problem has arisen that plasma control is hindered by mixing of constituent elements of an etched member into plasma. Was.

【0007】例えば、石英部材がエッチングされること
により酸素がプラズマ中に放出され、特にフッ素系プラ
ズマでは、プラズマ中の酸素濃度に伴ってフッ素ラジカ
ル濃度が変化するために安定したエッチング性が得られ
ないという問題があった。
For example, when a quartz member is etched, oxygen is released into the plasma. Particularly, in the case of fluorine-based plasma, a stable etching property can be obtained because the concentration of fluorine radicals changes with the oxygen concentration in the plasma. There was no problem.

【0008】また、ステンレスなどの金属を使用した部
材でも耐食性が不充分なため、腐食によって特に半導体
製造においては不良品発生の原因となっていた。
Further, even members made of metal such as stainless steel have insufficient corrosion resistance, so that corrosion has caused defective products especially in semiconductor manufacturing.

【0009】アルミナ、窒化アルミニウム、窒化珪素質
焼結体やコーティング材は、上記の材料に比較してフッ
素系ガスに対して耐食性に優れるものの、高温でプラズ
マと接すると腐食が徐々に進行して焼結体の表面から結
晶粒子の脱粒が生じたり、プラズマとの反応生成物が析
出・剥離してパーティクル発生の原因になるという問題
が起きていた。
Alumina, aluminum nitride, silicon nitride sintered bodies and coating materials have better corrosion resistance to fluorine-based gases than the above materials, but when they come into contact with plasma at high temperatures, corrosion gradually progresses. There has been a problem that crystal grains are shed from the surface of the sintered body, and a reaction product with the plasma is deposited and separated to cause particles.

【0010】このようなパーティクルの発生は、半導体
の高集積化、プロセスのさらなるクリーン化が図られる
中、イオン衝撃や、気相反応で生成したごく微細なパー
ティクルによってメタル配線の断線、パターンの欠陥等
による素子特性の劣化や歩留まりの低下等の不具合を発
生する恐れが生じている。
[0010] The generation of such particles is caused by ion bombardment, breakage of metal wiring due to extremely fine particles generated by a gas phase reaction, and pattern defects, as semiconductors become more highly integrated and processes are further cleaned. There is a possibility that problems such as deterioration of the device characteristics and a decrease in the yield due to the above may occur.

【0011】また、特開平8−91932号公報のよう
に、腐食性ガスに接触する部材として、AlF3 の焼結
体を使用した場合、AlF3 は、比較的低温から昇華す
るため高温領域では不安定となることから、アルミナ、
窒化アルミニウム、窒化珪素質焼結体に比べ耐食性が向
上するものの実用的には充分でなかった。さらに、Al
3 (融点1040℃)は、比較的低温で昇華すること
から、特に常圧焼成やホットプレス焼成等の雰囲気焼成
においては、昇華を抑制しつつ焼成する必要があり、緻
密な焼結体を得ることが難しいものであった。
Further, as in JP-8-91932 and JP-as a member for contacting the corrosive gas, when using the sintered body of AlF 3, AlF 3 is in the high temperature region for sublimation from a relatively low temperature Because it becomes unstable, alumina,
Although corrosion resistance was improved as compared with aluminum nitride and silicon nitride sintered bodies, they were not practically sufficient. Furthermore, Al
Since F 3 (melting point 1040 ° C.) sublimates at a relatively low temperature, it is necessary to sinter while suppressing sublimation, particularly in atmospheric sintering such as normal-pressure sintering or hot-press sintering. It was difficult to get.

【0012】本発明者らは、このような問題を解決する
ため、先にフッ素・塩素系プラズマと接触する表面をプ
ラズマに対して安定なハロゲン化物を形成しうる周期律
表第2A、3A族元素を含有する酸化物、窒化物、炭化
物の焼結体により形成し、プラズマにより焼結体表面に
CaF2 等の周期律表第2A、3A族元素を含有するハ
ロゲン化物を形成することを提案した。
In order to solve such a problem, the inventors of the present invention have proposed that a surface in contact with a fluorine-chlorine-based plasma be formed on a group 2A or 3A of the periodic table capable of forming a halide stable to the plasma. It is proposed to form oxides, nitrides, and carbides containing element-containing sintered bodies, and to form halides containing elements from the 2A and 3A groups of the periodic table, such as CaF 2, on the surface of the sintered bodies by plasma. did.

【0013】しかしながら、周期律表第2A、3A族元
素を主成分とする材料は、フッ素、塩素系のプラズマに
対しては安定ではあっても、室温における熱膨張係数
が、例えば、酸化マグネシウム14×10-6/℃、フッ
化マグネシウム10×10-6/℃と差があるために、熱
サイクルにより焼結体表面に形成された周期律表第2
A、3A族元素を含有するフッ化物が剥離しやすく、材
料表面に形成されたハロゲン化物の脱落によってパーテ
ィクルが発生してしまうという問題があった。
However, a material containing a Group 2A or 3A element of the periodic table as a main component is stable against fluorine and chlorine plasma, but has a thermal expansion coefficient at room temperature of, for example, magnesium oxide 14. × 10 -6 / ° C., because of the magnesium fluoride 10 × 10 -6 / ℃ and difference, periodic table 2 by thermal cycling are formed in the sintered body surface
There has been a problem that fluoride containing Group A and 3A elements is easily peeled off, and particles are generated due to dropout of a halide formed on the material surface.

