WO2003023084A1 - Fluoride sputtering target and method for preparation thereof - Google Patents

Fluoride sputtering target and method for preparation thereof Download PDF

Info

Publication number
WO2003023084A1
WO2003023084A1 PCT/JP2002/007264 JP0207264W WO03023084A1 WO 2003023084 A1 WO2003023084 A1 WO 2003023084A1 JP 0207264 W JP0207264 W JP 0207264W WO 03023084 A1 WO03023084 A1 WO 03023084A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
film
fluoride
sputtering
hot
Prior art date
Application number
PCT/JP2002/007264
Other languages
French (fr)
Japanese (ja)
Inventor
Shuichi Irumata
Ryo Suzuki
Original Assignee
Nikko Materials Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Company, Limited filed Critical Nikko Materials Company, Limited
Publication of WO2003023084A1 publication Critical patent/WO2003023084A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides

Definitions

  • the present invention relates to a fluoride sputtering apparatus which can be used for forming various optical thin films such as an antireflection film for infrared, visible and ultraviolet light, a filter film, and a gate insulating film of a highly integrated semiconductor. And its manufacturing method.
  • various optical thin films such as an antireflection film for infrared, visible and ultraviolet light, a filter film, and a gate insulating film of a highly integrated semiconductor.
  • fluoride has been used for the formation of various optical thin films such as an antireflection film for infrared, visible and ultraviolet light, a filter film, and the like.
  • the membrane was widely made.
  • L a F 3 such as a gate insulating film made from fluoride having a specific dielectric constant 60 is promising.
  • the evaporation method has been widely used so far as a method of forming a fluoride film.
  • a fluoride evaporation source By heating a fluoride evaporation source to a high temperature and sublimating the fluoride, the fluoride is sputtered onto a film-forming object, All are formed as molecules or clusters of several molecules.
  • there has been a demand for an increase in the area of a film-forming portion and there has been a problem that such a vapor deposition method cannot form an efficient and uniform thin moon. Disclosure of the invention
  • the present invention provides a fluoride sputtering target that can use sputtering capable of forming a large area film as a film forming method, and further increases the density of the target. It is therefore an object of the present invention to provide a target capable of suppressing the generation of particles and obtaining a film of a desired quality, and a method of manufacturing the same.
  • the present invention provides a fluoride sputtering target that can use sputtering capable of forming a large area film as a film forming method, and further increases the density of the target. It is therefore an object of the present invention to provide a target capable of suppressing the generation of particles and obtaining a film of a desired quality, and a method of manufacturing the same.
  • a sputtering target comprising a fluoride of at least one element selected from the group consisting of A1, Ba, Ca, Gd, La, Li, Mg, Pb, and Y.
  • Fluoride powder consisting of at least one element selected from the group consisting of Al, Ba, Ca, Gd, La, Li, Mg, Pb, and Y
  • a sputtering target characterized by hot pressing at a temperature of 50 to 70% in absolute temperature with respect to the melting point of each compound in a medium, nitrogen gas atmosphere or an inert gas atmosphere such as Ar gas.
  • a sputtering method is used to deposit a fluoride made of at least one element selected from the group consisting of A 1, Ba, Ca, Gd, La, Li, Mg, Pb, and Y. It is used to provide a target therefor, and can meet the demand for a larger area of a film-forming portion and can suppress composition deviation.
  • sputtering evening Getto i.e. A 1 F 2 a deviation from stoichiometric composition has a composition ratio within 0. 5 5 -... 3 B a FL 5 __ 2 5, C aF .. 2 5 _ 2 5, GdF 2 5 -dividing 3 5, L aF 2 5 _ 3 5, L i F 0 5 _, 5, MgF L 5 -.. 2 5, P bF x 5 _ 2. 5> YF 2. 5 3. to provide at least one or Ranaru fluoride sputtering target was selected from the fifth group.
  • fluorine gas and fluorine compound gas are extremely corrosive, so that sputter deposition that does not rely on reactive sputtering is required more often than ordinary compounds.
  • the deviation from the stoichiometric ratio of the evening get composition be small. If the deviation from the stoichiometric ratio is 0.5 or less, the characteristics of the film with the desired optical properties (transmittance, refractive index, etc.) or the properties of the insulator properties (relative dielectric constant, leak current, etc.) However, the target optical characteristics or the insulating film characteristics cannot be obtained with a film formed using a target shifted by more than 0.5.
  • the fluoride evaporation source used in the evaporation method which has been widely used so far as a method for forming a fluoride film, is heated to a high temperature and sublimated to fly the fluoride onto a substrate or an object to be formed. Therefore, it was not necessary to increase the density of the evaporation source because all of them were in the state of molecules or clusters of several molecules. However, if the target is made by extension of the evaporation source manufacturing technology, it can only be a low-density evening target with a density ratio of about 60 to 80%.
  • Such fluorides having a density ratio of less than 95% have a porous structure, and have a problem that they are fragile due to insufficient density and workability is deteriorated. Furthermore, in a film sputtered using such a low-density target, a number of particulate defects called particles are detected, and the problem that the product yield is significantly reduced occurs. Therefore, it is desirable that the present invention is a sputtering target having a density ratio of 95% or more.
  • Sputtering evening ring Target Tsu bets deviation from stoichiometric composition has a composition ratio within 0.5, i.e. A 1 F 2 5 -.. .. 3 5, B aFt 5 _ 2 5, C a F ⁇ 5 -. 2 5, GdF 2 .
  • YF 2. 5 _ 3. To produce a fluoride sputter-ring target consisting of at least one selected from the group of 5, the powder in the composition of this range, in air, oxygen, nitrogen or A, It is effective to perform hot pressing in an atmosphere of an inert gas such as r at a temperature of 50 to 70% in absolute temperature with respect to the melting point of each compound. In this case, if the hot pressing is performed in a vacuum, the dissociation of the fluoride powder proceeds. Dissociation progress can be suppressed by conducting in air, oxygen, nitrogen, or an inert gas. By hot pressing at a temperature of 50% or more in absolute temperature to the melting point of each compound in the above atmosphere, a target having a density of 95% or more can be obtained.
  • an inert gas such as r
  • hot pressing at high temperatures causes embrittlement due to compositional deviations due to the dissociation of fluorine and makes machining difficult, and is not suitable for sputtering targets.
  • the hot pressing temperature must be set at an absolute temperature relative to the melting point of each compound. By setting the content to 70% or less, a fluoride target having a small composition deviation and having sufficient strength for machining can be obtained.
  • a 1 F 3 powder was hot-pressed at 1 173 ° K, 300 kgf / cm 2 for 2 hours in an Ar gas atmosphere at 1 atm.
  • the composition ratio of the sintered body A 1 F 2. 8 was 2% 98..
  • This hot-press sintered body was processed into a target having a diameter of 76.2 mm, and the target was sputtered to form a film having a thickness of 0.1 m on a substrate having a diameter of 50 mm.
  • Example 2 When the number of particles after sputtering was measured, five particles having a size of 0.5 m or more were measured on the substrate, but the number was extremely small as compared with a comparative example described later. (Example 2)
  • the Gd F 3 powder was hot-pressed at 1 173 ° K, 300 kgf / cm 2 for 2 hours in an atmosphere of Ar gas at 1 atm. As a result, the composition ratio of the sintered body was Gd F 2. 6, next, the relative density of 97.2%.
  • This hot-press sintered body was processed into a target having a diameter of 76.2 mm, and the target was sputtered to form a film having a thickness of 0.1 im on a substrate having a diameter of 50 mm.
  • the MgF 2 powder was hot-pressed at 1 173 ° K, 300 kf / cm 2 for 2 hours in an Ar gas atmosphere at 1 atm.
  • the composition ratio was MgF ⁇ 8 and the relative density was 99.2%.
  • the hot-pressed sintered body was processed into a target having a diameter of 76.2 mm, and was sputtered using the target to form a film having a thickness of 0.1 m on a substrate having a diameter of 50 mm.
  • Example 5 When the number of particles after sputtering was measured, three of the particles having a thickness of 0.5 zm or more were measured on the substrate, but the number was significantly smaller than the comparative example described later. (Example 5)
  • the YF 3 powder 1 223 ° K, 300 were kgf / cm ⁇ 2 hour hot pressing in A r gas atmosphere of 1 atm. Composition ratio YF 2. 6, the relative density was 97.9%.
  • the hot-pressed sintered body was processed into a target having a diameter of 76.2 mm, and sputtering was performed using the target to form a film having a thickness of 0.1 / zm on a substrate having a diameter of 5 Omm.
  • the number of particles after sputtering was measured. As a result, seven particles were measured on the substrate (0.5 m or more), which was significantly smaller than the comparative example described later.
  • the B aF 2 powder was hot-pressed at 1 123 ° K, 300 kg f / cm 2 for 2 hours in an Ar gas atmosphere at 1 atm.
  • the composition ratio of the sintered body B a F 2. 8 was 2% 98..
  • This hot-pressed sintered body was processed into a target having a diameter of 76.2 mm, and the target was sputtered to form a film having a thickness of 0.1 m on a substrate having a diameter of 50 mm.
  • the number of particles after sputtering was measured. As a result, five particles having a size of 0.5 zm or more were measured on the substrate, but the number was significantly smaller than a comparative example described later.
  • the C a F 2 powder was hot pressed at 1 173 ° K, 300 kg f / cm 2 for 2 hours in an atmosphere of Ar gas at 1 atm.
  • the composition ratio of the sintered body was C a F 2. 6
  • the relative density of 97.2% was processed into a target having a diameter of 76.2 mm, and sputtering was performed using this target to form a film having a thickness of 0.1 / zm on a substrate having a diameter of 50 mm.
  • Example 8 When the number of particles after sputtering was measured, six particles having a size of 0.5 m or more were measured on the substrate, but the number was extremely small as compared with a comparative example described later. (Example 8)
  • the L iF powder was hot pressed in an Ar gas atmosphere at 1 atm at 943 ° K, 30 bkgf / cm 2 for 2 hours. Composition ratio L i F 0. 9, the relative density was 99.5%.
  • the hot-pressed sintered body was processed into a target having a diameter of 76.2 mm, and the target was sputtered to form a film having a thickness of 0.1 m on a substrate having a diameter of 5 Omm.
  • PbF 2 powder was hot-pressed at 723 ° K, 300 kgf / cm 2 for 2 hours in an Ar gas atmosphere at 1 atm.
  • the composition ratio was PbF ⁇ 8 and the relative density was 99.2%.
  • This hot-pressed sintered body was processed into a target having a diameter of 76.2 mm, and the target was sputtered to form a film having a thickness of 0.1 zm on a substrate having a diameter of 50 mm.
  • a 1 F 3 powder was hot-pressed at 1323 ° K, 300 kgf / cm 2 for 2 hours in an atmosphere of Ar gas at 1 atm. Although the relative density increased to 99.4%, it was very brittle and could not be processed into the target shape. Incidentally, 'composition ratio was A 1 F 2. 3.
  • the hot-pressed sintered body was processed into a target having a diameter of 76.2 mm, and was sputtered using the target to form a film having a thickness of 0.1 m on a substrate having a diameter of 50 mm.
  • This film had low transmittance and was not suitable for optical use. In addition, it was conductive and was not suitable for insulating films. (Comparative Example 3)
  • the LaF 3 powder was hot-pressed at 873 ° K, 300 kgf / cm 2 for 2 hours in an Ar gas atmosphere at 1 atm. Composition ratio L aF 2. 9, the relative density was 91.4%.
  • This hot-pressed sintered body was processed into a target having a diameter of 76.2 mm, and was sputtered using this evening get to form a film having a thickness of 0.1 m on a substrate having a diameter of 50 mm.
  • 120 particles having a particle size of 0.5 / im or more were measured on the substrate, and a remarkable increase in the number of particles was observed.
  • the present invention is suitable for forming various types of optical thin films such as an antireflection film for infrared, visible and ultraviolet light, a film for a filter, etc., and a gate insulating film for a highly integrated semiconductor. It is possible to form a film with a large area, and by increasing the density of the evening gate, it is possible to suppress the generation of particles, and to obtain a film of high strength, high quality, and little composition deviation or defects. It has an excellent effect.