【0014】特に、CaF2 の溶融体は、へき開性があ
るため、表面層等が振動や衝撃等により容易に剥離し、
多量のパーティクルの発生の要因となっていた。
In particular, since the melt of CaF 2 has cleavage, the surface layer and the like easily peels off due to vibration, impact, and the like.
This has caused a large amount of particles to be generated.

【0015】[0015]

【課題を解決するための手段】本発明者らは、フッ素系
及び塩素系腐食ガス或いはプラズマに対して、高い耐食
性を有し、パーティクルの発生を抑制できる材料につい
て検討を重ねた結果、周期律表第3A族元素、特にラン
タノイド系希土類金属のフッ化物焼結体の結晶粒径、不
純物量および密度を特定の範囲に制御することにより、
フッ素、塩素系腐食ガスあるいはプラズマに対して高い
耐食性を示し、パーティクルの発生を抑制できることを
見いだした。
Means for Solving the Problems The present inventors have repeatedly studied materials which have high corrosion resistance to fluorine-based and chlorine-based corrosive gas or plasma and can suppress generation of particles. By controlling the crystal grain size, the amount of impurities and the density of the fluoride sintered body of the Group 3A group element, especially the lanthanoid rare earth metal, to a specific range,
It has been found that it exhibits high corrosion resistance to fluorine, chlorine-based corrosive gases or plasma, and can suppress the generation of particles.

【0016】すなわち、本発明の耐食性部材は、少なく
ともハロゲン系腐食ガスあるいはそのプラズマと直接接
触する表面を具備し、該表面が周期律表第3A族元素か
ら選ばれる少なくとも1種の金属のフッ化物からなり、
前記周期律表第3A族元素以外の金属元素の総量が金属
換算で100ppm以下、前記フッ化物の結晶粒子の平
均粒径が30μm以下であり、かつ相対密度95%以上
の焼結体からなることを特徴とするものである。
That is, the corrosion-resistant member of the present invention has at least a surface directly in contact with a halogen-based corrosive gas or its plasma, and the surface is at least one metal fluoride selected from Group 3A elements of the periodic table. Consisting of
The total amount of metal elements other than the Group 3A element of the periodic table is 100 ppm or less in terms of metal, the average particle size of the fluoride crystal particles is 30 μm or less, and the sintered body has a relative density of 95% or more. It is characterized by the following.

【0017】また、その製造方法としては、平均粒径3
0μm以下、周期律表第3A族元素から選ばれる少なく
とも1種の金属のフッ化物からなり、前記周期律表第3
A族元素以外の金属元素の総量が金属換算で100pp
m以下の粉末、あるいはその成形体を、不活性雰囲気中
で600〜1400℃で焼成して相対密度95%以上に
緻密化することを特徴とするものであり、特に前記焼成
時に、50kg/cm2 以上の圧力を印加することが望
ましい。
Further, the method for producing the same is as follows.
0 μm or less, made of a fluoride of at least one metal selected from Group 3A elements of the periodic table,
The total amount of metal elements other than Group A elements is 100 pp in metal conversion
m or less, or a compact thereof is fired at 600 to 1400 ° C. in an inert atmosphere to densify the powder to a relative density of 95% or more. It is desirable to apply two or more pressures.

【0018】さらに、本発明のプラズマ処理装置用部材
は、少なくともハロゲン系腐食ガスあるいはそのプラズ
マと直接接触する表面が周期律表第3A族元素から選ば
れる少なくとも1種の金属のフッ化物からなり、前記周
期律表第3A族元素以外の金属元素の総量が金属換算で
100ppm以下、前記フッ化物の結晶粒子の平均粒径
が30μm以下であり、かつ相対密度が95%以上の希
土類金属フッ化物焼結体からなることを特徴とするもの
である。
Further, in the member for a plasma processing apparatus of the present invention, at least a surface of a halogen-based corrosive gas or a surface thereof which is in direct contact with the plasma is made of a fluoride of at least one metal selected from Group 3A elements of the periodic table; A rare earth metal fluoride sintered body in which the total amount of metal elements other than the Group 3A element of the periodic table is 100 ppm or less in terms of metal, the average crystal grain size of the fluoride is 30 µm or less, and the relative density is 95% or more. It is characterized by being formed of a union.

【0019】[0019]

【発明の実施の形態】本発明の耐食性部材は、周期律表
第3A族元素から選ばれる少なくとも1種の金属のフッ
化物の焼結体からなるもので、ハロゲン系プラズマ、特
にフッ素プラズマに対する耐食性の観点から前記周期律
表第3A族元素以外の金属元素の総量を金属換算で10
0ppm以下、望ましくは90ppm以下、特に50p
pm以下、さらには10ppm以下に制御することが重
要である。
BEST MODE FOR CARRYING OUT THE INVENTION The corrosion-resistant member of the present invention comprises a sintered body of a fluoride of at least one metal selected from Group 3A elements of the periodic table, and has a corrosion resistance to halogen-based plasma, especially fluorine plasma. In view of the above, the total amount of metal elements other than the Group 3A elements of the periodic table is 10
0 ppm or less, desirably 90 ppm or less, especially 50 p
It is important to control the pressure to not more than pm, more preferably not more than 10 ppm.