Abstract

A sputtering target, characterized in that it comprises a fluoride of at least one element selected from the group consisting of Al, Ba, Ca, Gd, La, Li, Mg, Pb and Y; and a method for preparing the target. The sputtering target has allowed the use of the sputtering method as a method for forming a film of a fluoride, which method in turn permits the formation of a film having an increased area. Further, the enhancement of the density of the target allows the suppression of the occurrence of particles and thus the preparation of a target having desired quality.

Description

明 細 書 フッ化物スパッタリング夕ーゲッ卜及ぴその製造方法 技術分野  Description Fluoride sputtering target and its manufacturing method
本発明は、 赤外、 可視及び紫外光の反射防止膜、 フィルター膜をはじめとする 各種光学薄膜及び高集積度半導体のゲ一ト絶縁膜形成等に用いることができるフ ッ化物スパッタリング夕一ゲット及びその製造方法に関する。 背景技術  The present invention relates to a fluoride sputtering apparatus which can be used for forming various optical thin films such as an antireflection film for infrared, visible and ultraviolet light, a filter film, and a gate insulating film of a highly integrated semiconductor. And its manufacturing method. Background art
従来、 赤外、 可視および紫外光の反射防止膜、 フィルター膜等をはじめとする 各種光学薄膜成膜にフッ化物が使用され、 そのフッ化物の成膜には組成ずれの少 ない蒸着法による成膜が広く行われていた。  Conventionally, fluoride has been used for the formation of various optical thin films such as an antireflection film for infrared, visible and ultraviolet light, a filter film, and the like. The membrane was widely made.
また、 半導体の集積度が上がるにつれ、 ゲート絶縁膜も従来使われていた S i 〇2にかわって、 より誘電率の高い酸化物 (Ηΐ02, Z r〇2, Ta25, H f S i xOy, Z r S i xOy, Y203等) が検討されている。 特に、 比誘電率 60 を持つ L a F 3等のフッ化物から作製されたゲート絶縁膜が有望である。 Further, as the semiconductor degree of integration increases, instead of the S i 〇 2 gate insulating film is also previously used, more high dielectric constant oxide (Ηΐ0 2, Z R_〇 2, Ta 25, H f S i x O y, Z r S i x O y, Y 2 0 3 , etc.) have been studied. In particular, L a F 3 such as a gate insulating film made from fluoride having a specific dielectric constant 60 is promising.
しかし、 これまでフッ化物膜の成膜法として広く使われているのは蒸着法であ り、 フッ化物の蒸着源を高温に加熱し、 昇華させることで被成膜物にフッ化物を 飛ばし、 全てを分子または分子が数個集まったクラスターの状態として成膜する ものである。 近年、 成膜する部分の大面積化などの要求があり、 このような蒸着 法では効率的、 均一な薄月莫を形成することができないという問題があつた。 発明の開示  However, the evaporation method has been widely used so far as a method of forming a fluoride film. By heating a fluoride evaporation source to a high temperature and sublimating the fluoride, the fluoride is sputtered onto a film-forming object, All are formed as molecules or clusters of several molecules. In recent years, there has been a demand for an increase in the area of a film-forming portion, and there has been a problem that such a vapor deposition method cannot form an efficient and uniform thin moon. Disclosure of the invention
本発明は、 上記問題を解決するために、 成膜方法として大面積の成膜が可能で あるスパッタリングを使用することができるフッ化物スパッタリングターゲット を提供するものであり、 さらに該ターゲットの密度を上げることでパーティクル の発生を抑え、 かつ目的品質の膜を得ることができるターゲット及びその製造方 法を提供することを課題とする。 本発明は、 The present invention provides a fluoride sputtering target that can use sputtering capable of forming a large area film as a film forming method, and further increases the density of the target. It is therefore an object of the present invention to provide a target capable of suppressing the generation of particles and obtaining a film of a desired quality, and a method of manufacturing the same. The present invention
1. A 1 , B a, C a, Gd, L a, L i , Mg, P b, Yの群から選択した少 なくとも 1種の元素のフッ化物からなることを特徴とするスパッタリングターゲ ッ卜  1. A sputtering target comprising a fluoride of at least one element selected from the group consisting of A1, Ba, Ca, Gd, La, Li, Mg, Pb, and Y. Bird
2. 化学量論的組成からのずれが 0. 5以内の組成比を持つことを特徴とする上 記 1記載のスパッタリングターゲット  2. The sputtering target as described in 1 above, wherein the deviation from the stoichiometric composition has a composition ratio within 0.5.
3. 9 5 %以上の密度比を持つことを特徵とする上記 1又は 2記載のスパッタリ ングターゲッ卜  3. The sputtering target according to 1 or 2 above, which has a density ratio of 95% or more.
4. A l, B a, C a, Gd, L a, L i , Mg, P b, Yの群から選択した少 なくとも 1種の元素からなるフッ化物粉末を、 大気中、 酸素ガス雰囲気中、 窒素 ガス雰囲気中又は A rガス等の不活性ガス雰囲気中で、 それぞれの化合物の融点 に対して、 絶対温度で 50〜7 0%の温度でホットプレスすることを特徵とする スパッタリングターゲッ卜の製造方法  4. Fluoride powder consisting of at least one element selected from the group consisting of Al, Ba, Ca, Gd, La, Li, Mg, Pb, and Y A sputtering target characterized by hot pressing at a temperature of 50 to 70% in absolute temperature with respect to the melting point of each compound in a medium, nitrogen gas atmosphere or an inert gas atmosphere such as Ar gas. Manufacturing method
5. 化学量論的組成からのずれが 0. 5以内の組成比を持つことを特徴とする上 記 4記載のスパッタリング夕ーゲッ卜の製造方法  5. The method for producing a sputtering target as described in 4 above, wherein the deviation from the stoichiometric composition has a composition ratio within 0.5.
6. 9 5 %以上の密度比を持つことを特徴とする上記 4又は 5記載のスパッタリ ングタ一ゲットの製造方法  6. The method for producing a sputtering target according to 4 or 5 above, wherein the method has a density ratio of 95% or more.
を提供する。 発明の実施の形態 I will provide a. Embodiment of the Invention
本発明は、 A 1 , B a, C a, Gd, L a, L i , Mg, P b, Yの群から選 択した少なくとも 1種の元素からなるフッ化物の成膜にスパッ夕リングを使用す るものであり、 そのためのターゲットを提供するものであり、 成膜する部分の大 面積化の要求に対応でき、 また組成ずれを抑えることができる。  According to the present invention, a sputtering method is used to deposit a fluoride made of at least one element selected from the group consisting of A 1, Ba, Ca, Gd, La, Li, Mg, Pb, and Y. It is used to provide a target therefor, and can meet the demand for a larger area of a film-forming portion and can suppress composition deviation.
特に、 本発明においては、 化学量論的組成からのずれが 0. 5以内の組成比を 持つスパッタリング夕ーゲット、 すなわち A 1 F2. 5-3. B a F L 5 __2. 5, C aF2. 5_2. 5, GdF2. 53. 5, L aF2. 5_3. 5, L i F0. 5_, 5, MgF L 5- 2. 5, P bFx. 5_2. 5> YF2. 5 3. 5の群から選 した少なくとも 1種か らなるフッ化物スパッタリングターゲットを提供する。 これによつて、 光学膜及びゲート酸化膜の成膜に適する夕一ゲットを得るに成 功した。 フッ化物ターゲットでは、 フッ素ガスやフッ素化合物ガスが極めて腐食 性が高いために、 通常の化合物と比べ反応性スパッ夕によらないスパッタ成膜が 多く求められる。 Particularly, in the present invention, sputtering evening Getto, i.e. A 1 F 2 a deviation from stoichiometric composition has a composition ratio within 0. 5 5 -... 3 B a FL 5 __ 2 5, C aF .. 2 5 _ 2 5, GdF 2 5 -..... 3 5, L aF 2 5 _ 3 5, L i F 0 5 _, 5, MgF L 5 -.. 2 5, P bF x 5 _ 2. 5> YF 2. 5 3. to provide at least one or Ranaru fluoride sputtering target was selected from the fifth group. As a result, we succeeded in obtaining an evening film suitable for forming an optical film and a gate oxide film. In the case of fluoride targets, fluorine gas and fluorine compound gas are extremely corrosive, so that sputter deposition that does not rely on reactive sputtering is required more often than ordinary compounds.
この場合、 夕一ゲット組成の化学量論比からのずれが小さいことが求められる。 化学量論比からのずれが、 0. 5以下ならは目的とする光学特性 (透過率、 屈折 率など) をもつ膜あるいは絶縁体特性 (比誘電率、 リーク電流など) を持つ膜の 特性が得られるが、 0. 5を超えてずれたターゲットを用いて成膜したものでは、 目的とする光学特性あるいは、 絶縁膜特性は得られない。  In this case, it is required that the deviation from the stoichiometric ratio of the evening get composition be small. If the deviation from the stoichiometric ratio is 0.5 or less, the characteristics of the film with the desired optical properties (transmittance, refractive index, etc.) or the properties of the insulator properties (relative dielectric constant, leak current, etc.) However, the target optical characteristics or the insulating film characteristics cannot be obtained with a film formed using a target shifted by more than 0.5.
また、 これまでフッ化物膜の成膜法として広く使われている蒸着法に用いるフ ッ化物の蒸着源は、 高温に加熱し、 昇華させることで基板又は被成膜物にフッ化 物を飛ばすため、 全てが分子または分子が数個集まつたクラスターの状態なので 蒸着源の密度を高くする必要がなかった。 しかし、 このようにターゲットを蒸着 源製造技術の延長で作製した場合には、 密度比 60〜80%程度の低密度の夕一 ゲットにしかならない。  In addition, the fluoride evaporation source used in the evaporation method, which has been widely used so far as a method for forming a fluoride film, is heated to a high temperature and sublimated to fly the fluoride onto a substrate or an object to be formed. Therefore, it was not necessary to increase the density of the evaporation source because all of them were in the state of molecules or clusters of several molecules. However, if the target is made by extension of the evaporation source manufacturing technology, it can only be a low-density evening target with a density ratio of about 60 to 80%.
このような密度比 95%未満のフッ化物夕一ゲットはポ一ラスな組織となり、 密度不足で脆くなり加工性が悪くなるという問題がある。 さらに、 このような低 密度のターゲットを用いてスパッ夕した膜では、 パーティクルと呼ばれる粒子状 の欠陥が数多く検出され、 製品歩留まりが著しく低下するという問題が発生する。 従って、 本発明は 95%以上の密度比を持つスパッタリングターゲットである ことが望ましい。  Such fluorides having a density ratio of less than 95% have a porous structure, and have a problem that they are fragile due to insufficient density and workability is deteriorated. Furthermore, in a film sputtered using such a low-density target, a number of particulate defects called particles are detected, and the problem that the product yield is significantly reduced occurs. Therefore, it is desirable that the present invention is a sputtering target having a density ratio of 95% or more.
化学量論的組成からのずれが 0. 5以内の組成比を持つスパッ夕リングターゲ ット、 すなわち A 1 F2. 53. 5, B aFt. 5_2.5, C a F^ 52. 5, GdF2.Sputtering evening ring Target Tsu bets deviation from stoichiometric composition has a composition ratio within 0.5, i.e. A 1 F 2 5 -.. .. 3 5, B aFt 5 _ 2 5, C a F ^ 5 -. 2 5, GdF 2 .