【0020】即ち、前記第3A族元素以外の金属元素の
総量が金属換算で100ppmより多いと、プラズマ接
触面で第3A族元素以外の金属がプラズマと反応し、こ
れによりエッチングが進行するとともに、その反応物が
パーティクルの原因となるためである。
That is, when the total amount of the metal elements other than the Group 3A element is more than 100 ppm in terms of metal, the metal other than the Group 3A element reacts with the plasma on the plasma contact surface, whereby the etching proceeds, This is because the reactant causes particles.

【0021】また、周期律表第3a族元素のフッ化物と
しては、フッ素プラズマに対する耐食性の点では、融点
の高い材料が望ましく、ScF3 (融点1515℃)、
LaF3 (融点1490℃)、ErF3 (融点1350
℃)、CeF3 (融点1324℃)、YbF3 (融点1
157℃)、YF3 (融点1152℃)の順で好まし
い。
As the fluoride of the Group 3a element of the periodic table, a material having a high melting point is desirable in terms of corrosion resistance to fluorine plasma, and ScF 3 (melting point: 1515 ° C.)
LaF 3 (melting point 1490 ° C.), ErF 3 (melting point 1350
° C), CeF 3 (melting point 1324 ° C), YbF 3 (melting point 1
157 ° C.) and YF 3 (melting point 1152 ° C.) in this order.

【0022】さらに、プラズマに対する耐食性を高める
上では、焼結体の相対密度は95%以上、特に98%以
上であることが必要である。これは、焼結体の相対密度
が95%より小さいとプラズマとの接触面積が増加する
ために耐食性が低下し、またプラズマ接触面に存在する
気孔からエッチングが進行してしまうためである。
Further, in order to enhance the corrosion resistance to plasma, the relative density of the sintered body needs to be 95% or more, especially 98% or more. This is because if the relative density of the sintered body is less than 95%, the contact area with the plasma increases, so that the corrosion resistance is reduced and the etching proceeds from the pores present on the plasma contact surface.

【0023】また、シリコンウェハの大口径化に伴い、
製造装置や構成部品自体も大型化することから、強度お
よび耐熱衝撃性を高める必要があり、また、塩素系ガス
及びそのプラズマを使用する場合は、熱サイクルによる
部品の劣化が問題視されてくることから耐熱信頼性を高
める上でも、焼結体の相対密度は95%以上が必要であ
る。
Also, with the increase in the diameter of silicon wafers,
Since the manufacturing equipment and the components themselves also become larger, it is necessary to increase the strength and thermal shock resistance, and when using a chlorine-based gas and its plasma, deterioration of the components due to thermal cycling becomes a problem. Therefore, the relative density of the sintered body needs to be 95% or more in order to enhance the heat resistance reliability.

【0024】また、焼結体のフッ化物結晶粒子の平均粒
径が、30μm以下、望ましくは10μm以下、特に1
μm以下、さらには0.3μm以下であることが望まし
い。即ち、この平均粒径が30μmより大きいと、脱粒
等が発生した場合、プラズマ処理装置内で製造される半
導体素子に与える影響が大きくなるためである。
The average particle size of the fluoride crystal particles of the sintered body is 30 μm or less, preferably 10 μm or less, and more preferably 1 μm or less.
μm or less, more preferably 0.3 μm or less. That is, if the average particle diameter is larger than 30 μm, the influence on the semiconductor element manufactured in the plasma processing apparatus becomes large in the case of occurrence of particle shedding or the like.

【0025】かかるハロゲン系プラズマに対し、高い耐
食性を有する希土類金属フッ化物焼結体を作製する方法
としては、周期律表第3A族元素以外の金属元素の総量
を金属換算で100ppm以下、望ましくは90ppm
以下、特に50ppm以下、さらには10ppm以下で
あり、かつ平均粒径が30μm以下、望ましくは10μ
m以下、特に1μm以下、さらには0.3μm以下の周
期律表第3A族元素のフッ化物原料粉末を準備する。ま
た、この原料粉末中に含まれる酸素量は0.05〜2.
0重量%であることが焼結性を高める上で望ましい。
As a method for producing a rare earth metal fluoride sintered body having high corrosion resistance to such a halogen-based plasma, the total amount of metal elements other than the Group 3A element in the periodic table is 100 ppm or less, preferably 100 ppm or less. 90 ppm
Or less, particularly 50 ppm or less, more preferably 10 ppm or less, and the average particle size is 30 μm or less, preferably 10 μm or less.
m or less, particularly 1 μm or less, and further, 0.3 μm or less are prepared. The amount of oxygen contained in the raw material powder is 0.05 to 2.
It is desirable that the content be 0% by weight in order to enhance the sinterability.