53. 5, L aF2. 5-3. 5, L i F0. 51 5' MgF^ 5_2. 5, P b F x. 5_2. 5,. 5 one 3 5, L aF 2 5 - .. 3 5, L i F 0 5 -.... 1 5 'MgF ^ 5 _ 2 5, P b F x 5 _ 2 5,
YF2. 5 _ 3. 5の群から選択した少なくとも 1種からなるフッ化物スパッタリン グターゲットを製造するには、 この範囲の組成にある粉末を、 大気中、 酸素中、 窒素中、 あるいは A rなどの不活性ガス中のいずれかの雰囲気中で、 それぞれの 化合物の融点に対して、 絶対温度で 50-70 %の温度でホットプレスすること によって製造するのが有効である。 この場合、 ホットプレスを真空中で行うと、 フッ化物粉の解離の進行する。 大 気、 酸素、 窒素、 不活性ガス中で行うことにより、 解離の進行を抑えることがで きる。 上記の雰囲気中で、 それぞれの化合物の融点に対して、 絶対温度で 50% 以上の温度でホットプレスすることによって密度比 95 %以上に高密度化したタ —ゲットを得ることができる。 YF 2. 5 _ 3. To produce a fluoride sputter-ring target consisting of at least one selected from the group of 5, the powder in the composition of this range, in air, oxygen, nitrogen or A, It is effective to perform hot pressing in an atmosphere of an inert gas such as r at a temperature of 50 to 70% in absolute temperature with respect to the melting point of each compound. In this case, if the hot pressing is performed in a vacuum, the dissociation of the fluoride powder proceeds. Dissociation progress can be suppressed by conducting in air, oxygen, nitrogen, or an inert gas. By hot pressing at a temperature of 50% or more in absolute temperature to the melting point of each compound in the above atmosphere, a target having a density of 95% or more can be obtained.
また高温でホットプレスすると、 フッ素の解離による組成ずれと共に、 脆化が おこり機械加工が困難となり、 スパッタリングターゲットには適さないが、 ホッ トプレス温度を、 それぞれの化合物の融点に対して、 絶対温度で 70%以下とす ることで、 組成ずれが少なくかつ、 機械加工に対して充分な強度を持つフッ化物 ターゲットが得られる。 実施例  Also, hot pressing at high temperatures causes embrittlement due to compositional deviations due to the dissociation of fluorine and makes machining difficult, and is not suitable for sputtering targets.However, the hot pressing temperature must be set at an absolute temperature relative to the melting point of each compound. By setting the content to 70% or less, a fluoride target having a small composition deviation and having sufficient strength for machining can be obtained. Example
次に、 実施例について説明する。 なお、 本実施例は発明の一例を示すためのも のであり、 本発明はこれらの実施例に制限されるものではない。 すなわち、 本発 明の技術思想に含まれる他の態様及び変形を含むものである。  Next, examples will be described. The present embodiment is merely an example of the present invention, and the present invention is not limited to these embodiments. That is, the present invention includes other aspects and modifications included in the technical concept of the present invention.
(実施例 1 )  (Example 1)
A 1 F3粉を 1気圧の A rガス雰囲気中で 1 173° K、 300 k g f /cm 2、 2時間ホットプレスした。 この結果、 焼結体の組成比は A 1 F2. 8となり、 相対密度は 98. 2%であった。 A 1 F 3 powder was hot-pressed at 1 173 ° K, 300 kgf / cm 2 for 2 hours in an Ar gas atmosphere at 1 atm. As a result, the composition ratio of the sintered body A 1 F 2. 8, and the relative density was 2% 98..
このホットプレス焼結体を直径 76. 2mmのターゲットに加工し.、 このタ —ゲットを用いてスパッタリングして、 直径 50 mmの基板上に 0. 1 mの厚 さに成膜した。  This hot-press sintered body was processed into a target having a diameter of 76.2 mm, and the target was sputtered to form a film having a thickness of 0.1 m on a substrate having a diameter of 50 mm.
スパッタリング後のパーティクル数を測定したところ、 基板上に 0. 5 m以 上のものが 5個測定されたが、 後述する比較例に比べ著しく少なかった。 (実施例 2 ) When the number of particles after sputtering was measured, five particles having a size of 0.5 m or more were measured on the substrate, but the number was extremely small as compared with a comparative example described later. (Example 2)
Gd F 3粉を 1気圧の A rガス雰囲気中で 1 173° K、 300 kg f /cm 2、 2時間ホットプレスした。 この結果、 焼結体の組成比は Gd F2. 6、 となり、 相対密度は 97. 2%であった。 このホットプ ス焼結体を直径 76. 2 mmの ターゲットに加工し、 このターゲットを用いてスパッタリングして、 直径 50m mの基板上に 0. 1 imの厚さに成膜した。 The Gd F 3 powder was hot-pressed at 1 173 ° K, 300 kgf / cm 2 for 2 hours in an atmosphere of Ar gas at 1 atm. As a result, the composition ratio of the sintered body was Gd F 2. 6, next, the relative density of 97.2%. This hot-press sintered body was processed into a target having a diameter of 76.2 mm, and the target was sputtered to form a film having a thickness of 0.1 im on a substrate having a diameter of 50 mm.
スパッタリング後のパーティクル数を測定したところ、 基板上に 0. 5 m以 上のものが 6個測定されたが、 後述する比較例に比べ著しく少なかつた。  When the number of particles after sputtering was measured, six particles having a size of 0.5 m or more were measured on the substrate, and the number was extremely small as compared with a comparative example described later.
(実施例 3 )  (Example 3)
L a F3粉を 1気圧の A rガス雰囲気中で 97 3° K、 300 kg f /cm2, 2時間ホットプレスした。 組成比は L a F 2.7、 相対密度は 99. 5%であった。 このホットプレス焼結体を直径 76. 2mmのターゲットに加工し、 この夕一 ゲットを用いてスパッタリングして、 直径 50mmの基板上に 0. 1 mの厚さ に成膜した。 L a F 3 powder 97 3 ° a in A r gas atmosphere of 1 atm K, 300 kg f / cm 2 , 2 hours and hot-pressed. Composition ratio L a F 2. 7, the relative density was 99.5%. This hot-pressed sintered body was processed into a target having a diameter of 76.2 mm, and sputtering was performed using the target to form a film having a thickness of 0.1 m on a substrate having a diameter of 50 mm.
スパッタリング後のパーティクル数を測定したところ、 基板上に 0· 5 m以 上のものが 2個測定されたが、 後述する比較例に比べ著しく少なかった。  When the number of particles after sputtering was measured, two particles having a size of 0.5 m or more were measured on the substrate, but the number was extremely small as compared with a comparative example described later.
(実施例 4 )  (Example 4)
Mg F2粉を 1気圧の A rガス雰囲気中で 1 173° K、 300 k f /cm 2、 2時間ホットプレスした。 組成比は MgF^ 8、 相対密度は 99. 2%であ つた。 このホットプレス焼結体を直径 76. 2mmのターゲットに加工し、 こ のターゲットを用いてスパッタリングして、 直径 50 mmの基板上に 0. 1 m の厚さに成膜した。 The MgF 2 powder was hot-pressed at 1 173 ° K, 300 kf / cm 2 for 2 hours in an Ar gas atmosphere at 1 atm. The composition ratio was MgF ^ 8 and the relative density was 99.2%. The hot-pressed sintered body was processed into a target having a diameter of 76.2 mm, and was sputtered using the target to form a film having a thickness of 0.1 m on a substrate having a diameter of 50 mm.
スパッタリング後のパ一ティクル数を測定したところ、 基板上に 0. 5 zm以 上のものが 3個測定されたが、 後述する比較例に比べ著しく少なかった。 (実施例 5 ) When the number of particles after sputtering was measured, three of the particles having a thickness of 0.5 zm or more were measured on the substrate, but the number was significantly smaller than the comparative example described later. (Example 5)
YF3粉を 1気圧の A rガス雰囲気中で 1 223° K、 300 k g f /cm\ 2時間ホットプレスした。 組成比は YF2. 6、 相対密度は 97. 9%であった。 このホットプレス焼結体を直径 76. 2mmのターゲットに加工し、 この夕一 ゲットを用いてスパッタリングして、 直径 5 Ommの基板上に 0. 1 /zmの厚さ に成膜した。 The YF 3 powder 1 223 ° K, 300 were kgf / cm \ 2 hour hot pressing in A r gas atmosphere of 1 atm. Composition ratio YF 2. 6, the relative density was 97.9%. The hot-pressed sintered body was processed into a target having a diameter of 76.2 mm, and sputtering was performed using the target to form a film having a thickness of 0.1 / zm on a substrate having a diameter of 5 Omm.
スパッタリング後のパ一ティクル数を測定したところ、 基板上 (こ 0. 5 m以 上のものが 7個測定されたが、 後述する比較例に比べ著しく少なかった。  The number of particles after sputtering was measured. As a result, seven particles were measured on the substrate (0.5 m or more), which was significantly smaller than the comparative example described later.
(実施例 6 )  (Example 6)
B a F 2粉を 1気圧の A rガス雰囲気中で 1 123° K、 300 kg f/cm 2、 2時間ホットプレスした。 この結果、 焼結体の組成比は B a F2. 8となり、 相対密度は 98. 2%であった。 The B aF 2 powder was hot-pressed at 1 123 ° K, 300 kg f / cm 2 for 2 hours in an Ar gas atmosphere at 1 atm. As a result, the composition ratio of the sintered body B a F 2. 8, and the relative density was 2% 98..
このホットプレス焼結体を直径 76. 2mmのターゲットに加工し、 この夕 —ゲットを用いてスパッタリングして、 直径 50mmの基板上に 0. 1 mの厚 さに成膜した。  This hot-pressed sintered body was processed into a target having a diameter of 76.2 mm, and the target was sputtered to form a film having a thickness of 0.1 m on a substrate having a diameter of 50 mm.
スパッタリング後のパーティクル数を測定したところ、 基板上に 0. 5 zm以 上のものが 5個測定されたが、 後述する比較例に比べ著しく少なかった。  The number of particles after sputtering was measured. As a result, five particles having a size of 0.5 zm or more were measured on the substrate, but the number was significantly smaller than a comparative example described later.
(実施例 7)  (Example 7)
C a F2粉を 1気圧の A rガス雰囲気中で 1 173° K、 300 kg f/cm 2、 2時間ホットプレスした。 この結果、 焼結体の組成比は C a F 2. 6、 となり、 相対密度は 97. 2%であった。 このホットプレス焼結体を直径 76. 2mmの ターゲットに加工し、 このターゲットを用いてスパッタリングして、 直径 50m mの基板上に 0. 1 /zmの厚さに成膜した。 The C a F 2 powder was hot pressed at 1 173 ° K, 300 kg f / cm 2 for 2 hours in an atmosphere of Ar gas at 1 atm. As a result, the composition ratio of the sintered body was C a F 2. 6, next, the relative density of 97.2%. This hot pressed sintered body was processed into a target having a diameter of 76.2 mm, and sputtering was performed using this target to form a film having a thickness of 0.1 / zm on a substrate having a diameter of 50 mm.
スパッタリング後のパーティクル数を測定したところ、 基板上に 0. 5 m以 上のものが 6個測定されたが、 後述する比較例に比べ著しく少なかった。 (実施例 8 ) When the number of particles after sputtering was measured, six particles having a size of 0.5 m or more were measured on the substrate, but the number was extremely small as compared with a comparative example described later. (Example 8)