【0026】なお、この原料粉末の粒径が30μmより
も大きい場合は、所望の粉砕方法、例えば、ボールミ
ル、振動ミル、アトライタミル、ジェットミル等により
粉砕して用いればよく、また、メッシュパス等により粗
粒を除去しておくほうが望ましい。
When the particle size of the raw material powder is larger than 30 μm, the raw material powder may be pulverized by a desired pulverizing method, for example, a ball mill, a vibrating mill, an attritor mill, a jet mill or the like, and may be used by a mesh pass or the like. It is desirable to remove coarse particles.

【0027】この粉末を用いて、所定形状に所望の成形
手段、例えば、金型プレス、冷間静水圧プレス、押し出
し成形等により任意の形状に成形する。この時の成形体
は、相対密度55%以上であることが望ましく、成形体
密度が55%よりも低いとその後の焼結過程で相対密度
95%以上の緻密体を作製することが困難である。
Using the powder, a desired shape is formed into a predetermined shape by a desired forming means, for example, a die press, a cold isostatic press, an extrusion molding or the like. The compact at this time is desirably 55% or more in relative density, and if the compact density is lower than 55%, it is difficult to produce a dense body having a relative density of 95% or more in the subsequent sintering process. .

【0028】次に、上記のようにして作製した成形体を
相対密度95%以上、特に98%以上に焼成する。相対
密度95%以上に緻密化するには、上記の組成からなる
成形体を真空、Ar、N2 、CO、H2 、HFガス等の
不活性雰囲気中において、加圧あるいは常圧下(非酸化
性ガス圧1atm以上)で600〜1400℃の温度範
囲で焼成することにより得られる。特に、不活性雰囲気
としては、フッ化物の酸化を抑制するためにCO、
2 、HFが最も望ましい。
Next, the formed body produced as described above is fired to a relative density of 95% or more, especially 98% or more. In order to densify to a relative density of 95% or more, the compact having the above composition is pressed or normal pressure (non-oxidized) in an inert atmosphere such as vacuum, Ar, N 2 , CO, H 2 , HF gas or the like. (Atmospheric gas pressure of 1 atm or more) in a temperature range of 600 to 1400 ° C. In particular, as the inert atmosphere, CO,
H 2 and HF are most desirable.

【0029】この場合、最適な焼成温度は用いる周期律
表第3A族元素によって異なり、例えば、YF3 および
YbF3 については600〜1100℃、好ましくは7
00〜1000℃、さらには800〜1000℃が望ま
しく、CeF3 およびErF3 については、800〜1
300℃、好ましくは900〜1200℃、さらには1
000〜1100℃が望ましく、LaF3 については、
900〜1400℃、好ましくは1000〜1350℃
さらには1100〜1250℃が望ましい。
In this case, the optimum calcination temperature depends on the element of Group 3A of the periodic table used. For example, for YF 3 and YbF 3 , the temperature is 600 to 1100 ° C., preferably 7 to 100 ° C.
The temperature is preferably from 1000 to 1000 ° C., more preferably from 800 to 1000 ° C., and for CeF 3 and ErF 3 ,
300 ° C., preferably 900-1200 ° C., and even 1
000-1100 ° C. is desirable, and for LaF 3 ,
900-1400 ° C, preferably 1000-1350 ° C
Furthermore, 1100-1250 degreeC is desirable.

【0030】また、上記焼成において、相対密度を向上
させるためには50kg/cm2 以上の加圧下でホット
プレス焼成することが望ましく、さらに、得られた焼結
体に対して窒素ガスやアルゴンガスによる1000気圧
以上の圧力下で500〜1300℃の温度で熱間静水圧
処理を行うことによりさらに緻密化を促進できる。
In the above sintering, it is preferable to perform hot press sintering under a pressure of 50 kg / cm 2 or more in order to improve the relative density. Further, nitrogen gas or argon gas is applied to the obtained sintered body. The densification can be further promoted by performing hot isostatic pressure treatment at a temperature of 500 to 1300 ° C. under a pressure of 1000 atm or more.

【0031】なお、ホットプレスの場合、カーボンモー
ルドによって焼結体中にわずかにカーボンが混入する場
合があるが、その量は0.5重量%以下であれば特に問
題ない。
In the case of hot pressing, carbon may be slightly mixed into the sintered body by the carbon mold, but there is no particular problem as long as the amount is 0.5% by weight or less.

【0032】上記の焼成により作製した相対密度95%
以上の焼結体中において、焼結体表面に有する開気孔が
多いと、腐食性ガスやプラズマとの接触面積が増加し消
耗が早くなるため、この開気孔率は0.2%以下である
ことが望ましい。
The relative density of 95% produced by the above calcination
In the above sintered body, if there are many open pores on the surface of the sintered body, a contact area with a corrosive gas or plasma is increased and consumption is accelerated. Therefore, the open porosity is 0.2% or less. It is desirable.

【0033】その後、得られた焼結体に対し、適宜研削
加工を施し、所定の寸法の製品形状に仕上げる。この
時、耐食性を高める上では、前記腐食性ガスあるいはそ
のプラズマと接触する焼結体表面の表面粗さ(Ra)
が、1μm以下、特に0.5μm以下、さらには0.1
μm以下であることが望ましい。
Thereafter, the obtained sintered body is appropriately ground to finish the product into a product having a predetermined size. At this time, in order to enhance the corrosion resistance, the surface roughness (Ra) of the surface of the sintered body in contact with the corrosive gas or its plasma is considered.
Is 1 μm or less, particularly 0.5 μm or less, and more preferably 0.1 μm or less.
It is desirable that it is not more than μm.

【0034】そして、かかる周期律表第3A族元素のフ
ッ化物焼結体は、半導体素子を製造する際に用いられる
プラズマ処理装置内のフッ素系または塩素系等のハロゲ
ン系の腐食ガスまたはプラズマと表面が直接接触する部
位に好適に用いられる。
The fluoride sintered body of the Group 3A element of the periodic table is combined with a fluorine-based or chlorine-based corrosive gas or plasma in a plasma processing apparatus used for manufacturing a semiconductor device. It is suitably used for sites where the surface is in direct contact.

【0035】フッ素系ガスとしては、SF6 、NF3
CF4 、CHF3 、ClF3 、HF等が、また塩素系ガ
スとしては、Cl2 、BCl3 、HCl等が挙げられ、
これらのガスが導入された雰囲気にマイクロ波や高周波
等を導入するとこれらのガスがプラズマ化される。
As the fluorine-based gas, SF 6 , NF 3 ,
CF 4 , CHF 3 , ClF 3 , HF, etc., and the chlorine-based gas includes Cl 2 , BCl 3 , HCl, etc.
When microwaves, high-frequency waves, or the like are introduced into the atmosphere in which these gases are introduced, these gases are turned into plasma.

【0036】本発明によれば、このようなハロゲン系の
腐食ガスあるいはそのプラズマに直接接触する表面を、
上記の周期律表第3A族元素フッ化物焼結体により構成
することにより、優れた耐食性とパーティクルの発生を
抑制することができる。
According to the present invention, the surface in direct contact with such a halogen-based corrosive gas or its plasma is
By comprising the above-mentioned sintered body of a fluoride of Group 3A element of the periodic table, excellent corrosion resistance and generation of particles can be suppressed.

【0037】これは、前記第3A族元素フッ化物焼結体
が、フッ素、塩素との反応性が低く、また、融点が高
く、AlF3 のように低温で昇華することもなく高温で
の安定性に優れるために、焼成を安定して行うことがで
きる結果、緻密な焼結体を作製することができる。
This is because the Group 3A element fluoride sintered body has low reactivity with fluorine and chlorine, has a high melting point, and is stable at a high temperature without sublimation at a low temperature unlike AlF 3. As a result, the sintering can be performed stably, so that a dense sintered body can be produced.

【0038】[0038]

【実施例】(実施例1)表1に示す平均原料粒径、周期
律表第3A族元素以外の金属含有量(不純物量と記す)
のフッ化物原料粉末を用い、これをカーボン製モールド
に充填し、HF雰囲気中、200kg/cm2 の加圧
下、表1に示す焼成温度にて2時間ホットプレス焼成を
行った。
EXAMPLES (Example 1) Average raw material particle diameters shown in Table 1, contents of metals other than Group 3A elements of the periodic table (referred to as impurity amounts)
Was filled in a carbon mold and subjected to hot press firing for 2 hours at a firing temperature shown in Table 1 under a pressure of 200 kg / cm 2 in an HF atmosphere.

【0039】比較例として、SiO2 、Al2 3 、A
lN、AlF3 について、表1に示す温度で焼成し同様
に焼結体を作製した(試料No.35〜38)。
As comparative examples, SiO 2 , Al 2 O 3 , A
1N and AlF 3 were fired at the temperatures shown in Table 1 to produce similarly sintered bodies (Sample Nos. 35 to 38).

【0040】得られた焼結体を用いて、アルキメデス法
により焼結体の密度を測定し、理論密度に対する比率で
ある相対密度(%)を算出した。また、JISR160
1に基づき4点曲げ強度を測定した。さらに、インタセ
プト法によってフッ化物結晶粒子の平均粒径を測定し
た。結果は表1に示した。
Using the obtained sintered body, the density of the sintered body was measured by the Archimedes method, and the relative density (%) as a ratio to the theoretical density was calculated. Also, JISR160
The 4-point bending strength was measured based on 1. Further, the average particle size of the fluoride crystal particles was measured by an intercept method. The results are shown in Table 1.

【0041】また、得られた焼結体に対して、以下の方
法で耐食性試験を行った。まず、作製した焼結体の表面
を表面粗さ(Ra)が0.1μm以下となるように鏡面
加工して直径22cmの円盤を作製し、RIEプラズマ
エッチング装置にてCF4 (60sccm)+ Ar(6
0sccm)のフッ素系プラズマに室温で曝し、エッチ
ングレートとパーティクルの有無を調査した。エッチン
グ条件は圧力10Pa、RF出力1KW、プラズマ照射
時間3時間とした。エッチングレートはテスト前後の重
量変化を基に算出した。パーティクルの有無は、プラズ
マ照射後の円盤上に8インチのSiウェハを載せたの
ち、ウェハの接触面の凹凸をレーザー散乱によって検出
し、パーティクルカウンタにて0.3μm以上のパーテ
ィクル個数を計測した。結果を表1に示す。
Further, the obtained sintered body was subjected to a corrosion resistance test by the following method. First, the surface of the produced sintered body was mirror-finished to a surface roughness (Ra) of 0.1 μm or less to produce a disk having a diameter of 22 cm, and CF 4 (60 sccm) + Ar was produced by an RIE plasma etching apparatus. (6
(0 sccm) at room temperature to examine the etching rate and the presence or absence of particles. The etching conditions were a pressure of 10 Pa, an RF output of 1 KW, and a plasma irradiation time of 3 hours. The etching rate was calculated based on the weight change before and after the test. The presence / absence of particles was determined by placing an 8-inch Si wafer on a disk after plasma irradiation, detecting the unevenness of the contact surface of the wafer by laser scattering, and counting the number of particles of 0.3 μm or more with a particle counter. Table 1 shows the results.

【0042】[0042]

【表1】 [Table 1]

【0043】表1の結果によれば、試料No.1、11
は、焼成温度が低く、相対密度を95%以上に緻密化で
きないために、耐食性が低下するとともに脱粒によって
30個以上のパーティクルが発生し、使用に耐えない。
また、試料No.16は、焼成温度が高く溶融してしまっ
た。さらに、原料粉末の平均粒径が30μmを越える試
料No.10、18、23、29、34は緻密化せず、耐
食性が低下した。また、周期律表第3A族元素以外の金
属元素の総量が金属換算で100ppmより多い試料N
o.9、17は、多量のパーティクルの発生が認められ
た。
According to the results shown in Table 1, the samples Nos. 1, 11
Since the sintering temperature is low and the relative density cannot be densified to 95% or more, the corrosion resistance is reduced, and 30 or more particles are generated by grain shedding, which is unusable.
Sample No. 16 melted at a high firing temperature. Further, Sample Nos. 10, 18, 23, 29 and 34 in which the average particle size of the raw material powder exceeded 30 μm were not densified, and the corrosion resistance was reduced. Further, the sample N in which the total amount of metal elements other than Group 3A element of the periodic table is more than 100 ppm in terms of metal.
In o.9 and 17, generation of a large amount of particles was observed.

【0044】一方、第3A族元素のフッ化物以外のSi
2 、Al2 3 、AlNの焼結体については、高純度
で結晶粒径30μm以下の緻密な焼結体であるにもかか
わらず、耐食性は不十分であった。また、AlF3 の焼
結体は焼成時に昇華・分解が進行し充分に緻密化しなか
った。
On the other hand, Si other than fluoride of Group 3A element
Regarding the sintered body of O 2 , Al 2 O 3 , and AlN, the corrosion resistance was insufficient even though it was a dense sintered body having a high purity and a crystal grain size of 30 μm or less. In addition, the AlF 3 sintered body did not sufficiently densify due to sublimation and decomposition progressed during firing.

【0045】これに対し、本発明による試料No.2〜
8、12〜15、19〜22、24〜28、30〜33
は、相対密度95%以上、かつエッチングレート25Å
/min.以下、特に15Å/min.以下、パーティ
クル発生量15個/8インチウエハ以下、特に10個/
8インチウエハ以下の良好な耐食性を示した。
On the other hand, the sample Nos.
8, 12-15, 19-22, 24-28, 30-33
Has a relative density of 95% or more and an etching rate of 25 °
/ Min. Hereinafter, in particular, 15 ° / min. Hereafter, the particle generation amount is 15 pieces / 8 inch wafer or less, especially 10 pieces /
It showed good corrosion resistance of 8 inch wafer or less.

【0046】(実施例2)平均粒径0.2μm、周期律
表第3A族以外の金属元素含有量(不純物量)90pp
mのYF3 粉末を用い、3ton/cm2 の圧力でCI
P成形を行った後、1気圧のAr雰囲気中、焼成温度9
00℃にて雰囲気焼成(PLS)を行った。得られた試
料について、実施例1と同様の評価を行ったところ、相
対密度95%以上、平均結晶粒径1.5μm、エッチン
グレート25Å/min.、パーティクル発生量15個
/8インチウエハの良好な耐食性を示した。
Example 2 The average particle size is 0.2 μm, the content of metal elements other than Group 3A of the periodic table (impurity amount) 90 pp
m of YF 3 powder at a pressure of 3 ton / cm 2 and CI
After the P molding, the baking temperature is 9 in an Ar atmosphere of 1 atm.
Atmosphere firing (PLS) was performed at 00 ° C. The obtained sample was evaluated in the same manner as in Example 1. As a result, the relative density was 95% or more, the average crystal grain size was 1.5 μm, and the etching rate was 25 ° / min. In addition, good corrosion resistance of a wafer having a particle generation amount of 15/8 inch was exhibited.

【0047】同様に平均粒径0.1μm、周期律表第3
A族以外の金属元素含有量(不純物量)85ppmのL
aF3 粉末を用い、3ton/cm2 の圧力でCIP処
理をCIP成形を行った後、1気圧のAr雰囲気中で1
250℃にて雰囲気焼成(PLS)を行った。得られた
試料について、実施例1と同様の評価を行ったところ、
相対密度97%、平均結晶粒径0.8μm、エッチング
レート17Å/min.、パーティクル発生量10個/
8インチウエハの良好な耐食性を示した。
Similarly, the average particle size is 0.1 μm,
L of 85 ppm of metal element content (impurity amount) other than group A
Using aF 3 powder, CIP processing was performed at a pressure of 3 ton / cm 2 and CIP molding was performed.
Atmosphere firing (PLS) was performed at 250 ° C. When the same evaluation as in Example 1 was performed on the obtained sample,
Relative density 97%, average crystal grain size 0.8 μm, etching rate 17 ° / min. , Particle generation 10 /
The 8-inch wafer exhibited good corrosion resistance.

【0048】[0048]

【発明の効果】以上詳述したように、本発明によれば、
フッ素系及び塩素系腐食性ガス或いはプラズマに曝され
る部材として周期律表第3A族元素から選ばれる少なく
とも1種の金属のフッ化物からなり、前記周期律表第3
A族元素の金属元素の総量が金属換算で100ppm以
下であり、平均粒径が30μm以下、かつ相対密度95
%以上の焼結体を使用することにより、高温、高密度の
フッ素系及び塩素系腐食雰囲気に長時間の耐久性を有
し、且つコンタミネーションやパーティクルを発生しな
いこと、大型部品としての機械的強度を保持することか
ら、半導体製造用として主として用いられるプラズマ処
理装置の内壁部材や被処理物を支持する支持体などの治
具等の部材として使用することにより、半導体製造の歩
留り向上とともに高品質の半導体素子を作製することが
できる。
As described in detail above, according to the present invention,
The member exposed to a fluorine-based or chlorine-based corrosive gas or plasma is made of a fluoride of at least one metal selected from Group 3A elements of the periodic table.
The total amount of Group A metal elements is 100 ppm or less in terms of metal, the average particle size is 30 μm or less, and the relative density is 95%.
% Of the sintered body, it has long-term durability in high-temperature, high-density fluorine-based and chlorine-based corrosive atmospheres, does not generate contamination or particles, and has mechanical properties as large parts. Because it retains strength, it can be used as a jig such as an inner wall member of a plasma processing apparatus or a support for supporting an object to be processed, which is mainly used for semiconductor manufacturing. Can be manufactured.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】少なくともハロゲン系腐食ガスあるいはそ
のプラズマと直接接触する表面を具備し、該表面が周期
律表第3A族元素から選ばれる少なくとも1種の金属の
フッ化物を主体とし、前記周期律表第3A族元素以外の
金属元素の総量が金属換算で100ppm以下、前記フ
ッ化物の結晶粒子の平均粒径が30μm以下であり、か
つ相対密度が95%以上の焼結体からなることを特徴と
する耐食性部材。
1. A method according to claim 1, further comprising a surface in direct contact with at least a halogen-based corrosive gas or a plasma thereof, said surface being mainly composed of a fluoride of at least one metal selected from Group 3A elements of the periodic table. The total amount of metal elements other than Group 3A elements is 100 ppm or less in terms of metal, and the average particle size of the fluoride crystal particles is 30 μm or less, and the sintered body has a relative density of 95% or more. Corrosion resistant member.
【請求項2】少なくともハロゲン系腐食ガスあるいはそ
のプラズマと直接接触する表面を具備する部材の製造方
法であって、平均粒径30μm以下、周期律表第3A族
元素から選ばれる少なくとも1種の金属のフッ化物から
なり、前記周期律表第3A族元素以外の金属元素の総量
が金属換算で100ppm以下の粉末、あるいはその成
形体を、不活性雰囲気中で600〜1400℃で焼成し
て相対密度95%以上に緻密化することを特徴とする耐
食性部材の製造方法。
2. A method for producing a member having at least a surface in direct contact with a halogen-based corrosive gas or its plasma, comprising at least one metal selected from Group 3A elements of the periodic table having an average particle size of 30 μm or less. A powder having a total content of metal elements other than the Group 3A element of the periodic table, which is 100 ppm or less in terms of metal, or a compact thereof, which is fired at 600 to 1400 ° C. in an inert atmosphere to obtain a relative density A method for producing a corrosion-resistant member, wherein the member is densified to 95% or more.
【請求項3】前記焼成時に、50kg/cm2 以上の圧
力を印加することを特徴とする請求項2記載の耐食性部
材の製造方法。
3. The method for producing a corrosion-resistant member according to claim 2 , wherein a pressure of 50 kg / cm 2 or more is applied during said firing.
【請求項4】少なくともハロゲン系腐食ガスあるいはそ
のプラズマと直接接触する表面を具備し、該表面が周期
律表第3A族元素から選ばれる少なくとも1種の金属の
フッ化物からなり、前記周期律表第3A族元素以外の金
属元素の総量が金属換算で100ppm以下、前記フッ
化物の結晶粒子の平均粒径が30μm以下であり、かつ
相対密度が95%以上の希土類金属フッ化物焼結体から
なることを特徴とするプラズマ処理装置用部材。
4. A method according to claim 1, further comprising a surface in direct contact with at least a halogen-based corrosive gas or a plasma thereof, wherein said surface comprises a fluoride of at least one metal selected from Group 3A elements of the periodic table. It is made of a rare earth metal fluoride sintered body having a total amount of metal elements other than the Group 3A element of 100 ppm or less in terms of metal, an average particle diameter of the fluoride crystal particles of 30 μm or less, and a relative density of 95% or more. A member for a plasma processing apparatus, comprising:
JP11043860A 1999-02-22 1999-02-22 Corrosionproof member and its production, and member for plasma treatment device using the same Pending JP2000239066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11043860A JP2000239066A (en) 1999-02-22 1999-02-22 Corrosionproof member and its production, and member for plasma treatment device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11043860A JP2000239066A (en) 1999-02-22 1999-02-22 Corrosionproof member and its production, and member for plasma treatment device using the same

Publications (1)

Publication Number Publication Date
JP2000239066A true JP2000239066A (en) 2000-09-05

Family

ID=12675464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11043860A Pending JP2000239066A (en) 1999-02-22 1999-02-22 Corrosionproof member and its production, and member for plasma treatment device using the same

Country Status (1)

Country Link
JP (1) JP2000239066A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348653A (en) * 2001-03-21 2002-12-04 Shin Etsu Chem Co Ltd Particles of rare-earths oxide for thermal spraying, thermal sprayed member and corrosion resistant member
JP2002363725A (en) * 2001-04-06 2002-12-18 Shin Etsu Chem Co Ltd Particle for thermal spraying and thermal spraying material using the same
JP2003063883A (en) * 2001-08-29 2003-03-05 Shin Etsu Chem Co Ltd Oxide member containing rare earths
WO2003023084A1 (en) * 2001-09-05 2003-03-20 Nikko Materials Company, Limited Fluoride sputtering target and method for preparation thereof
JP2011011929A (en) * 2009-06-30 2011-01-20 Taiheiyo Cement Corp Ceramic porous sintered compact, component for semiconductor manufacturing apparatus and shower plate, and method of producing porous sintered compact
KR20170098949A (en) 2015-03-05 2017-08-30 닛폰 이트륨 가부시키가이샤 Powder for producing sintering material and sintering material
CN107768279A (en) * 2016-08-23 2018-03-06 应用材料公司 Method for depositing etch quantity of the fluorine alumina layer with fast quick-recovery in etching chamber

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348653A (en) * 2001-03-21 2002-12-04 Shin Etsu Chem Co Ltd Particles of rare-earths oxide for thermal spraying, thermal sprayed member and corrosion resistant member
JP2002363725A (en) * 2001-04-06 2002-12-18 Shin Etsu Chem Co Ltd Particle for thermal spraying and thermal spraying material using the same
JP2003063883A (en) * 2001-08-29 2003-03-05 Shin Etsu Chem Co Ltd Oxide member containing rare earths
JP4663927B2 (en) * 2001-08-29 2011-04-06 信越化学工業株式会社 Rare earth-containing oxide member
WO2003023084A1 (en) * 2001-09-05 2003-03-20 Nikko Materials Company, Limited Fluoride sputtering target and method for preparation thereof
JP2011011929A (en) * 2009-06-30 2011-01-20 Taiheiyo Cement Corp Ceramic porous sintered compact, component for semiconductor manufacturing apparatus and shower plate, and method of producing porous sintered compact
KR20170098949A (en) 2015-03-05 2017-08-30 닛폰 이트륨 가부시키가이샤 Powder for producing sintering material and sintering material
CN107250082A (en) * 2015-03-05 2017-10-13 日本钇股份有限公司 Sintering material and the powder for manufacturing sintering material
US10173929B2 (en) 2015-03-05 2019-01-08 Nippon Yttrium Co., Ltd. Sintering material, and powder for manufacturing sintering material
CN107768279A (en) * 2016-08-23 2018-03-06 应用材料公司 Method for depositing etch quantity of the fluorine alumina layer with fast quick-recovery in etching chamber

Similar Documents

Publication Publication Date Title
JP3619330B2 (en) Components for plasma process equipment
JP5127196B2 (en) Plasma-fluorine-alumina ceramic material with low particle generation and manufacturing method
JP3261044B2 (en) Components for plasma processing equipment
KR101593922B1 (en) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof
JP3618048B2 (en) Components for semiconductor manufacturing equipment
JPH11214365A (en) Member for semiconductor element manufacturing device
US6258741B1 (en) Corrosion-resistant member
JPH10330150A (en) Corrosion resistant member
US6670294B2 (en) Corrosion-resistive ceramic materials and members for semiconductor manufacturing
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP3623054B2 (en) Components for plasma process equipment
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JP3659435B2 (en) Corrosion resistant member, plasma processing apparatus, semiconductor manufacturing apparatus, liquid crystal manufacturing apparatus, and discharge vessel.
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
JP4641609B2 (en) Corrosion resistant material
JP2001151559A (en) Corrosion-resistant member
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2001199762A (en) Corrosion-resisting ceramic material
JP3769416B2 (en) Components for plasma processing equipment
JPH11279761A (en) Corrosion resistant member
JP2005022971A (en) Member for plasma processing device
JP2005097722A (en) Corrosion resistant member, and method for manufacturing the same
JP2000026166A (en) High purity silicon nitride-base corrosion resistant member and its production
JP4028274B2 (en) Corrosion resistant material
JP2002222803A (en) Corrosion resistant member for manufacturing semiconductor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060829