L i F粉を 1気圧の A rガス雰囲気中で 943 ° K、 30 b k g f /cm2, 2時間ホットプレスした。 組成比は L i F0. 9、 相対密度は 99. 5%であった。 このホットプレス焼結体を直径 76. 2mmのターゲットに加工し、 この夕一 ゲットを用いてスパッタリングして、 直径 5 Ommの基板上に 0. 1 mの厚さ に成膜した。 The L iF powder was hot pressed in an Ar gas atmosphere at 1 atm at 943 ° K, 30 bkgf / cm 2 for 2 hours. Composition ratio L i F 0. 9, the relative density was 99.5%. The hot-pressed sintered body was processed into a target having a diameter of 76.2 mm, and the target was sputtered to form a film having a thickness of 0.1 m on a substrate having a diameter of 5 Omm.
スパッタリング後のパーティクル数を測定したところ、 基板上に 0. 5 m以 上のものが 2個測定されたが、 後述する比較例に比べ著しく少なかった。  When the number of particles after sputtering was measured, two particles having a size of 0.5 m or more were measured on the substrate, but the number was extremely small as compared with a comparative example described later.
(実施例 9 )  (Example 9)
PbF2粉を 1気圧の Arガス雰囲気中で 723° K、 300 k g f /cm2, 2時間ホットプレスした。 組成比は PbF^ 8、 相対密度は 99. 2%であった。 このホットプレス焼結体を直径 76. 2mmのターゲットに加工し、 この夕一 ゲットを用いてスパッタリングして、 直径 50mmの基板上に 0. 1 zmの厚さ に成膜した。 PbF 2 powder was hot-pressed at 723 ° K, 300 kgf / cm 2 for 2 hours in an Ar gas atmosphere at 1 atm. The composition ratio was PbF ^ 8 and the relative density was 99.2%. This hot-pressed sintered body was processed into a target having a diameter of 76.2 mm, and the target was sputtered to form a film having a thickness of 0.1 zm on a substrate having a diameter of 50 mm.
スパッタリング後のパーティクル数を測定したところ、 基板上に 0. 5 m以 上のものが 3個測定されたが、 後述する比較例に比べ著しく少なかつた。  When the number of particles after sputtering was measured, three particles having a size of 0.5 m or more were measured on the substrate, but the number was extremely small as compared with a comparative example described later.
(比較例 1 )  (Comparative Example 1)
A 1 F3粉を 1気圧の Arガス雰囲気中で 1323 ° K、 300 k g f/cm 2、 2時間ホットプレスした。 相対密度は 99. 4%まで上がったものの非常に 脆く、 ターゲット形状に加工することが出来なかった。 なお、' 組成比は A 1 F2. 3であった。 A 1 F 3 powder was hot-pressed at 1323 ° K, 300 kgf / cm 2 for 2 hours in an atmosphere of Ar gas at 1 atm. Although the relative density increased to 99.4%, it was very brittle and could not be processed into the target shape. Incidentally, 'composition ratio was A 1 F 2. 3.
(比較例 2)  (Comparative Example 2)
L aF3粉を 1気圧の Arガス雰囲気中で 1323 ° K、 300 kg f/cm 2、 2時間ホットプレスした。 組成比は L aF2. い 相対密度は 99. 5 %であ つた。 このホットプレス焼結体を直径 76. 2mmのターゲットに加工し、 こ のターゲットを用いてスパッタリングして、 直径 50 mmの基板上に 0. 1 m の厚さに成膜した。 L aF 3 powder with an Ar gas atmosphere of 1 atm 1323 ° K, 300 kg f / cm 2, 2 hours and hot-pressed. The composition ratio was LaF 2. The relative density was 99.5%. The hot-pressed sintered body was processed into a target having a diameter of 76.2 mm, and was sputtered using the target to form a film having a thickness of 0.1 m on a substrate having a diameter of 50 mm.
この膜は透過率が低く光学用途には適していなかった。 また、 導電性もあり絶 縁膜にも適さなかった。 (比較例 3) This film had low transmittance and was not suitable for optical use. In addition, it was conductive and was not suitable for insulating films. (Comparative Example 3)
L a F 3粉を 1気圧の A rガス雰囲気中で 873° K、 300 k g f/cm2、 2時間ホットプレスした。 組成比は L aF2. 9、 相対密度は 91. 4%であった。 このホットプレス焼結体を直径 76. 2mmのターゲットに加工し、 この夕 一ゲットを用いてスパッタリングして、 直径 50 mmの基板上に 0. 1 mの厚 さに成膜した。 パ一ティクル数を測定したところ、 基板上に 0. 5 /im以上のも のが 120個測定され、 パーティクル数の著しい増加が観察された。 発明の効果 The LaF 3 powder was hot-pressed at 873 ° K, 300 kgf / cm 2 for 2 hours in an Ar gas atmosphere at 1 atm. Composition ratio L aF 2. 9, the relative density was 91.4%. This hot-pressed sintered body was processed into a target having a diameter of 76.2 mm, and was sputtered using this evening get to form a film having a thickness of 0.1 m on a substrate having a diameter of 50 mm. When the number of particles was measured, 120 particles having a particle size of 0.5 / im or more were measured on the substrate, and a remarkable increase in the number of particles was observed. The invention's effect
本発明は、 赤外、 可視及び紫外光の反射防止膜、 フィルタ一膜等の成膜をはじ めとする各種光学薄膜及び高集積度半導体のゲート絶緣膜形成等に好適であり、 成膜方法として大面積の成膜が可能であり、 また夕ーゲッ卜の密度を上げること でパ一ティクルの発生を抑え、 かつ強度が高く、 組成ずれや欠陥の少ない良好な 品質の膜を得ることができるという優れた効果を有する。  INDUSTRIAL APPLICABILITY The present invention is suitable for forming various types of optical thin films such as an antireflection film for infrared, visible and ultraviolet light, a film for a filter, etc., and a gate insulating film for a highly integrated semiconductor. It is possible to form a film with a large area, and by increasing the density of the evening gate, it is possible to suppress the generation of particles, and to obtain a film of high strength, high quality, and little composition deviation or defects. It has an excellent effect.

Claims

請 求 の 範 囲 The scope of the claims
1. A 1 , Β a, C a, Gd, L a, L i , Mg, Pb, Yの群から選択した少 なくとも 1種の元素のフッ化物からなることを特徵とするスパッタリングタ一ゲ ッ卜。 1. A sputtering target comprising a fluoride of at least one element selected from the group consisting of A 1, a a, C a, G d, L a, L i, Mg, Pb, and Y Cut.
2. 化学量論的組成からのずれが 0. 5以内の組成比を持つことを特徴とする請 求の範囲第 1項記載のスパッタリングターゲット。  2. The sputtering target according to claim 1, wherein a deviation from the stoichiometric composition has a composition ratio within 0.5.
3. 95 %以上の密度比を持つことを特徴とする請求の範囲第 1項又は第 2項記  3. Claims 1 or 2 characterized by having a density ratio of 95% or more
4. A 1 , B a, Ca, Gd, L a, L i, Mg, Pb, Yの群から選択した少 なくとも 1種の元素からなるフッ化物粉末を、 大気中、 酸素ガス雰囲気中、 窒素 ガス雰囲気中又は A rガス等の不活性ガス雰囲気中で、 それぞれの化合物の融点 に対して、 絶対温度で 50〜70%の温度でホットプレスすることを特徴とする スパッタリングターゲッ卜の製造方法。 4. A fluoride powder composed of at least one element selected from the group consisting of A 1, Ba, Ca, Gd, La, Li, Mg, Pb, and Y in air, in an oxygen gas atmosphere, A method for manufacturing a sputtering target, comprising hot-pressing at a temperature of 50 to 70% in absolute temperature with respect to the melting point of each compound in a nitrogen gas atmosphere or an inert gas atmosphere such as Ar gas. .
5. 化学量論的組成からのずれが 0. 5以内の組成比を持つことを特徴とする請 求の範囲第 4項記載のスパッタリング夕一ゲットの製造方法。  5. The method according to claim 4, wherein the deviation from the stoichiometric composition has a composition ratio within 0.5.
6. 95%以上の密度比を持つことを特徴とする請求の範囲第 4項又は第 5項記 載のスパッタリングターゲットの製造方法。  6. The method for producing a sputtering target according to claim 4, wherein the method has a density ratio of 95% or more.
PCT/JP2002/007264 2001-09-05 2002-07-17 Fluoride sputtering target and method for preparation thereof WO2003023084A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-268217 2001-09-05
JP2001268217A JP2003073818A (en) 2001-09-05 2001-09-05 Fluoride sputtering target and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2003023084A1 true WO2003023084A1 (en) 2003-03-20

Family

ID=19094234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007264 WO2003023084A1 (en) 2001-09-05 2002-07-17 Fluoride sputtering target and method for preparation thereof

Country Status (2)

Country Link
JP (1) JP2003073818A (en)
WO (1) WO2003023084A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5577287B2 (en) * 2011-03-30 2014-08-20 日本碍子株式会社 Magnesium fluoride sintered body, manufacturing method thereof, and member for semiconductor manufacturing apparatus
JP6955748B2 (en) * 2017-05-10 2021-10-27 国立研究開発法人物質・材料研究機構 MIS type semiconductor device and its manufacturing method
CN114163242B (en) * 2021-12-30 2022-11-18 杭州电子科技大学 Microwave dielectric ceramic with low dielectric constant and high quality factor and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116059A (en) * 1997-06-18 1999-01-12 Olympus Optical Co Ltd Production of sputtering target and thin film
JPH11106910A (en) * 1997-10-03 1999-04-20 Olympus Optical Co Ltd Production of thin film
JP2000086344A (en) * 1998-09-14 2000-03-28 Kyocera Corp High density fluoride sintered body, its production, and member for semiconductor-producing apparatus by using the same
JP2000239066A (en) * 1999-02-22 2000-09-05 Kyocera Corp Corrosionproof member and its production, and member for plasma treatment device using the same
JP2000282233A (en) * 1999-04-02 2000-10-10 Canon Inc Formation of optical thin film and optical thin film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116059A (en) * 1997-06-18 1999-01-12 Olympus Optical Co Ltd Production of sputtering target and thin film
JPH11106910A (en) * 1997-10-03 1999-04-20 Olympus Optical Co Ltd Production of thin film
JP2000086344A (en) * 1998-09-14 2000-03-28 Kyocera Corp High density fluoride sintered body, its production, and member for semiconductor-producing apparatus by using the same
JP2000239066A (en) * 1999-02-22 2000-09-05 Kyocera Corp Corrosionproof member and its production, and member for plasma treatment device using the same
JP2000282233A (en) * 1999-04-02 2000-10-10 Canon Inc Formation of optical thin film and optical thin film

Also Published As

Publication number Publication date
JP2003073818A (en) 2003-03-12

Similar Documents

Publication Publication Date Title
JP4087447B2 (en) Sputtering target and manufacturing method thereof
US5158933A (en) Phase separated composite materials
KR102192713B1 (en) Composition for Sputtering Target for Thin Film and Method for Making Sputtering Target
KR20010042939A (en) Transparent conductive laminate, its manufacturing method, and display comprising transparent conductive laminate
EP3241922A1 (en) Methods for forming hermetic barrier layers
JP2003158307A (en) Method for producing superconducting material
JP3603112B2 (en) Low temperature production of alumina crystalline thin film
JPH03187733A (en) Amorphous oxide film, preparation thereof and target thereof
WO2003023084A1 (en) Fluoride sputtering target and method for preparation thereof
JP3243474B2 (en) Method for manufacturing multilayer bandpass filter and multilayer bandpass filter having substantially zero wavelength shift temperature coefficient
Niederwald Low-temperature deposition of optical coatings using ion assistance
Domaradzki et al. Study of Structure Densification in TiO_2 Coatings Prepared by Magnetron Sputtering under Low Pressure of Oxygen Plasma Discharge
JP5118276B2 (en) Sputtering target for forming gate insulating film for semiconductor device, manufacturing method thereof, and gate insulating film for semiconductor device
WO2015182167A1 (en) Oxide sintered body, method for manufacturing same, and oxide film
JPS59148002A (en) Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition
JP5999049B2 (en) Deposition tablet, method for producing the same, and method for producing oxide film
JPH0726373A (en) Rotating cathode target, its production and film formed by using this target
CN109280885B (en) Method for preparing V-B-Al-N nano hard film based on surface of hard alloy or ceramic matrix
Pellicori et al. Control of Mechanical Stress as Related to Deposition Process
JP2024051198A (en) Crystallized coating thin film and its manufacturing method, as well as optical laminate and display, lens, and article including the same
Then et al. Effect of processing on the structure and wear properties of sputtered zirconium oxide thin films
Willey et al. Improved magnesium fluoride process by ion-assisted deposition
JPH03188263A (en) Metal oxide coated plastics
JP2001335917A (en) Method for producing crystalline alumina thin film at low temperature
JPH0711433A (en) Target for sputtering and its production

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase